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Abstract: Replicating cells undergo DNA synthesis in the highly regulated, S-phase of the 
cell cycle. Analogues of the pyrimidine deoxynucleoside thymidine may be inserted into 
replicating DNA, effectively tagging dividing cells allowing their characterisation. 
Tritiated thymidine, targeted using autoradiography was technically demanding and 
superseded by 5-bromo-2-deoxyuridine (BrdU) and related halogenated analogues, detected 
using antibodies. Their detection required the denaturation of DNA, often constraining the 
outcome of investigations. Despite these limitations BrdU alone has been used to target 
newly synthesised DNA in over 20,000 reviewed biomedical studies. A recent breakthrough in 
“tagging DNA synthesis” is the thymidine analogue 5-ethynyl-2′-deoxyuridine (EdU). The 
alkyne group in EdU is readily detected using a fluorescent azide probe and copper 
catalysis using ‘Huisgen’s reaction’ (1,3-dipolar cycloaddition or ‘click chemistry’). This 
rapid, two-step biolabelling approach allows the tagging and imaging of DNA within cells 
whilst preserving the structural and molecular integrity of the cells. The bio-orthogonal 
detection of EdU allows its application in more experimental assays than previously 
possible with other “unnatural bases”. These include physiological, anatomical and 
molecular biological experimentation in multiple fields including, stem cell research, 
cancer biology, and parasitology. The full potential of EdU and related molecules in 
biomedical research remains to be explored. 
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1. Introduction 

Multicellular animals replicate their DNA when undergoing cell division. This occurs during 
embryogenesis and in the growth of tissues in the adult. DNA synthesis is the most primitive and 
defining event in the advent of the animal kingdom. The persistence of DNA over millions of years of 
animal evolution and its presence across all species alludes to its fundamental role and implies deep 
protective mechanisms to ensure its conservation. The four bases adenine, thymine, cytosine and 
guanine are the absolute unconditional coding components of DNA which is faithfully replicated 
during cell division, providing the robustly reproduced, blueprint for life. 

DNA synthesis has a proof reading system that prevents the contamination of the bases. This tightly 
regulated process was initially breached using radiolabeled nucleoside analogs and subsequently with 
analogues detected using light microscopy. This allowed the tracking and subsequent characterization 
of newborn cells. During the S-phase of the cell cycle, the four DNA bases are organised by cellular 
machinery to form new DNA strands. The replicate paired strands are then segregated and drawn to the 
two poles of the mother cell prior to its cleavage to produce two daughter cells, each with a 
complement of newly synthesised DNA comprised of old and newly incorporated bases. If the cellular 
machinery is fooled into selecting and incorporating an “unnatural base” during DNA synthesis, it is 
possible to track the daughter cells and their offspring subsequent to that division. 

2. A Window of Opportunity: DNA Synthesis 

The duplication of the entire complement of genetic information in an organism is essential for cell 
division in living organisms. Initiation of DNA synthesis for cell division is highly regulated in 
eukaryotic cells where it is confined to the S-phase of the cell cycle [1,2]. The cell cycle, in its entirety, 
describes the strictly regulated and sequentially ordered processes eukaryotic cells undergo for 
duplication of the cell [2,3]. Order is ensured by a series of checkpoints that ensure DNA replication 
and the other phases of the cell cycle are executed with remarkable precision [1,3]. 

In eukaryotic cells, DNA is replicated by semi-conservative replication. DNA synthesis is initiated 
at specialized zones on chromosomes known as “origins of replication”. In S-phase these zones are 
bound by the origin recognition complex that serves as a dock for the binding of additional proteins 
necessary for initiation [1,3]. The recognition complex and associated proteins locally unwind the 
DNA helix, creating replication forks. Nucleic acid synthesis is initiated by the Pol α/primase complex or 
primosome. The primase synthesizes short RNA primers that undergo limited extension by Pol α [4,5]. 
These primers are bound by the DNA polymerase complex enabling DNA polymerases to initiate 
DNA synthesis [5,6]. The resulting RNA-DNA primers are utilized by Pol δ and Pol ε for processive 
elongation on the lagging and leading strands, respectively. DNA polymerases are a group of  
multi-enzymatic complexes that can synthesize DNA by ‘reading’ the DNA template strand and 
catalysing condensation reactions between hydroxyl groups of the sugar components of the nucleoside 
units. It is these nucleoside subunits that polymerize to form DNA [4-6]. 

