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Abstract: Increased propene production is presently one of the most significant objectives 
in petroleum chemistry. Especially the one-step conversion of ethene to propene (ETP 
reaction, 3C2H4 → 2C3H6) is the most desired process. In our efforts, nickel ion-loaded 
mesoporous silica could turn a new type of ETP reaction into reality. The one-step 
conversion of ethene was 68% and the propene selectivity was 48% in a continuous  
gas-flow system at 673 K and atmospheric pressure. The reactivity of lower olefins and the 
dependences of the ETP reaction on the contact time and the partial pressure of ethene 
were consistent with a reaction mechanism involving dimerization of ethene to 1-butene, 
isomerization of 1-butene to 2-butene, and metathesis of 2-butene and ethene to yield 
propene. The reaction was then expanded to an ethanol-to-propene reaction on the same 
catalyst, in which two possible reaction routes are suggested to form ethene from ethanol. 
The catalysts were characterized mainly by EXAFS and TPR techniques. The local 
structures of the nickel species active for the ETP reaction were very similar to that of 
layered nickel silicate, while those on the inert catalysts were the same as that of  
NiO particles.  
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1. Introduction 

The mainstay of petrochemical industries in the world is still ethene (C2=), while the need for 
propene (C3=) is rapidly increasing due to the increasing demand of polypropene, propene oxide, etc. 

OPEN ACCESS



Molecules 2011, 16            
 

 

7845

[1,2]. This trend has led to the need for the conversion of C2= to C3= (ETP reaction) or of increased 
production of C3=. Three kinds of measures are applied or suggested for this problem. First is the  
so-called mild-cracking: however, the increment of C3= in this case is limited due to narrow range of 
applicable reaction conditions. Second is metathesis of C2= and butenes (C4=) to form C3=, for 
instance, the ABB Lummus process [3]. Its disadvantage is the necessity for equimolar amounts of C2= 
and C4=. Third is direct ETP conversion without any addition of other hydrocarbons. This would be 
the most desirable route, but no good catalyst for the reaction has been found so far. Supported 
molybdenum [4] and tungsten oxide [5] have been reported as possible catalysts, but their activity was 
so low as to be observed only in a closed recirculation system. On the other hand, various zeolites  
have been employed as catalysts for this reaction [6,7]. The reaction involves oligomerization/ 
polymerization of lower olefins, subsequent decomposition to yield C3= or other species on the strong 
acid sites of the zeolites, and selective evolution of C3= due to the shape-selectivity of zeolite pores. 
This process has the limitations of selectivity due to the shape selectivity and of catalyst lifetime  
owing to coke formation. The present objective is the selective formation of C3= without the  
shape-selectivity. 

The catalytic activity of Ni ion for the dimerization or oligomerization of olefins was found  
50 years ago and has been widely studied [8]. In the case of heterogeneous catalysis, Ozaki et al. [9-12] 
reported the high catalytic activity of Ni/SiO2 for the dimerization, though severe deactivation during 
the reaction prevented it from being applied in the practical process. They also found that acidic 
supports were effective for enhancement of the catalytic activity of nickel. A similar catalytic activity 
was also confirmed on various Ni-zeolites [13,14] or on Ni supported on MCM-41 [15] in a closed 
recirculation system. Since we had already found the acidic properties of silica MCM-41 [16-23], we 
tried the dimerization of C2= to C4=. During the study a subsequent reaction of the produced C4= and 
unreacted C2= to yield C3= was uncovered. As a result we found that Ni ion-loaded mesoporous silica 
(Ni-MCM-41, abbreviated as Ni-M41) was highly active in the ETP transformation. 

On the other hand the use of bio-ethanol (bEtOH) as an additive for automobile fuels has increased 
rapidly all over the World. This is one way of using renewable resources to suppress carbon dioxide 
emissions, while another challenge is the conversion of bEtOH into various olefins and their use for 
production of chemicals and polymers [1,2,24-48]. The latter would be very significant for the long-
term fixation of carbon dioxide. Many efforts have therefore devoted to the development of systems 
for converting bEtOH to C2= and other lower olefins. In particular conversion to C3= is desirable due 
to the greater demand for C3= derivatives [1,2]. 

