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Abstract: In this study, a series of thirty-five substituted quinoline-2-carboxamides and 

thirty-three substituted naphthalene-2-carboxamides were prepared and characterized. 

They were tested for their activity related to the inhibition of photosynthetic electron 

transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Primary in vitro screening 

of the synthesized compounds was also performed against four mycobacterial species.  

N-Cycloheptylquinoline-2-carboxamide, N-cyclohexylquinoline-2-carboxamide and  
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N-(2-phenylethyl)quinoline-2-carboxamide showed higher activity against M. tuberculosis 

than the standards isoniazid or pyrazinamide and 2-(pyrrolidin-1-ylcarbonyl)quinoline and 

1-(2-naphthoyl)pyrrolidine expressed higher activity against M. kansasii and M. avium 

paratuberculosis than the standards isoniazid or pyrazinamide. The most effective 

antimycobacterial compounds demonstrated insignificant toxicity against the human 

monocytic leukemia THP-1 cell line. The PET-inhibiting activity expressed by IC50 value 

of the most active compound N-benzyl-2-naphthamide was 7.5 μmol/L. For all compounds, 

the structure-activity relationships are discussed. 

Keywords: quinolines; naphthalene; lipophilicity; photosynthetic electron transport 

inhibition; spinach chloroplasts; in vitro antimycobacterial activity; in vitro cytotoxicity 
 

1. Introduction 

The presence of an amide or thioamide (-NHCO- or -NHCS-) group is characteristic of a number of 

biologically active compounds, e.g., [1–9]. The wide spectrum of biological effects of substituted 

quinoline or naphthalene scaffolds includes especially antimicrobial, antineoplastics and antiviral 

activity [1,10–25]. In addition, some quinoline derivatives also showed noteworthy herbicidal activity 

[13,15–18,26] and they were also found to be uncouplers of photosynthetic phosphorylation [27]. Over 

50% of commercially available herbicides act by reversibly binding to photosystem II (PS II), a  

membrane-protein complex in the thylakoid membranes, which catalyses the oxidation of water and 

the reduction of plastoquinone [28], and thereby inhibit photosynthesis [29–31]. 

Both pharmaceuticals and pesticides are designed to target particular biological functions, and in 

some cases these functions overlap in their molecular target sites, or they target similar processes or 

molecules. Modern herbicides express low toxicity against mammals and one of the reasons is that 

mammals lack many of the target sites for herbicide action. At present, approximately 20 mechanisms 

of action of herbicides are known. It was determined that inhibitors of protoporphyrinogen oxidase,  

4-hydroxyphenylpyruvate dioxygenase and glutamine synthetase inhibit these enzymes both in plants 

and mammals. However, the consequences of inhibition of the overlapping target site can be 

completely different for plants and animals. Therefore a compound that has lethal action on plants may 

be beneficial for mammals [32]. Such chemical compounds are characterized by low toxicity on 

mammals as a result of quick metabolism and/or elimination of herbicide from the mammal system. 

Taking into consideration that mammals may also have molecular sites of action of herbicides, most 

pharmaceutical companies until recently had pesticide divisions, sometimes with a different name. All 

compounds generated by either division of the company were evaluated for both pesticide and 

pharmaceutical uses. In the past, some leading pesticides have become pharmaceuticals and vice versa. 

However, little information of this type was published and must usually be deduced from patent 

literature. One of the exceptions is fluconazole, a fungicide product discovered by the pharmaceutical 

sector that is now used both as a pharmaceutical and patented as a crop production chemical [32–34]. 

In the context of the previously-described azanaphtalenes [13,15–18,26] or various  

amides [3–9], new simple modifications of quinoline and naphtalene as quinoline isosteres that can  
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trigger interesting biological activity were investigated. The compounds were tested for their 

photosynthesis-inhibiting activity—The inhibition of photosynthetic electron transport in spinach 

chloroplasts (Spinacia oleracea L.). The compounds were also assessed for activity against various 

mycobacterial species. Relationships between the structure and their in vitro antimycobacterial 

activities or/and activity related to inhibition of photosynthetic electron transport (PET) in spinach 

chloroplasts are discussed. 

2. Results and Discussion 

2.1. Chemistry 

All the studied compounds were prepared according to Scheme 1. Condensation of the chlorides  

of 2-quinaldic and 2-naphthoic acids with commercially available substituted amines yielded a  

series of thirty-five substituted quinoline-2-carboxamides 1–19c and thirty-three substituted 

naphthalene-2-carboxamides 20–38c. Quinoline-2-carbonyl chloride was prepared using oxalyl 

chloride to ensure mild conditions and prevent quinoline nucleus chloration, whereas 2-naphtoyl 

chloride was obtained by the classical procedure using thionyl chloride. 

Scheme 1. Synthesis of quinoline-2-carboxanilides 1–19c and naphthalene-2-carboxamides 20–38c. 
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Reagents and conditions: (a) (COCl)2, toluene; (b) TEA, toluene; (c) SOCl2, toluene; (d) TEA, CH2Cl2. 

Hydrophobicities (log P) of all compounds 1–38c were calculated using the commercially available 

program ACD/LogP (ACD/LogP ver. 1.0, Advanced Chemistry Development Inc., Toronto, Canada). 

The results are shown in Tables 1 and 2. Compounds show a wide range of lipophilicities, with log P 

(ACD/LogP) values from 1.15 (compound 3, pyrrolidinyl) to 6.98 (compound 2, octyl) within the 

series of quinolinecarboxamides and from 2.10 (compound 22, pyrrolidinyl) to 7.94 (compound 21, 

octyl) within the series of naphthalenecarboxamides. Individual substituents in the amide part of the 

discussed compounds also result in a wide range (from −0.39 to 1.26) of electronic properties 

expressed as σ parameters [35–38]. 
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Table 1. The calculated lipophilicities (log P/Clog P), electronic σ parameters and  

IC50 [μmol/L] values related to PET inhibition in spinach chloroplasts of quinoline-2-

carboxamides 1–19c in comparison with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) 

standard. NF = not found in literature, ND = not determined due to precipitation during the 

experiment or interaction with 2,6-dichlorophenol-indophenol (DCIPP). 