Nucleosides are synthesised de novo within cells or diffuse into the cytoplasm. Notably, the 
heterogeneously distributed members of the concentrative and equilibrative nucleoside transporter 
families mediate active uptake of nucleosides, including thymidine [7]. They vary in their substrate 
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specificity and together with the synthesised nucleosides, mediate cellular nucleoside homeostasis [8-11]. 
The nucleoside subunits provide a vehicle for a tag to be inserted into the newly synthesized DNA. 
Through the introduction of nucleoside analogues into cells, typically of the nucleoside base 
thymidine, it is possible to insert a ‘tagged’ nucleoside into newly synthesised DNA [2,3]. These 
‘tagged’ thymidine molecules can subsequently be detected by several methods, principally 
autoradiography and immunofluorescence, and more recently by “click chemistry”. 

3. Thymidine Analogues and Their Utility 

The past few decades have seen major inroads in our understanding of the molecular mechanisms 
mediating DNA synthesis [1,2]. Concurrently, techniques developed by chemists are increasingly 
utilised in biological applications, including novel methods to study cell proliferation [1,2]. 

3.1. Radiolabeled Nucleoside Analogues 

The original techniques used for the selective labelling of mitotically active cells involved ‘tagging’ 
thymidine using a radioactive probe and a detection step using autoradiography or scintillation 
techniques [3,5]. Tritium labelled (H3) thymidine and autoradiography was originally developed by 
Woods, Taylor and Hughes, as DNA probes [5]. The two assays showed that DNA replicated in a 
semi-conservative manner [5]. By placing crocus root tips in medium containing H3-thymidine it was 
demonstrated that the crocus roots took up tritium and that DNA, synthesized subsequently during the 
replication phase of the cell cycle, were tritium labelled [1,5]. When the root tips were removed from 
the tritium labelled media the cells observed after a second replication cycle had tritium labelling in 
half of the chromosomes [1,5]. This evidence substantiated the idea that newly synthesized DNA was 
not randomly assorted between DNA. Instead the strands had remained intact with one conserved 
DNA strand serving as a template for the second nascent strand. Each new single complete DNA helix 
was formed from an existing strand, and combined with an existing strand is termed  
“semi-conservative replication” [3,5]. 

Autoradiography provided the first evidence for two ‘neurogenic’ zones in the brains of adult mice, 
showing the capacity to generate new neurons into adulthood [6,12]. Kaplan and Hinds, and also 
Bayer, using tritium labelling and autoradiography, confirmed and extended these findings describing 
a rostral migratory stream consisting of migrating neuroblasts originating in the subventricular zone 
and extending into the olfactory bulb [6,13-16]. The use of tritium labelling and autoradiography in 
neurogenesis experiments has been extensive. The major drawbacks of handling radiolabelled 
substrate and the time consuming techniques inherent to autoradiography was the catalyst for the 
development of new techniques to tag nascent DNA, facilitated by advances in the production of 
monoclonal antibodies [2,17,18]. 