Catalytic conversions of EtOH on zeolites [7,24-35] and metal oxides [36-48] have been widely 
studied. On zeolites, the activity and selectivity reported so far in many studies were insufficient. The 
major weakness is again catalyst deactivation [7,24-35]. EtOH can also react on metal oxide surfaces, 
to give various chemicals. Acid sites are widely recognized to lead to dehydration of EtOH, giving 
C2=, while basic sites lead to dehydrogenation to yield acetaldehyde (AAD) [36-48]. As a result, many 
kinds of products, for example aldehydes, ketones, C2=, and C4=, were observed on oxide catalysts. In 
this catalysis C4= and other higher olefins were produced by oligomerization of C2=, but as far as we 
are aware, significant C3= production on oxide catalysts has not been reported. The results for the ETP 
reaction on Ni-M41 leaded us to apply the same catalyst for the conversion of EtOH to C3= since M41 
is active for the dehydration of EtOH to yield C2= [49,50]. This was first confirmed by us [51-54] and 
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subsequently by Sugiyama et al. [55]. The pore diameters of M41 are usually 1.5–5.0 nm, and 
therefore the product distribution on the catalysts is not controlled by shape selectivity. The reaction 
mechanism/pathways are of interest, and will be suggested here. In the final part of this review the 
catalysts were characterized and the correlation of activities with catalyst preparation methods were 
also discussed. 

2. Results and Discussion 

2.1. Conversion of Ethene to Propene on Ni-M41 Catalysts 

The reactions on Ni-M41 were examined as a function of reaction temperature. The dimerization of 
C2= to C4= mainly proceeded at 573 K. When 0.5 g of Ni-M41(Si/Ni=15) was used, the degrees of 
conversion of C2= and the selectivity to C4= reached 43 and 93%, respectively. The production ratio of 
1-, trans-2-, and cis-2-butene was 0.5:1.0:0.3. At 673–723 K the major products were C3= and C4=. 
The respective conversion levels were dependent on the partial pressure of C2= and the contact time, as 
shown later. Hexenes, the product of C2= trimerization, were observed at the wide temperature range 
but the yields were always less than 5%. 

When silica gel was used as the support instead of M41 and nickel ion was loaded with the usual 
impregnation method, both the conversion level and the selectivity of C3= were very poor. In addition, 
no C4= was produced on M41 alone, indicating the necessity of nickel ion for the reaction. It follows 
that the coexistence of nickel ion and mesoporous structure of the support make the C3= formation 
possible. The catalyst was continuously used at 673 K for 10 h to determine the possible deactivation. 
Small changes in the catalytic activity for the formation of C3= were observed in the initial stage, but 
the activity became stable within 2 h and no deactivation was found during the 10 h experiment. The 
XRD patterns and the surface areas of Ni-M41 remained unchanged after the catalytic runs. Thus the 
stability of the present Ni-M41 catalysts under the present reaction conditions could be confirmed.  

The correlations between the product distribution and the reaction conditions were then 
investigated. In the range PC2H4=10–50%, the conversion levels of C2= and to C3= and C4= increased 
monotonously with increasing PC2H4. At PC2H4=49.7%, the respective conversions to C3, C4, and C6 
olefins were 33, 29, and 6% on 0.3 g of Ni-M41(20). The carbon balance was 99.8% in each 
experiment, which indicates almost no production of ‘‘unknown products’’. The degree of conversion 
to C3=, 33%, appears to rather small but it should be noted that the concentration of unreacted C2= was 
about 34% under the present conditions and the ratio of C3=/C2==33/34 in carbon basis would be 
sufficiently great.  

Figure 1 shows the change in product distribution as a function of the weight of Ni-M41 employed, 
i.e., the contact time dependence of the reaction. Clearly, longer contact times resulted in greater 
conversion of C2= and better selectivity for C3=, while the selectivity for C4= decreased and that of 
hexenes was almost constant. Propene is indeed the secondary product in the consecutive reaction of 
C2= on Ni-M41. At 0.5 g of Ni-M41(43), the degrees of C2= conversion and C3= selectivity were  
55 and 54%, respectively. 
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Figure 1. Change in ethene conversion and product distribution at 673 K with weight of 
Ni-M41(43). The codes C2–C6 mean ethene, propene, butenes, and hexenes.  