N
N

R1

O

R2

Comp. R1 R2 
PET inhibition 
IC50 [μmol/L] 

log P 
ACD/Log P 

σ 
[35] 

1 i-Pr H ND 2.02 ± 0.34 −0.19 [36] 
2 –C12H25 H 573 6.98 ± 0.32 NF 
3 –(CH2)4– 1598 1.15 ± 0.26 NF 
4 –(CH2)5– ND 1.72 ± 0.26 NF 
5 c-Pn H 762 2.63 ± 0.33 −0.20 [36] 
6 c-Hx H 1041 3.20 ± 0.33 −0.15 [36] 
7 c-Hp H ND 3.76 ± 0.33 NF 
8 c-Oc H 415 4.33 ± 0.33 NF 
9 Ph H 85.1 2.90 ± 0.34 0.60 [36]/0 

10 Bn H 59.4 2.91 ± 0.35 0.22 [36] 
11 –C2H4Ph H ND 3.33 ± 0.33 0.08 [36] 

12a 2-OH-Ph H 16.3 2.54 ± 0.36 −0.09 
12b 3-OH-Ph H ND 2.55 ± 0.36 0.12 
12c 4-OH-Ph H ND 2.15 ± 0.35 −0.37 
13a 2-OCH3-Ph H ND 2.80 ± 0.36 −0.39 [37] 
13b 3-OCH3-Ph H ND 3.06 ± 0.36 0.12 
13c 4-OCH3-Ph H ND 2.85 ± 0.36 −0.27 
14a 2-CH3-Ph H 142.9 3.36 ± 0.34 NF 
14b 3-CH3-Ph H 100.6 3.36 ± 0.34 −0.07 
14c 4-CH3-Ph H ND 3.36 ± 0.34 −0.17 
15a 2-F-Ph H 98.1 2.86 ± 0.44 0.24 [38] 
15b 3-F-Ph H 86.9 3.38 ± 0.44 0.34 
15c 4-F-Ph H 75.3 3.34 ± 0.44 0.06 
16a 2-Cl-Ph H 56.3 3.41 ± 0.36 0.20 [38] 
16b 3-Cl-Ph H 91.9 3.93 ± 0.37 0.37 
16c 4-Cl-Ph H 147.6 3.89 ± 0.36 0.23 
17a 2-Br-Ph H 92.2 3.58 ± 0.44 0.21 [38] 
17b 3-Br-Ph H 409.0 4.10 ± 0.44 0.39 
17c 4-Br-Ph H 307.9 4.06 ± 0.44 0.23 
18a 2-CF3-Ph H 109.4 4.09 ± 0.42 NF 
18b 3-CF3-Ph H 329.5 4.25 ± 0.42 0.43 
18c 4-CF3-Ph H ND 3.91 ± 0.41 0.74 
19a 2-NO2-Ph H ND 3.15 ± 0.38 0.80 [38] 
19b 3-NO2-Ph H ND 3.28 ± 0.38 0.71 
19c 4-NO2-Ph H ND 3.36 ± 0.38 1.26 

DCMU – – 1.9 – – 
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Table 2. The calculated lipophilicities (log P/Clog P), electronic σ parameters and  

IC50 [μmol/L] values related to PET inhibition in spinach chloroplasts of naphthalene-2-

carboxamides 20–38c in comparison with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) 

standard. NF = not found in literature, ND = not determined due to precipitation during the 

experiment or interaction with 2,6-dichlorophenol-indophenol (DCIPP). 

N
R1

O

R2

Comp. R1 R2 
PET inhibition 
IC50 [μmol/L] 

log P 
ACD/Log P 

σ 
[35] 

20 i-Pr H 353 2.97 ± 0.28 −0.19 [36] 
21 –C12H25 H 845 7.94 ± 0.28 NF 
22 –(CH2)4– ND 2.10 ± 0.23 NF 
23 –(CH2)5– ND 2.67 ± 0.23 NF 
24 c-Pn H ND 3.59 ± 0.28 −0.20 [36] 
25 c-Hx H ND 4.15 ± 0.28 −0.15 [36] 
26 c-Hp H 216 4.21 ± 0.28 NF 
27 c-Oc H 688 5.28 ± 0.28 NF 
28 Ph H 20.7 3.85 ± 0.29 0.60 [36]/0 
29 Bn H 7.5 3.87 ± 0.28 0.22 [36] 
30 –C2H4Ph H ND 4.28 ± 0.29 0.08 [36] 

31b 3-OH-Ph H ND 3.50 ± 0.31 0.12 
31c 4-OH-Ph H ND 3.11 ± 0.30 −0.37 
32a 2-OCH3-Ph H 763.0 3.75 ± 0.32 −0.39 [37] 
32b 3-OCH3-Ph H 306.2 4.01 ± 0.32 0.12 
32c 4-OCH3-Ph H ND 3.80 ± 0.32 −0.27 
33a 2-CH3-Ph H ND 4.31 ± 0.30 NF 
33b 3-CH3-Ph H ND 4.31 ± 0.30 −0.07 
33c 4-CH3-Ph H ND 4.31 ± 0.30 −0.17 
34a 2-F-Ph H ND 3.82 ± 0.40 0.24 [38] 
34b 3-F-Ph H ND 4.34 ± 0.41 0.34 
34c 4-F-Ph H ND 4.30 ± 0.41 0.06 
35a 2-Cl-Ph H ND 4.36 ± 0.32 0.20 [38] 
35b 3-Cl-Ph H 81.0 4.88 ± 0.33 0.37 
35c 4-Cl-Ph H ND 4.84 ± 0.32 0.23 
36a 2-Br-Ph H ND 4.54 ± 0.40 0.21 [38] 
36b 3-Br-Ph H 102.8 5.06 ± 0.41 0.39 
36c 4-Br-Ph H ND 5.02 ± 0.41 0.23 
37b 3-CF3-Ph H 309.4 5.20 ± 0.39 0.43 
37c 4-CF3-Ph H ND 4.86 ± 0.37 0.74 
38a 2-NO2-Ph H ND 4.10 ± 0.34 0.80 [38] 
38b 3-NO2-Ph H 633.3 4.24 ± 0.34 0.71 
38c 4-NO2-Ph H 260.0 4.31 ± 0.34 1.26 

DCMU – – 1.9 – – 



Molecules 2012, 17 618 

 

 

2.3. Biological Activities 

The compounds under investigation could be divided into two groups based on their chemical structure: 

Group 1 included quinoline-2-carboxamides 1–19c; Group 2 contained naphthalene-2-carboxamides  

20–38c. Compounds within both series can be also divided according to whether they contain an 

aromatic or a non-aromatic amine. The compounds showed a wide range of biological activities and 

some interesting structure-activity relationships were observed. All the results are summarized in 

Tables 1–3. Generally, all the discussed compounds exhibited problematic solubility, but quinoline 

derivatives generally possess better aqueous solubility in comparison to the naphthamides. 

Table 3. In vitro antimycobacterial activity (IC90) of compounds 1–3, 5–7, 11, 14b, 22 and 

32a in comparison with standards isoniazid (INH) and pyrazinamide (PZA), in vitro 

cytotoxicity assay (LD50) of compounds 3, 7, 11 and 22 and calculated selectivity index 

(SI). ND = not determined; used IC90 for calculation of SI is marked by *. 