3.2. Halogen-Based Nucleoside Analogues 

5-Bromodeoxyuridine (BrdU), another analogue of the nucleoside thymidine, is readily 
incorporated into the DNA of dividing cells during the S-phase of the cell cycle [2,17,18]. The 
development of an antibody specific for BrdU provided the means for immunological detection of the 
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newly synthesized BrdU-incorporating DNA [2,17,18]. BrdU has become the method of choice for 
researchers experimenting on proliferation for over the past two decades. Within the biomedical 
sciences alone, BrdU has been employed in over 20,000 published studies. The advantages of BrdU 
over tritium labelling are numerous [2,17,19] including significantly reduced demand on equipment 
and time. BrdU enables experimentation using a variety of concurrent techniques and processes such as 
lineage and cell fate analysis through use of cell specific markers. Studies of cell origin and migration at 
high resolution together with quantitative studies of cell genesis are possible using BrdU [2,20-22]. The 
use of BrdU in studying adult neurogenesis has provided deep insights into the neuronal migratory 
pathway between the sub-ventricular zone and the olfactory bulb. BrdU was the key tool for 
substantiating the existence of adult neurogenesis in the primate and human brain [23]. BrdU has 
provided insight into neurodegenerative diseases, factors that influence neurogenesis, rostral migratory 
stream traffic and new neurons in the olfactory bulb in murine and primate models [14,24-28]. 

The halogenated thymidine analogues 5-chlorodeoxyuridine (CldU) and 5-iododeoxyuridine (IdU) 
mirror BrdU in targeting DNA and are also detected by means of specific antibodies [29]. These 
halogenated derivatives may be multiplexed to probe proliferative cells [30]. The efficacy of DNA 
access and labelling is generally considered to be uniform for the halogenated thymidine analogues, 
however detection efficiency may differ as determined by the efficacy of the antibodies targeting the 
unnatural bases. 

The ability of nucleoside analogues to incorporate into forming strands of DNA and RNA has found 
application in clinical fields, specifically as anti-viral and chemotherapeutic agents. The anti-metabolic 
properties of nucleoside analogues are used to action a diverse range of therapeutic outcomes [31,32]. 
The pyrimidine analogue 5-fluoruracil was demonstrated to reduce the growth of liver tumour cells in 
the late 1950s [33]. Further work has shown that despite exhibiting a great deal of structural and 
metabolic similarity, nucleoside analogues differ in their biological effects following their 
incorporation into nascent DNA. These divergent effects are exemplified when considering the varied 
subclasses of nucleoside analogues used in the treatment of acute myeloid leukaemia, other 
haematological conditions and solid tumours such as colorectal and breast cancers [31,32]. 

BrdU and tritiated thymidine are delivered through either intracerebroventricular (i.c.v), intravenous 
(i.v) or intraperitoneal (i.p) injection or as an oral dose [2,12]. The nucleoside analogue molecule 
enters the bloodstream and permeates tissues. Once inside the tissue the chemical is available to all 
cells [2,12]. Dividing cells draw on the pool of nucleosides endemic to the extracellular environment [5,6]. 
Nucleoside analogues compete with the cell’s endogenous nucleosides for selection and incorporation 
into newly forming DNA [5,6]. The standardisation of dosage and dosing regime when applying 
nuceloside analogues remains to be resolved [12]. Many studies use a dose range of 50–100 mg/kg, 
however a number of studies have reported that higher doses are required to saturate the entire 
complement of dividing cells, as addressed later. BrdU is metabolised through a dehalogenation 
mechanism [2,12]. Dehalogenation of BrdU and other halogenated thymidine analogues occur via the 
same mechanism [12]. This mechanism acts to metabolise nucleoside analogues that have not been 
incorporated into newly synthesized DNA, and to clear them from the bloodstream [6]. Active 
metabolism of nuceloside analogues may result in the removal of a large proportion of the 
administered dose before it reaches target tissues [2,12]. 
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Figure 1. Mature (red) and immature (green) sensory neurons colocalise with EdU (white) 
introduced into the proliferative cells of adult rodents, one week prior to tissue harvest. The 
majority of cells which underwent DNA synthesis during the period of EdU exposure have 
differentiated into immature and mature neurons following 7 days. The fluorescence 
conjugated azides are commercially available. The fluorescence molecules are widely used 
probes of small molecular size and bright emission, ranging from the ultraviolet to infrared 
wavelengths. They are readily multiplexed with other fluorescence techniques including 
immunofluorescence. Thus, these techniques are robustly applied to track cell genesis and 
adult stem cells. 