 

The reaction of C2= and 1-butene was then studied to clarify the mechanism of the C3= formation 
and the results are summarized in Figure 2A. One can recognize the selective formation of C3= on  
Ni-M41 at the temperature of 623 K and higher. The increment in the amount of C4= at 523–573 K is 
due to the dimerization of C2=. The selective production of C3= would indicate the progress of the 
metathesis reaction on this catalytic system. To confirm the reaction pathway in more detail, we 
examined two kinds of reactions. The first was the reaction of 1-hexene. When 1-hexene was 
introduced onto the Ni-M41 catalyst, methane, C2=, C4=, and pentenes were produced, besides C3=, 
indicating the random scission of carbon-carbon bonds of 1-hexene. This indicates little possibility that 
C2= and 1-butene first afford hexenes and the resulting hexenes homolytically decompose to give C3= 
selectively in the experiments of Figure 2A. The second reaction examined was the retro-metathesis 
reaction. Namely the reaction of C3= on Ni-M41 was investigated and shown to readily proceeded to 
yield equimolar C2= and C4= as shown in Figure 2B. The amounts of by-products were always small. 
It was further confirmed in separate experiments that the parent M41 was not active for the reaction of 
C2= and C4=. All of the results therefore strongly suggest the metathesis reaction on Ni-M41 and that 
the active center for the catalysis would be nickel ion.  

Although at present we cannot preclude the possibility of a decomposition mechanism of higher 
olefins because other types of reaction mechanisms have been suggested on Cr [56] or Zr [57], we 
believe that the metathesis mechanism (Figure 3) is the most plausible reaction mechanism for the C3= 
formation on Ni-M41. That is, at first two C2= molecules dimerize to give 1-butene on Ni, and the 
resulting 1-butene then isomerizes to 2-butene on the acid sites of M41, and finally the metathesis of 
the produced 2-butene with unreacted C2= proceeds to form C3= on Ni. The acidic properties of M41 
silica were already been reported by us [16-20] and the other research groups [15,21-23] and the 
isomerization of 1-butene to 2-C4=, a typical acid-catalyzed reaction, was indeed confirmed on silica 
M41 [15]. 
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Figure 2. Metathesis reaction of ethene and 1-butene (A, PC2H4 = PC4H8 = 5%) or propene  
(B, PC3H6 = 10%) on 0.3 g of Ni-M41(15). The codes C2–C6 mean ethene, propene, 
butenes, pentenes, and hexenes. In Figure 2B, the left vertical axis is the amount of 
propene and the right those of the products. 

(A) (B) 

 

Figure 3. Proposed reaction mechanism for the conversion of ethene to propene on Nickel 
ion-loaded MCM-41.  

 

As has been summarized by Grubbs [58,59] and Arpe [1], the metathesis reaction is one of the most 
important organic reactions. Despite world-wide study it is well known that the catalytically active 
species for the reaction are confined to Mo, W, Ru, and Re. The present results might suggest that 
nickel-ion loaded mesoporous silica is also active for the metathesis of C4= and C2= to yield C3= in the 
gas-phase flow reaction. Mori et al. [60] suggested the possibility of metathesis on a Ni(0) complex in 
their discussion, while Baker et al. [61] concluded no progress of a metathesis reaction on Ni 
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complexes. At the moment, no reports claim nickel ion as a catalytically active species for metathesis. 
It is noteworthy that the surface density of Ni is approximately 0.5 Ni/nm2 in the case of Ni-M41(20) 
on the assumption of the even distribution of nickel on the surface. The valence of nickel ion in the 
mesoporous silica were not studied here. There are two possibilities for the redox cycles of nickel 
species, Ni(I)-Ni(III) and Ni(0)-Ni(II). In Section 3.3 the TPR experiments will indicate the difficult 
reduction of nickel species loaded on M41 to Ni(0), which would be one important factor for 
generation of the catalytic activity. Therefore we speculate that the Ni(I)-Ni(III) system would be the 
possible redox cycle for the metathesis reaction. The stability of Ni(I) in the zeolites [62-64] and 
mesoporous materials [65,66] support the speculation that Ni(I) is an active center and a Ni(III) 
carbene is produced as an intermediate.  