Comp. 

MIC/IC90 [µmol/L] 
LD50 

[µmol/L] 
SI 

[LD50/IC90] M. tuberculosis #
M. avium  
complex 

M. avium 
paratuberculosis 

M. kansasii 

1 280 583 1167 1167 ND – 
2 367 367 734 734 ND – 
3 552 552 111 * 111 * >100 >0.90 
5 491 491 491 491 ND – 
6 125 520 520 520 ND – 
7 111 * 466 223 466 62 ± 4.5 0.56 

11 109 * 452 905 452 >100 >0.92 
14b 469 469 939 469 ND – 
22 554 554 111 * 111 * >100 >0.90 

32a 901 451 216 451 ND – 
INH >729 <72.9 >729 <72.9 ND – 
PZA >812 >812 >812 >812 ND – 

# Clinical isolate of M. tuberculosis CUH071 (Cork University Hospital TB lab), with partial INH 
and PZA resistance. 

2.3.1. Inhibition of Photosynthetic Electron Transport (PET) in Spinach Chloroplasts 

The activity of all the evaluated derivatives related to inhibition of photosynthetic electron transport 

(PET) in spinach (Spinacia oleracea L.) chloroplasts was moderate or rather low relative to the 

standard, see Tables 1 and 2. N-(2-Hydroxyphenyl)quinoline-2-carboxamide (12a) expressed the 

highest PET-inhibiting activity (IC50 = 16.3 µmol/L) within the series of quinolinecarboxamides 

whereas N-benzyl-2-naphthamide (29) from the second set investigated was two-fold more effective 

with a PET inhibition IC50 value of 7.5 µmol/L. The PET-inhibiting activity was expressed by the 

negative logarithm of the IC50 value (compound concentration in mol/L causing 50% inhibition of 

PET). Despite the relatively low inhibitory activity of the rest studied compounds, correlations 

between log (1/IC50) and the lipophilicity expressed as log P (ACD/LogP) or electronic properties 

expressed as Hammett’s σ parameters of the individual substituents in compounds 1–38c were 
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performed, see Figures 1, 2 and 3. Generally, non-aromatic N-substituents showed lower PET-inhibiting 

activity than anilides. 

The PET-inhibiting activity of the evaluated quinoline derivatives (Group 1) is summarized  

in Table 1. According to both Figure 1, where all compounds except substituted phenyl rings are 

illustrated, it can be stated that the dependence of PET-inhibiting activity on the lipophilicity showed  

a parabolic course. Cyclic non-aromatic N-substituents are illustrated in Figure 1a, where the most 

active compound N-cyclooctyl 8 has a lipophilicity optimum at log P = 4.33. The dependence of  

PET-inhibiting activity on electronic constants σ of non-aromatic as well as phenyl 9 and benzyl 10 

substituents obtained from literature [36] seems to also follow a parabolic course, see Figure 1b. 

Benzyl derivative 10 showed an optimum of weak electron-withdrawing effect influencing the 

electronic density of the amido moiety. It is evident that bulkiness of the N-substituents did not 

influence PET-inhibiting activity. 

Figure 1. Relationships between PET inhibition log (1/IC50) [mol/L] in spinach 

chloroplasts and lipophilicity (a) or N-substituent electronic σ parameters (b) of studied 

compounds 1–10. 
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Figure 2 shows the correlations between log (1/IC50) and the lipophilicity or Hammett’s σ 

parameters of the individual anilide substituents in compounds 9, 12a–19c. Based on the results 

obtained it is not possible to decide whether some of the ortho-, meta- or para-positions are preferred 

from the PET-inhibiting activity point of view. Nevertheless, according to Figure 2a it can be stated 

that the PET inhibition showed linear decrease with increasing lipophilicity and the lipophilicity of the 

compounds was decisive for PET inhibition: 

log (1/IC50) = 5.952(±0.406) − 0.559(±0.113) log P  

r = 0.819, s = 0.211, F = 24.50, n = 14 
(1)

On the other hand, the biological activity was also affected by electronic σ properties of these 

anilide substituents, see Figure 2b. 

Figure 2. Relationships between PET inhibition log (1/IC50) [mol/L] in spinach 

chloroplasts and lipophilicity (a) or N-substituent electronic Hammett’s σ parameters (b) of 

studied compounds 9, 12a–19c. 
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Figure 3. Relationships between PET-inhibition log (1/IC50) [mol/L] in spinach 

chloroplasts and lipophilicity (a, b) or N-substituent electronic σ parameters (c) of studied 

naphthalene-2-carboxamides 20–38c. 
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In general, the dependence of log (1/IC50) on σ reflects two trends. The first, i.e., compounds with 

extreme electron σ effects, show a similar trend as in case of lipophilicity and thus, the activity 

decreases with increasing σ value. The second trend is a parabolic course with an optimum activity for 

compound 16a (2-Cl-Ph; σ = 0.20). In this case the σ values of the corresponding compounds ranged 

from −0.07 to 0.37, but the differences between activities of the compounds expressed as IC50 values 

were relatively low and they ranged from 100.6 (14b) to 56.3 μmol/L (16a). However, the importance 

of the lipophilicity of the anilide substituent was unambiguously much more significant for the inhibitory 

activity (IC50 [mol/L]) of the studied compounds than the electronic properties of the substituent. 

The most active compound from the series Group 1 was 12a (R = 2-OH, IC50 = 16.3 μmol/L). The 

result indicates that PET inhibition could be associated with additional interaction of the phenol  

moiety with photosynthetic proteins. This compound can be understood as a bioisoster of  

2-[(2-hydroxyphenylimino)methyl]quinolin-8-ol that expresses high herbicide effect [18]. 

Generally, the activity of the evaluated naphthalene derivatives (Group 2) related to PET inhibition 

in spinach (Spinacia oleracea L.) chloroplasts seems to be higher than that of the corresponding 

quinoline isosters (Table 2). The PET inhibition of 34 of the 68 compounds could not be determined 

due to their precipitation during the experiments. With respect to these small but closed specifically 

substituted groups of compounds some structure-activity relationships (SAR) can be proposed. 

Figure 3a illustrates the exponential decay of PET-inhibiting activity on the lipophilicity increase of 

all naphthalene derivatives (compounds 20, 21, 26–29) except substituted phenyl moieties. Dependence 

of the activity on the electronic properties could not be performed due to small amount of data. As 

mentioned above, PET-inhibiting activity is not influenced by bulkiness of the N-substituents. Benzyl 

derivative 29 showed higher activity (IC50 = 7.5 μmol/L) than unsubstituted phenyl derivative 28  

(IC50 = 20.7 μmol/L), similarly to quinolinecarboxamides [IC50 = 59.4 μmol/L (10) and 85.1 μmol/L (9), 

respectively]. 