 

The “click” reaction required for the covalent bonding of the azide conjugated fluorescent probe to 
the alkyne incorporated into DNA, occurs rapidly. Despite the near bio-orthogonal fluorescence 
labelling by EdU, the preparations need to be washed following the conjugation of the azide probe to 
EdU, as excess probe present within the specimen produces background fluorescence. The pro-
fluorogenic azide probe, 3-azido-7-hydroxycoumarin, which only emits fluorescence on the formation 
of the 1,2,3-triazole product was used to overcome this limitation [49]. This pro-fluorogenic compound 
reduces background signal as the un-reacted precursors are optically inactive. This development has 
application in the quantification of DNA synthesis in high throughput assays of cell proliferation. 

The reversal of the typical alkyne tag and azide probe “click chemistry” to an azide tag and an 
alkyne probe would allow for the labelling of two distinct proliferative cell populations within the 
same preparation. 5-Azido-UDP (AdU) has been used to label proliferative cells [37] based on the 
previous work done by Sunthankar and colleagues [50]. Using an azide tag increased background 
florescence, as seen previously in activity-based protein profiling “click chemistry” [51]. Importantly, 
reducing background florescence is essential for using AdU in tracking proliferative cells. 

4.2.2. Isolation of Proliferative Cells for Cell Counting 

BrdU labelling is applied extensively for the quantification of proliferating cells in vitro and in vivo, 
where direct counts are conducted on microscopy images. Importantly, the near bio-orthagnal reaction 
for the alkyne-azide conjugation, maximises tissue and cell integrity. Therefore, together with direct 
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in tracking DNA synthesis in living cells and animals. The translation of applicability of these 
labelling techniques used in detecting cell surface or structural proteins, to their application in labelling 
DNA in living cells, must be considered with caution. Together with the known cytotoxicity associated 
with the incorporation of high concentrations of the unnatural bases into DNA, the additional covalent 
conjugation of probes to these bases would have a profound impact on DNA stability and transcription, 
thereby influencing cell function. 

EdU, A Unique Probe 

As terminal alkyne groups are rarely present in biological systems, direct detection of the carbon to 
carbon triple bond would allow for the identification of EdU within DNA. Raman confocal 
spectroscopy enables the focal detection of specific chemical subunits within cells. Using this 
technique, an intense alkyne peak at (2,122 cm−1) was recently demonstrated in living HeLa cells 
following EdU incorporation into their replicating DNA [69]. EdU, when incorporated into DNA at 
lower concentrations, does not impact the biology of cells [48]. Therefore EdU has the potential to 
track, in living cells, DNA replication and the fate of cells labelled during replication. Whilst there are 
limitations with Raman spectroscopy, it demonstrates a concept of growing potential, when linked with 
improving detection techniques. 

6. Summary 

Tracking cell division through incorporating unnatural bases into newly synthesised DNA is a 
powerful and widely used tool in biology. Initial difficulties detecting tritiated thymidine was largely 
overcome using its halogenated analogues. The necessity for the immunodetection of these 
halogenated probes constrained studies, limiting them largely to anatomical investigations. The recent 
emergence of EdU, detected at high efficiency at near bio-orthogonal conditions, using selective “click 
chemistry”, allows investigation of DNA synthesis and cell genesis in a variety of assays. These have 
been extended to include living cells. These advances in tracking DNA synthesis are complemented by 
parallel advances in anatomical and molecular biology techniques. These include increasing sensitivity 
and automation of assays and detection technologies. Thus our capacity to investigate the most 
fundamental and secure process of life, DNA synthesis per-se is increased, facilitating the study of the 
replication and passage of life. The full potential of EdU and related molecules in biology and 
medicine, largely remain to be elucidated. 
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