Finally the effectiveness of other metal ions for this reaction is briefly introduced here.  
The conversion levels of C2= on Al (22), Ti (30), V (22), Cr (43), Mn (20), Fe (25), Co (16), Cu (37), 
Zn (28), Zr (23), Mo (30), or W (30) loaded M41 were all 5% or less at 673 K, and most  
of the products were “unknown products”. It should be noted, however, that the gas-phase 
dimerization-isomerization-metathesis of C2

= on tungsten catalysts was independently reported by 
Basset et al. [67] and the others [68]. The difference clearly results from the discrepancy of reaction 
conditions. Ru or Re loaded MCM-41 were prepared separately through the conventional impregnation 
method and employed as the catalyst for the present reaction at 673 K because of its high activity 
reported at lower temperatures, but no activity for the 3C2

= → 2C3
= reaction was observed in our 

experiments. This would be due to the lack of activity of Ru or Re for the dimerization of C2
= and the 

difference of the reaction temperature applied. Clearly only nickel ion shows the unique activity for the 
ETP conversion in the gas-phase reaction at 673 K. The reason for the specific activity of nickel ion on 
MCM-41 would be a target of the future work. 

2.2. Reaction of Ethanol on Ni-MCM-41 

The influence of temperature on EtOH conversion over Ni-M41 is summarized in Figure 4. Many 
kinds of products were formed in addition to C2=. Diethyl ether (DEE) was mainly obtained at around 
523 K. DEE has been reported earlier as an intermediate compound in the dehydration, decomposing 
to yield EtOH and C2= at higher temperatures [49,50]. The C2= yield increased sharply at 573 K, and 
reached ca. 70% at 623 K or above. The C4= yield reached a maximum at 623 K, while maxima in C3= 
yield occurred at 673 and 723 K. Notably, AAD was formed at 573–723 K, although not in large 
amounts, which will be discussed later. 

The stability of Ni-M41 was examined at 673 K. The catalytic activity did not change during 20 h 
of continuous time on stream. In addition, the carbon-based mass balances were always ca. 100%, 
within the experimental errors. The results demonstrate the stable catalytic activity of Ni-M41. 
However, there is the possibility that losses of catalytic activity could not be determined under these 
conditions because the catalytic activity of Ni-M41 was very high, as will be revealed in a following 
paragraph, and the conversion levels of EtOH were always ca. 100%. The yields of C2=, C3=, C4=, and 
AAD were 67, 16, 5, and 7 %, respectively. The values should be compared with those of the reaction 
of C2= on the same catalyst reported previously (see Section 3.1). At 673 K and PC2==10 vol %, the 
C2= conversion and selectivity to C3= and C4= were reported to be 42, 47, and 40 %, respectively 
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CH3CHO + CH3CH2OH  CH3COOCH2CH3 (ETA) + H2 (7)

2CH3CHO  CH3COOCH2CH3 (ETA) (7’)

CH3COOCH2CH3  CH3COOH + CH2=CH2 (8)

CH3COOCH2CH3 + H2O  CH3COOH + CH3CH2OH (8’)

CH3COOH + CH3CH2OH  CH3COOCH2CH3 + H2O (9)

CH3COOH + H2  CH3CHO + H2O (10)

Equation (7’) is well-known as the Tishchenko reaction, and Equation (9) as the Fisher Esterification. 
The experimental results indicate the progress in Equation (7) instead of (7’) on Ni-M41. It is already 
known that hydrolysis of ETA [Equation (8’), the reverse reaction of Equation (9)] gives acetic acid 
and EtOH, but Equation (8) is not popular. The reverse reaction of Equation (8), however, was already 
confirmed to proceed catalytically and was put into practical use by Showa Denko K.K., Japan [69]. 
To postulate Equation (8) is therefore legitimate. The sequence of reactions (6)–(7)–(8)–(9)–(8) would 
result in the formation of C2= from AAD and EtOH through ETA and acetic acid as the intermediates. 

2.3. Characterization of Nickel Species Loaded on the Mesoporous Silica  

Three kinds of Ni-loaded M41 samples were prepared to clarify the state of the nickel ion. They 
were prepared by TIE, impregnation (IMP), equilibrium adsorption (EA) of [Ni(NH3)x]2+ as shown 
later. The colors of the EA, TIE and IMP catalysts were pale ivory, pale ivory and pale blackish purple, 
respectively. The following results and discussion will be described on the premise of no essential 
difference in the pore structures among the M41 samples employed here.  