Dependence of PET inhibition on the lipophilicity of all compounds with the aromatic  

N-substituents is shown on Figure 3b. It is evident that unsubstituted phenyl 28 derivative expressed 

the highest PET inhibition; and this decreases as lipophilicity increases. This is observed for lipophilic  

meta-substituted derivatives 35b (3-Cl), 36b (3-Br) and 37b (3-CF3), contrary to the quinaldinanilides, 

and it is not valid for methoxy and nitro moieties (32a/b, 38b/c). This lower inhibitory activity of 

compounds 32a (2-OCH3-Ph), 32b (2-OCH3-Ph) and 38c (4-NO2-Ph) could be a result of the limited 

solubility of the compounds, which is typical for -OCH3 and -NO2 substituents. Figure 3c shows PET 

inhibition of naphtanilides on Hammett’s σ parameters of the individual substituents. Based on the 

results from Figure 3c it can be concluded that PET-inhibiting activity is strongly decreased by the 

electron-withdrawing effect of substituents in the anilide part of the molecule: 29 (Ph) >> 35b (3-Cl) > 

36b (3-Br) > 37b (3-CF3) > 38b (3-NO3), especially in meta-position, contrary to the SAR of 

quinaldinanilides discussed above. 

2.3.3. In Vitro Antimycobacterial Evaluation 

Although all the compounds were evaluated for their in vitro antimycobacterial activity against  

M. tuberculosis (clinical isolate with partial INH and PZA resistance) and other atypical mycobacterial 

strains, most compounds did not show any activity due to their low solubility and precipitation during 
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the experiments. Only the 10 compounds presented in Table 3 showed actimycobacterial activities.  

N-Cycloheptylquinoline-2-carboxamide (7) and N-(2-phenylethyl)quinoline-2-carboxamide (11) showed  

high activity against M. tuberculosis, whereas 2-(pyrrolidin-1-ylcarbonyl)quinoline (3) and  

1-(2-naphthoyl)pyrrolidine (22) expressed high activity against M. avium paratuberculosis and  

M. kansasii. Compounds 6, 1 and 32a also showed noteworthy activity. Nevertheless, no thorough 

structure-activity relationships could be established. 

According to the results, it can be generally concluded that quinaldinamides (Group 1) possessed 

higher activity than corresponding naphtamides (Group 2), and anilides seem to be less effective than 

amides, e.g., highly effective compound 11 and non-active phenyl derivative 9 (not-discussed). Figure 

4 shows dependence of the average of antituberculosis/antimycobacterial activities expressed as  

log 1/MIC [mol/L] on lipophilicity expressed as log P. Based on these results, it can be concluded that 

activity increases as lipophilicity increases. Also, it seems that the increase in antituberculosis activity 

is connected with the increase in the bulkiness of individual N-substituents within the series of 

cycloalkane, (i.e., cycloheptyl 7 > cyclohexyl 6 > cyclopentyl 5). As cyclooctyl derivative 8 

demonstrated no activity, it can be concluded that cycloheptyl compound 7 showed the maximum 

antituberculosis efficacy within this type of compound and under these testing conditions. This 

decrease might have also actually been caused by decreased solubility of compound 8 in the test media 

(precipitation occurred). It can be speculated that substituents which are bulkier than cyclooctyl could 

further potentiate the antimycobacterial activity. But the testing conditions for these more lipophilic 

compounds would have to be changed to prevent the precipitation during the dilution of samples. 

Figure 4. Dependence of in vitro average antimycobacterial activity against Mycobacterium 

sp. (log 1/MIC [mol/L]) on lipophilicity expressed as log P of the studied quinaldinamides. 

(red rhomb = branched alkyl quinaldinamides, green triangle = unbranched long-chain alkyl 

quinaldinamide, blue square = aromatic quinaldinamides, black point = naphtamides). 
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Branching within the N-substituents seems also very important, especially from the point of view of 

antitubercular versus antimycobacterial activity. Unbranched long-chain alkyl dodecyl compound 2 or 

ethylphenyl one 11 as well as isopropyl compound 1 and other cycloalkyl moietis branched in the  

α position of individual N-substituents, seem to be the most advantageous for antituberculosis activity, 
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while N,N-disubstitution, e.g., compounds 3 and 22, is fundamental for high efficacy against the 

atypical mycobacterial strains M. avium paratuberculosis and M. kansasii. 

2.3.4. In Vitro Cytotoxicity Assay 

The most effective antimycobacterial compounds 11, 7, 3 and 22 were tested for their in vitro 

cytotoxicity LD50 (µmol/L), and subsequently the Selectivity Index, i.e., the ratio of cell toxicity 

(LD50) to activity (MIC), was obtained; the results are presented in Table 3. The LD50 exact values of 

compounds 3, 11 and 22 could not be determined due to their limited solubility and their precipitation 

from solution during the tests in concentration higher than 100 µmol/L, but the highest dose achieved 

in the medium (100 µmol/L) did not lead to the 100% lethal effect on THP-1 cells. All the evaluated 

compounds demonstrated low toxicity against the human monocytic leukemia THP-1 cell line  

(e.g., LD50 of oxaliplatin 1.7 ± 6.4 and camptothecin 0.16 ± 0.07 assessed in this line formerly showed 

much lower values). It can be drawn from Table 3 that compounds 3, 7 and 11 from Group 1 and 

compound 22 from Group 2 showed the highest inhibition activity and also moderate cytotoxicity 

against THP-1 cells; compound 7 expressed the highest toxicity within the series of compounds, but it 

can not be considered toxic as its LD50 value (62 ± 4.5) is fairly high. Based on these observations it 

can be concluded that the discussed amides 11, 3 and 22 can be considered as promising agents for 

subsequent design of novel antitubercular/antimycobacterial agents. 

3. Experimental 

3.1. General 

All reagents were purchased from Aldrich. Kieselgel 60, 0.040–0.063 mm (Merck, Darmstadt, 

Germany) was used for column chromatography. TLC experiments were performed on alumina-backed 

silica gel 40 F254 plates (Merck, Darmstadt, Germany). The plates were illuminated under UV (254 nm) 

and evaluated in iodine vapour. The melting points were determined on Kofler hot-plate apparatus 

HMK (Franz Kustner Nacht KG, Dresden, Germany) and are uncorrected. Infrared (IR) spectra were 

recorded on a Smart MIRacle™ ATR ZnSe for Nicolet™ Impact 410 FT-IR spectrometer (Thermo 

Scientific, USA). The spectra were obtained by accumulation of 256 scans with 2 cm−1 resolution in 

the region of 4,000–600 cm−1. All 1H and 13C NMR spectra were recorded on a Bruker Avance III  

400 MHz FT-NMR spectrometer (400 MHz for 1H and 100 MHz for 13C, Bruker Co., Karlsruhe, 

Germany). Chemicals shifts are reported in ppm () using internal Si(CH3)4 as the reference with 

diffuse, easily exchangeable signals being omitted. Mass spectra were measured using a LTQ Orbitrap 

Hybrid Mass Spectrometer (Thermo Electron Corporation, USA) with direct injection into an APCI 

source (400 °C) in the positive mode. 

3.2. Synthesis 

3.2.1. General Procedure for Synthesis of Carboxamide Derivatives 1–19c 

2-Quinaldic acid (1 g, 5.8 mmol) was suspended in dry toluene (15 mL) at room temperature and 

oxalyl chloride (1 mL, 1.61 g, 12.7 mmol, 2.2 eq.) was added dropwise. The reaction mixture was 
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stirred for 30 min at the same temperature and then DMF (2 drops) was added. The mixture was stirred 

for 24 h and then evaporated to dryness. The residue was washed with petroleum ether and used 

directly in the next step. Into the solution of 2-quinaldic acid chloride in dry toluene (15 mL), 

triethylamine (4.5 mL, 2.92 g, 32.5 mmol) and corresponding substituted aniline (5.8 mmol) were 

added dropwise. The mixture was stirred at room temperature for 24 h after which the solvent was 

removed under reduced pressure. The residue was extracted with CHCl3. Combined organic layers 

were washed with water and saturated aqueous solution of NaHCO3 and dried over anhydrous MgSO4. 

The solvent was evaporated to dryness under reduced pressure. The crude product was recrystallized 

from isopropanol or EtOAc. The studied compounds 1–19c are presented in Table 1. 

N-Isopropylquinoline-2-carboxamide (1). Yield 40%; Mp. 75–76 °C; IR (Zn/Se ATR, cm−1): 3,339m, 

3,052w, 2,925w, 2,852w, 1,676s, 1,589m, 1,556m, 1,525s, 1,501m, 1,434w, 1,418w, 1,205w, 1,119m, 

903w, 841w, 770m, 747m, 686w, 666w; 1H-NMR (DMSO-d6), δ: 8.60 (d, J = 8.0 Hz, 1H), 8.54 (d,  

J = 8.5 Hz, 1H), 8.16 (d, J = 8.5 Hz, 2H), 8.05 (d, J = 8.3 Hz, 1H), 7.80–7.89 (m, 1H), 7.64–7.74 (m, 

1H), 4.03–4.28 (m, 1H), 1.23 (d, J = 6.8 Hz, 6H); 13C-NMR (DMSO-d6), δ: 163.02, 150.32, 145.96, 

137.83, 130.45, 129.18, 128.76, 128.07, 127.98, 118.65, 40.94, 22.27; HR-MS: for C13H15N2O [M+H]+ 

calculated 215.1179 m/z, found 215.1139 m/z. 

N-Dodecylquinoline-2-carboxamide (2). Yield 24%; Mp. 45–46 °C; IR (Zn/Se ATR, cm−1): 3,411s, 

3,052w, 2,983w, 2,901w, 1,671s, 1,589w, 1,561m, 1,521m, 1,492m, 1,450w, 1,423s, 1,201w, 1,131w, 

1,107w, 1,074w, 1,054w, 907w, 841m, 768w, 735m, 696m; 1H-NMR (DMSO-d6), δ: 8.88 (t,  

J = 6.0 Hz, 1H), 8.53 (d, J = 8.3 Hz, 1H), 8.15 (d, J = 8.5 Hz, 1H), 8.11 (d, J = 8.5 Hz, 1H), 8.05 (d,  

J = 8.0 Hz, 1H), 7.81–7.86 (m, 1H), 7.65–7.71 (m, 1H), 3.31–3.38 (m, 2H), 1.54 (quin, J = 6.9 Hz, 

2H), 1.10–1.31 (m, 18H), 0.78 (t, J = 6.9 Hz, 3H); 13C-NMR (DMSO-d6), δ: 163.78, 150.29, 145.99, 

137.72, 130.37, 129.13, 128.76, 128.04, 127.89, 118.60, 38.96, 31.30, 29.24, 29.06, 29.03, 29.02, 

29.00, 28.81, 28.73, 26.49, 22.09, 13.89; HR-MS: for C22H33N2O [M+H]+ calculated 341.2587 m/z, 

found 341.2599 m/z. 

2-(Pyrrolidin-1-ylcarbonyl)quinoline (3) [39]. Yield 41%; Mp. 71–72 °C; IR (Zn/Se ATR, cm−1): 

3,291m, 3,064w, 2,919s, 2,844w, 1,644s, 1,561w, 1,532s, 1,498m, 1,467m, 1,438w, 1,422m, 1,344w, 

1,324w, 1,201w, 1,168m, 1,070m, 1,009w, 903m, 842m, 774s, 735m, 678m; 1H-NMR (DMSO-d6),  

δ: 8.46 (d, J = 8.5 Hz, 1H), 8.03 (t, J = 9.2 Hz, 2H), 7.77–7.83 (m, 2H), 7.66 (ddd, J = 8.0 Hz,  

J = 6.9 Hz, J = 1.1 Hz, 1H), 3.67 (t, J = 6.4 Hz, 2H), 3.55 (t, J = 6.5 Hz, 2H), 1.78–1.89 (m, 4H);  
13C-NMR (DMSO-d6), δ: 165.56, 154.22, 145.87, 137.07, 130.14, 129.15, 127.90, 127.75, 127.64,  

120.41, 48.46, 46.39, 26.05, 23.59; HR-MS: for C14H15N2O [M+H]+ calculated 227.1179 m/z, found  

227.1203 m/z. 

2-(Piperidin-1-ylcarbonyl)quinoline (4) [40]. Yield 59%; Mp. 83–84 °C; IR (Zn/Se ATR, cm−1): 

3,327s, 3,023w, 2,934w, 1,655s, 1,561w, 1,522m, 1,495m, 1,454m, 1,426s, 1,360m, 1,331w, 1,230w, 

1,209w, 1,156m, 1,074w, 837m, 772w, 735m, 701m; 1H-NMR (DMSO-d6), δ: 8.48 (d, J = 8.3 Hz, 1H), 

7.96–8.07 (m, 2H), 7.81 (ddd, J = 8.5 Hz, J = 6.8 Hz, J = 1.5 Hz, 1H), 7.57–7.71 (m, 2H), 3.61–3.69 

(m, 2H), 3.22–3.35 (m, 2H), 1.38–1.73 (m, 6H); 13C-NMR (DMSO-d6), δ: 166.63, 154.67, 146.14, 
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137.34, 130.26, 128.99, 128.00, 127.46, 127.38, 120.04, 47.45, 42.22, 25.97, 25.31, 23.97; HR-MS: 

for C15H17N2O [M+H]+ calculated 241.1335 m/z, found 241.1384 m/z. 