The activity of the TIE catalyst for the ETP reaction was first compared with those of the IMP 
catalysts. Figure 7 shows the catalytic activities of Ni-M41, Ni/M41, and Ni/SiO2 at 1 and 4 h after the 
beginning of the reaction. Only the Ni-M41 catalyst prepared by the TIE method showed high and 
stable activity for the ETP reaction, while the activity of Ni/M41 or Ni/SiO2 was very low and 
decreased with the reaction time. To clarify the origin of the great difference between the activities of 
TIE- and IMP-catalysts, the catalysts were characterized by various methods. Surface areas of Ni-M41 
and Ni/M41 calcined at 773 K were 856 and 822 m2/g, respectively. The values indicate little correlation 
between the surface area and the catalysis. The XRD measurements did not confirm any nickel-related 
crystalline phases on the TIE-catalysts, but showed the formation of NiO particles on the IMP catalysts.  

More detailed characterization of the supported nickel species has been carried out by using the 
EXAFS and TPR techniques. Figure 8 shows radial structure functions (RSFs) of Ni-ion loaded 
catalysts and reference compounds. Most of the samples except the Ni foil gave two peaks at 0.15–0.16 
and 0.26–0.28 nm though their respective intensities were depended on the samples. The latter peaks 
indicate the presence of Ni-Ni pairs. The conventional curve fitting analysis was applied to the spectra 
to determine the interatomic distance and the coordination numbers around the nickel atom and the 
results are summarized in Table 1. It should be noted in the table that the accuracy of coordination 
numbers estimated for the second coordination sphere has some uncertainty because the range of 
EXAFS spectra adopted here was limited to 120 nm−1. We employed Ni foil, NiO, and two kinds of 
layered nickel silicates as the reference compounds.  
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Figure 7. Catalytic activity of nickel-ion loaded catalysts for the ETP reaction at 673 K. 
The reaction times after the beginning of the reaction are described in the parentheses. 
Catalysts: Ni-M41, Ni/M41, Ni/SiO2, Ni-NH3/M41, and Ni-NH3/SiO2. Catalyst 0.3 g, total 
flow rate 11 mL/min, 0.1 MPa, ethene 9.3% and water 1.4% (N2 balance). Alkanes: 
methane and ethane. 

 

Table 1. XAFS parameters of Ni ion in various Ni-loaded silica catalysts. 

Sample Shell C. N. a D/nm b Δσ2/nm2 c R/% d 
Ni-M41 Ni-O 6.9 0.208 6.08 × 10−5 16.2 

Ni-Ni 5.1 0.305 4.90 × 10−5 4.4 
Ni-Si 2.0 0.336 1.02 × 10−5  

Ni/M41 Ni-O f    
Ni-Ni 10.3 0.300 5.04 × 10−5 3.0 

Ni/SiO2 Ni-O f    
Ni-Ni 11.6 0.296 3.84 × 10−5 1.3 

Ni-NH3/M41 Ni-O f    
Ni-Ni 3.8 0.305 3.25 × 10−5 6.1 
Ni-Si 2.4 0.337 0.6 × 10−5  

NiO Ni-O 6 0.208   
Ni-Ni 12 0.295   

Ni-talcite e Ni-Ni 6.0 0.305   
Ni-Si 5.0 0.327   

Nepouite e Ni-Ni 6.0 0.309   
Ni-Si 2.4 0.327   

a Coordination number; b Interatomic distance; c Debye Waller factor; d Agreement factor;  
e Cited from reference [70]; f No appropriate fits could be obtained.  
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Figure 8. Fourier transforms of k3-weighted EXAFS spectra of (a) Ni-M41; (b) Ni/M41; 
(c) Ni/SiO2; (d) Ni-NH3/M41; (e) Ni-NH3/SiO2; (f) Ni foil; (g) NiO; (h) Ni-silicate 
(antigorite); and (i) Ni-silicate (talcite). Δk: 3.2–12 Å−1. 