N-Cyclopentylquinoline-2-carboxamide (5). Yield 36%; Mp. 63–64 °C; IR (Zn/Se ATR, cm−1): 

3,387m, 3,305m, 2,933m, 2,848m, 1,655s, 1,614w, 1,561w, 1,524s, 1,497s, 1,446m, 1,373w, 1,205w, 

1,160m, 1,136m, 1,074w, 849m, 796w, 779s, 735w; 1H-NMR (DMSO-d6), δ: 8.68 (d, J = 8.0 Hz, 1H), 

8.54 (d, J = 8.5 Hz, 1H), 8.15 (dd, J = 8.4 Hz, J = 2.6 Hz, 2H), 8.06 (d, J = 8.0 Hz, 1H), 7.85 (dd,  

J = 8.3 Hz, J = 7.0 Hz, 1H), 7.65–7.74 (m, 1H), 4.30 (sxt, J = 7.3 Hz, 1H), 1.85–2.01 (m, 2H),  

1.48–1.74 (m, 6H); 13C-NMR (DMSO-d6), δ: 163.59, 150.30, 145.97, 137.85, 130.46, 129.22, 128.77, 

128.09, 128.00, 118.66, 50.72, 32.17, 23.60; HR-MS: for C15H17N2O [M+H]+ calculated 241.1335 m/z, 

found 241.1375 m/z. 

N-Cyclohexylquinoline-2-carboxamide (6) [40]. Yield 40%; Mp. 98–99 °C; IR (Zn/Se ATR, cm−1): 

3,329m, 3,313m, 2,969s, 2,933m, 2,875m, 1,648s, 1,556w, 1,522s, 1,498s, 1,470m, 1,423s, 1,382w, 

1,361m, 1,341w, 1,324w, 1,201w, 1,178m, 1,130m, 1,105w, 903w, 844m, 776w, 735w, 674w; 1H-NMR 

(DMSO-d6), δ: 8.57 (d, J = 8.5 Hz, 1H), 8.54 (d, J = 8.5 Hz, 1H), 8.16 (d, J = 8.3 Hz, 2H), 8.06 (d,  

J = 8.0 Hz, 1H), 7.81–7.88 (m, 1H), 7.66–7.72 (m, 1H), 3.78–3.89 (m, 1H), 1.06–1.88 (m, 10H);  
13C-NMR (DMSO-d6), δ: 162.92, 150.27, 145.94, 137.84, 130.44, 129.20, 128.77, 128.06, 127.98, 

118.64, 48.12, 32.26, 25.12, 24.83; HR-MS: for C16H19N2O [M+H]+ calculated 255.1492 m/z, found 

255.1525 m/z. 

N-Cycloheptylquinoline-2-carboxamide (7). Yield 39%; Mp. 72–73 °C; IR (Zn/Se ATR, cm−1): 

3,056w, 2,958m, 2,864m, 1,615s, 1,552m, 1,469m, 1,436m, 1,417s, 1,373w, 1,332w, 1,205w, 1,181w, 

1,156w, 842m, 764m, 731w, 657w; 1H-NMR (DMSO-d6), δ: 8.61 (d, J = 8.5 Hz, 1H), 8.54 (d,  

J = 8.3 Hz, 1H), 8.15 (d, J = 8.5 Hz, 2H), 8.06 (d, J = 7.5 Hz, 1H), 7.85 (ddd, J = 8.4 Hz, J = 6.9 Hz,  

J = 1.3 Hz, 1H), 7.69 (ddd, J = 8.0 Hz, J = 6.9 Hz, J = 1.1 Hz, 1H), 4.01 (qt, J = 9.0 Hz, J = 4.5 Hz, 

1H), 1.81–1.93 (m, 2H), 1.37–1.72 (m, 10H); 13C-NMR (DMSO-d6), δ: 162.64, 150.30, 145.94, 

137.85, 130.45, 129.21, 128.78, 128.06, 127.98, 118.63, 50.32, 34.30, 27.57, 23.88; HR-MS: for 

C17H21N2O [M+H]+ calculated 269.1648 m/z, found 269.1619 m/z. 

N-Cyclooctylquinoline-2-carboxamide (8) [41]. Yield 44%; Mp. 72–73 °C; IR (Zn/Se ATR, cm−1): 

3,301w, 2,954m, 2,916s, 2,848s, 1,667s, 1,649s, 1,593w, 1,532s, 1,498s, 1,462m, 1,418m, 1,373w, 

1,340w, 1,315w, 1,295m, 1,209w, 1,168m, 1136w, 1,111w, 903w, 850s, 796w, 772s, 735m, 715w, 

666w; 1H-NMR (DMSO-d6), δ: 8.59 (d, J = 7.8 Hz, 1H), 8.55 (d, J = 8.5 Hz, 1H), 8.15 (d, J = 8.3 Hz, 

2H), 8.06 (d, J = 8.0 Hz, 1H), 7.81–7.88 (m, 1H), 7.66–7.73 (m, 1H), 4.00–4.12 (m, 1H), 1.45–1.81 

(m, 14H); 13C-NMR (DMSO-d6), δ: 162.60, 150.32, 145.94, 137.85, 130.45, 129.21, 128.78, 128.06, 

127.98, 118.61, 49.11, 31.80, 26.71, 25.00, 23.50; HR-MS: for C18H23N2O [M+H]+ calculated 

283.1805 m/z, found 283.1777 m/z. 

N-Phenylquinoline-2-carboxamide (9). Yield 59%; Mp. 139–140 °C (Mp. 139.5–140 °C [42]); IR 

(Zn/Se ATR, cm−1): 3,293m, 2,927s, 2,855m, 1,643s, 1,562m, 1,530s, 1,500s, 1,426m, 1,315w, 1,205w, 

1,185w, 1,160w, 1,070w, 1,042w, 910m, 870w, 841m, 776m, 731w; 1H-NMR (DMSO-d6), δ: 10.75 (bs, 

1H), 8.62 (d, J = 8.5 Hz, 1H), 8.22–8.30 (m, 2H), 8.11 (d, J = 7.5 Hz, 1H), 7.94–7.99 (m, 2H), 7.91 
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(ddd, J = 8.5 Hz, J = 7.0 Hz, J = 1.4 Hz, 1H), 7.75 (ddd, J = 8.1 Hz, J = 7.0 Hz, J = 1.3 Hz, 1H),  

7.38–7.45 (m, 2H), 7.12–7.19 (m, 1H); 13C-NMR (DMSO-d6), δ: 162.71, 150.08, 145.88, 138.31, 

138.22, 130.68, 129.35, 128.94, 128.78, 128.37, 128.15, 124.05, 120.29, 118.77; HR-MS: for 

C16H13N2O [M+H]+ calculated 249.1022 m/z, found 249.1015 m/z. 

N-Benzylquinoline-2-carboxamide (10). Yield 60%; Mp. 123–124 °C (Mp. 124–125 °C [43]); IR 

(Zn/Se ATR, cm−1): 3,273m, 2,952m, 2,856m, 1,657s, 1,643s, 1,589w, 1,562m, 1,527s, 1,498s, 1,446w, 

1,424m, 1,315w, 1,299w, 1,205m, 1,181 w, 1,152w, 1,143w, 956w, 899m, 846s, 792m, 770m, 776m, 

739m, 686m; 1H-NMR (DMSO-d6), δ: 9.50 (t, J = 6.4 Hz, 1H), 8.56 (d, J = 8.3 Hz, 1H), 8.19 (d,  

J = 8.5 Hz, 1H), 8.14 (d, J = 8.5 Hz, 1H), 8.07 (dd, J = 8.3 Hz, J = 0.8 Hz, 1H), 7.86 (ddd, J = 8.4 Hz, 

J = 6.9 Hz, J = 1.5 Hz, 1H), 7.70 (ddd, J = 8.2 Hz, J = 6.9 Hz, J = 1.0 Hz, 1H), 7.36–7.41 (m, 2 H), 

7.29–7.35 (m, 2H), 7.20–7.26 (m, 1H), 4.59 (d, J = 6.5 Hz, 2H); 13C-NMR (DMSO-d6), δ: 164.13, 

150.15, 146.04, 139.52, 137.88, 130.52, 129.19, 128.84, 128.30, 128.11, 128.07, 127.46, 126.82, 

118.74, 42.56; HR-MS: for C17H15N2O [M+H]+ calculated 263.1179 m/z, found 263.1202 m/z. 

N-(2-Phenylethyl)quinoline-2-carboxamide (11) [44]. Yield 38%; Mp. 80–81 °C; IR (Zn/Se ATR, cm−1): 

3,236w, 2,935s, 2,852m, 1,633s, 1,552w, 1,467m, 1,450m, 1,422m, 1,344w, 1,279m, 1,103w, 1,025w, 

1,005w, 952w, 890w, 841m, 760m, 731w, 682w; 1H-NMR (DMSO-d6), δ: 9.00 (t, J = 5.90 Hz, 1H), 

8.54 (d, J = 8.5 Hz, 1H), 8.17 (d, J = 8.5 Hz, 1H), 8.11 (d, J = 8.5 Hz, 1H), 8.06 (d, J = 8.0 Hz, 1H), 

7.85 (td, J = 7.7 Hz, J = 1.3 Hz, 1H), 7.66–7.73 (m, 1H), 7.25–7.33 (m, 4H), 7.16–7.22 (m, 1H),  

3.58–3.65 (m, 2H), 2.92 (t, J = 7.5 Hz, 2H); 13C-NMR (DMSO-d6), δ: 163.88, 150.14, 145.96, 139.36, 

137.83, 130.48, 129.13, 128.78, 128.64, 128.38, 128.08, 128.00, 126.14, 118.59, 40.58, 35.23;  

HR-MS: for C18H17N2O [M+H]+ calculated 277.1335 m/z, found 277.1384 m/z. 

N-(2-Hydroxyphenyl)quinoline-2-carboxamide (12a) [45]. Yield 27%; Mp. 219–220 °C; 1H-NMR 

(DMSO-d6), δ: 10.67 (bs, 1H), 10.44 (bs, 1H), 8.63 (d, J = 8.5 Hz, 1H), 8.44 (d, J = 7.8 Hz, 1H), 8.29 

(d, J = 8.3 Hz, 1H), 8.15 (d, J = 8.3 Hz, 1H), 8.10 (d, J = 8.0 Hz, 1H), 7.88 (t, J = 7.3 Hz, 1H), 7.73 (t, 

J = 7.2 Hz, 1H), 7.00 (m, 2H), 6.89 (m, 1H); 13C-NMR (DMSO-d6), δ: 161.26, 149.65, 146.77, 145.74, 

138.59, 130.91, 129.29, 129.08, 128.46, 128.22, 126.20, 124.29, 119.37, 119.26, 118.42, 114.84;  

HR-MS: for C16H13N2O2 [M+H]+ calculated 265.0977 m/z, found 265.0983 m/z. 

N-(3-Hydroxyphenyl)quinoline-2-carboxamide (12b). Yield 52%; Mp. 154–155 °C; IR (Zn/Se ATR, 

cm−1): 3,338w, 2,973w, 1,760m, 1,680m, 1,605w, 1,530s, 1,504s, 1,462w, 1,425m, 1,263m, 1,235m, 

1,216m, 1,171w, 1,145s, 1,096m, 1,054w, 1,002w, 964w, 908m, 879w, 841m, 773s, 754s, 685m, 665m; 
1H-NMR (DMSO-d6), δ: 10.98 (bs, 1H), 8.62 (d, J = 8.7 Hz, 1H), 8.20–8.36 (m, 3H), 8.06–8.18 (m, 

1H), 7.87–7.97 (m, 2H), 7.71–7.83 (m, 2H), 7.54 (t, J = 8.2 Hz, 1H), 7.18 (dd, J = 8.0 Hz, J = 1.8 Hz, 

1H); 13C-NMR (DMSO-d6), δ: 163.05, 150.91, 149.86, 147.01, 145.90, 139.63, 138.29, 130.94, 

129.99, 129.19, 128.49, 128.16, 121.35, 118.83, 117.99, 113.65; HR-MS: for C16H13N2O2 [M+H]+ 

calculated 265.0977 m/z, found 265.0985 m/z. 

N-(4-Hydroxyphenyl)quinoline-2-carboxamide (12c) [46]. Yield 48%; Mp. 230–231 °C; 1H-NMR 

(DMSO-d6), δ: 10.34 (bs, 1H), 8.28–8.48 (m, 3H), 8.21 (d, J = 8.5 Hz, 1H), 7.88–8.04 (m, 3H),  

7.77–7.87 (m, 1H), 7.69 (m, 1H), 7.39 (d, J = 9.0 Hz, 2H); 13C-NMR (DMSO-d6), δ: 162.11, 149.40, 
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147.23, 146.23, 137.94, 135.82, 130.84, 129.62, 129.45, 128.95, 127.60, 122.38, 120.66, 118.73;  

HR-MS: for C16H13N2O2 [M+H]+ calculated 265.0977 m/z, found 265.0971 m/z. 