 

Table 1 and Figure 8 reveal several important points from the comparison with the literature [70-80]. 
The distance and the coordination number of the first shells (oxygen backscatterer) on Ni-M41 indicate 
the presence of hexacoordinated Ni2+ 6c ions [71] in the TIE sample. Yang et al. [72] reported that the 
nickel ion substituted for Si ion in the M41 framework has a tetrahedral coordination structure, which 
indicates a complete difference between the coordination states of the nickel ions in the present TIE 
sample and in the Ni-MCM-41 prepared by the sol-gel method. The distances of the second shell (Ni 
and Si backscatterer) of Ni-M41, 0.305 and 0.336 nm, were longer than those of NiO and Ni/M41, and 
similar to those of layered nickel silicates. The findings concerning the first and second shells strongly 
indicate that the nickel ion in the TIE sample has a layered nickel silicate-like structure. The typical 
layered nickel silicates consist of a NiO6 layer sandwiched by one or two silica layers [70,73,74,81,82]. 
The EXAFS spectra of the two types of nickel silicates [Table 1 and Figures 8h,i], however, were quite 
similar to each other, as has already been reported by several workers [70,71,75]. At the moment 
therefore we cannot determine the exact surface structure of nickel ion on the basis of the EXAFS 
spectra. In contrast, the Ni/M41 and Ni/SiO2 catalysts gave spectra assignable to NiO species because 
the Ni-Ni distance was shorter than those of Ni-M41 and the layered-nickel silicates. It follows that the 
preparation methods have an essential effect for the appearance of the catalytic activity through the 
change in loading states of nickel ion on the supports. The role of layered-nickel silicates on M41 for 
the catalysis will be described in the later paragraphs in more detail. 

The nickel species in the TIE catalyst gave a reduction peak at 931 K in the TPR experiments. This 
temperature was much higher than those of Ni/M41 (839 K), Ni/SiO2 (746 K), and NiO  
alone (673 K). In TPR profiles of the nickel silicates, similar to previous works [74,76], the broad 
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reduction peaks were observed on these samples. On the basis of many TPR experiments reported  
so far [72,79,83,84], we can summarize the TPR peak regions of nickel on silica as follows: Ni-oxide, 
the cationic form of nickel on the silica surface, and the nickel ion forming some surface composite 
compounds could be reduced at ca. 600–800, 800–900, and 900–1,000 K, respectively. The reduction 
temperature of Ni-M41 clearly falls within the region of the reduction of composite compounds. This 
further supports the above conclusion that the nickel ion in the TIE sample might form the layered 
nickel silicate like-structure on the surface.  

The amounts of H2 consumed in the TPR experiments of the TIE sample and the layered silicates 
were almost equal to those of nickel ion contained in the respective samples. In contrast, the IMP 
catalysts gave a much higher ratio than unity. The composition of Ni oxide prepared by thermal 
decomposition of nickel carbonate at 773 K was reported to be NiO1.13 and its color was black [85].  
In addition, Ni-oxide prepared by the impregnation onto silica support was suggested to be most 
probable Ni2O3 species [84]. The larger TPR peaks than those expected from H2/Ni = 1 and the pale 
blackish purple color of the present IMP catalysts both indicate the existence of the mixture of Ni2O3 
and NiO on the silica surface.  

The surface layered nickel silicate is reported to be produced by loading of nickel ion as  
amine-complexes onto silica in a basic aqueous solution and then heating them in air at 623–1,073 K 
[71,72,76,78-80,83,86,87]. Hadjiivanov et al. reported that the EA of [Ni(NH3)x]2+ onto silica gel at pH 
12.3 and the subsequent calcination at 623 K is effective for its preparation with ease [83]. We have here 
applied their method to prepare the samples containing the surface layered nickel silicate (the EA 
catalysts) to evaluate its role for the catalysis, in which the EA samples were finally calcined at 773 K. 
The XRD patterns of the Ni-NH3/M41 and Ni-NH3/SiO2 catalysts did not show any diffraction peaks 
assignable to the layered nickel silicate, indicating the domain size of the surface layered nickel silicate 
was not large. The fine structure of nickel ion in the EA catalyst was studied by XAFS and the results 
are shown in Figure 8 and Table 1. It is clear that the spectra were very similar to those of the layered 
nickel silicate. The TPR profiles of the EA catalysts were separately measured. They have much 
resemblance to that of Ni-M41 though the reduction temperatures, 898 and 927 K, were somewhat 
lower than that of Ni-M41. All of the results clearly indicate the formation of the layered nickel silicate 
on the silica surface by the EA method, as has been reported by several authors.  

The catalytic activity of the Ni-NH3/M41 and Ni-NH3/SiO2 samples is shown in Figure 7. It was 
lower than that of the Ni-M41 sample (the TIE catalyst) while much greater than those of the IMP 
samples. Deactivation during the reaction was also observed with the EA samples, but the degrees 
were smaller than those of the IMP catalysts. More detailed investigation into the preparation 
conditions of the EA catalysts possibly leads to raising their catalytic activity to the same levels as that 
of the TIE catalyst. This estimation was indeed realized partly by Lehman et al. [88] All results 
presented here showed that the TIE method is the most effective to prepare the active nickel ion-loaded 
catalysts and the high catalytic activity would result from the effective formation of surface layered 
nickel silicate-like structure. It would be worth to note that we attempted to measure the dispersion of 
nickel metal on the TIE samples after the TPR experiments by the conventional CO adsorption [89,90] 
but we could not find any irreversible adsorption of CO. This means that the state of nickel metal on 
the TIE catalysts is entirely different from those on the conventional catalysts, which would be a target 
for the future study. 
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3. Experimental Section 

M41 was prepared in the reported procedure [91-93] using C12H25N(CH3)3Br as the template and 
colloidal silica as the silica source. Nickel ion was loaded onto M41 by the template ion exchange 
(TIE) method using an aqueous nickel nitrate solution [49,50,91-93], the conventional impregnation 
method, or the equilibrium adsorption method, as will be summarized in Section 3.3. The samples 
were named as Ni-M41, Ni/M41, and Ni-NH3/M41, respectively. As-prepared Ni-loaded MCM-41 
was calcined at 773 K for 6 h in air, in which the sample was thinly (less than 2 mm thick) spread onto 
a ceramic board and heated at 0.2–0.5 K a minute. The slow heating with the shallow bed method was 
important to obtain good and reproducible catalytic activity. The Brunauer-Emmett-Teller (BET) 
surface area and the Barrett-Joyner-Halenda (BJH) pore diameter determined by a N2 adsorption 
measurement were 873–1010 m2g−1 and 2.2 nm, respectively. The hexagonal structure of the resulting 
M41 was confirmed by the appearance of 2θ  = 2.580°, 4.476°, and 5.124° peaks in the X-ray 
diffraction patterns (Cu Kα, Ni filter), which corresponded to (100), (110), and (200), respectively. The 
Si/Ni atomic ratios in the calcined samples were 23–28 unless otherwise stated (values were shown 
between brackets in the sample names). The Si/Al atomic ratios were 237–243, in which the origin of 
Al was an impurity of the colloidal silica raw material. The catalytic reaction was carried out using a 
fixed-bed flow reactor at atmospheric pressure. The catalyst (0.05–0.5 g) was loaded in the reactor, 
heated in N2 at 673 K, and then C2= or EtOH (PC2= or PEtOH=2.8–12.8kPa, N2 balance, total flow rate 
10–300 mL min−1) was let into the reactor at a desired temperature with a mass flow controller or a 
syringe-type microfeeder. The product distribution was determined by an on-line gas chromatograph 
and the yields and selectivity were calculated on the carbon basis. 

4. Conclusions 

Our reports have for the first time claimed the gas-phase metathesis on nickel-containing catalysts 
at around 673 K. The specific characteristics of this finding are nickel, gas-phase, and high 
temperature. The reaction mechanism is suggested to be the dimerization of C2=, the isomerization of 
the produced 1-C4=, and the metathesis of C4= and C2= to yield C3=. The reaction was then expanded 
to ethanol and we could also get C3= from EtOH. Two reaction routes for the formation of C2= from 
EtOH on Ni-M41 were revealed and proceeded in parallel. One is the dehydration route via DEE as 
intermediate. The other is a complicated route through AAD and ETA as intermediates. The reaction 
rate of the latter route is slower than that of the former, since the formation of AAD was observed in a 
wide range of SV values. The C2= produced was converted to C3= through dimerization, isomerization, 
and metathesis. The present results indicate that the formation of C3= from C2= or EtOH could be 
achieved by not using the shape selectivity well known in zeolite catalysis. The layered nickel-silicate 
like structure would be the active species for the new type of ETP reaction. More detailed investigation 
of the present system would develop a new horizon in gas-phase metathesis. 
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