N-(2-Methoxyphenyl)quinoline-2-carboxamide (13a) [47]. Yield 37%; Mp. 111–112 °C; IR (Zn/Se 

ATR, cm−1): 3,382w, 1,676s, 1,596m, 1,532s, 1,485w, 1,454m, 1,426m, 1,334w, 1,288w, 1,253m, 

1,138m, 1,129m, 1,093w, 1,020s, 951w, 908m, 873w, 840m, 820w, 770s, 732s; 1H-NMR (DMSO-d6), 

δ: 10.68 (bs, 1H), 8.59 (d, J = 8.5 Hz, 1H), 8.49 (d, J = 7.8 Hz, 1H), 8.25 (d, J = 8.5 Hz, 1H), 8.15 (d,  

J = 8.5 Hz, 1H), 8.07 (d, J = 8.3 Hz, 1H), 7.87 (t, J = 7.3 Hz, 1H), 7.67–7.75 (m, 1H), 7.11 (d,  

J = 4.0 Hz, 2H), 7.01 (dt, J = 8.2 Hz, J = 4.2 Hz, 1H), 3.98 (s, 3H); 13C-NMR (DMSO-d6), δ: 161.25, 

149.34, 148.51, 145.62, 138.55, 130.82, 129.30, 129.06, 128.44, 128.14, 126.87, 124.25, 120.68, 

118.84, 118.27, 110.91, 56.05; HR-MS: for C17H15N2O2 [M+H]+ calculated 279.1134 m/z, found 

279.1148 m/z. 

N-(3-Methoxyphenyl)quinoline-2-carboxamide (13b). Yield 47%; Mp. 117–118 °C; IR (Zn/Se ATR, 

cm−1): 3,352w, 1,687m, 1,589m, 1,524m, 1,503m, 1,456m, 1,425 m, 1,334w, 1,284m, 1,203 m, 1,157m, 

1,128m, 1,049s, 906w, 876m, 854 m, 823 w, 798w, 762s, 740s, 685m; 1H-NMR (DMSO-d6), δ: 10.73 

(bs, 1H), 8.58 (d, J = 8.5 Hz, 1H), 8.19–8.32 (m, 2H), 8.07 (d, J = 8.0 Hz, 1H), 7.82–7.96 (m, 1H), 

7.65–7.79 (m, 2H), 7.59 (dd, J = 8.0 Hz, J = 1.0 Hz, 1H), 7.29 (t, J = 8.2 Hz, 1H), 6.72 (dd, J = 8.3 Hz,  

J = 2.01 Hz, 1H), 3.78 (s, 3H); 13C-NMR (DMSO-d6), δ: 162.70, 159.61, 149.99, 145.88, 139.53, 

138.23, 130.67, 129.61, 129.37, 128.97, 128.37, 128.16, 118.75, 112.47, 109.68, 105.91, 55.09;  

HR-MS: for C17H15N2O2 [M+H]+ calculated 279.1134 m/z, found 279.1129 m/z. 

N-(4-Methoxyphenyl)quinoline-2-carboxamide (13c) [48]. Yield 53%; Mp. 130–131 °C; 1H-NMR 

(DMSO-d6), δ: 10.65 (bs, 1H), 8.57 (d, J = 8.5 Hz, 1H), 8.24 (d, J = 8.5 Hz, 2H), 8.07 (d, J = 7.8 Hz, 

1H), 7.82–7.95 (m, 3H), 7.63–7.78 (m, 1H), 6.97 (d, J = 9.0 Hz, 2H), 3.75 (s, 3H); 13C-NMR  

(DMSO-d6), δ: 162.28, 155.80, 150.25, 145.90, 138.09, 131.47, 130.59, 129.32, 128.87, 128.22, 

128.11, 121.85, 118.73, 113.87, 55.17; HR-MS: for C17H15N2O2 [M+H]+ calculated 279.1134 m/z, 

found 279.1145 m/z. 

N-(2-Methylphenyl)quinoline-2-carboxamide (14a). Yield 40%; Mp. 100–101 °C; IR (Zn/Se ATR,  

cm−1): 3,334w, 1,686s, 1,587s, 1,528s, 1,498m, 1,454s, 1,427s, 1,422 m, 1,373w, 1,305m, 1,249w, 

1,201w, 1,132m, 1,091w, 1,040w, 1,013w, 981w, 954m, 932w, 907m, 872m, 842s, 793w, 765s, 750s, 

731s, 681s; 1H-NMR (DMSO-d6), δ: 10.45 (bs, 1H), 8.60 (d, J = 8.5 Hz, 1H), 8.24 (d, J = 8.5 Hz, 1H), 

8.17 (d, J = 8.3 Hz, 1H), 8.08 (d, J = 8.0 Hz, 1H), 7.95 (d, J = 7.8 Hz, 1H), 7.83–7.91 (m, 1H),  

7.69–7.77 (m, 1H), 7.22–7.31 (m, 2H), 7.08–7.16 (m, 1H), 2.37 (s, 3H); 13C-NMR (DMSO-d6),  

δ: 161.92, 149.67, 145.74, 138.35, 135.97, 130.72, 130.42, 130.01, 129.38, 129.01, 128.38, 128.11, 

126.40, 124.96, 122.65, 118.49, 17.49; HR-MS: for C17H15N2O [M+H]+ calculated 263.1184 m/z, 

found 263.1182 m/z. 

N-(3-Methylphenyl)quinoline-2-carboxamide (14b). Yield 43%; Mp. 82–83 °C; IR (Zn/Se ATR, 

cm−1): 3,355w, 1,685m, 1,592 m, 1,527s, 1,503s 1,457w, 1,424 m, 1,300w, 1,171w, 1,125m, 908w, 

852m, 773s, 740w, 690s; 1H-NMR (DMSO-d6), δ: 10.66 (bs, 1H), 8.61 (d, J = 8.5 Hz, 1H), 8.25 (dd,  

J = 7.9 Hz, J = 5.40 Hz, 2H), 8.10 (d, J = 8.0 Hz, 1H), 7.90 (t, J = 7.5 Hz, 1H), 7.67–7.84 (m, 3H), 
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7.27 (t, J = 7.7 Hz, 1H), 6.96 (d, J = 7.3 Hz, 1H), 2.32 (s, 3H); 13C-NMR (DMSO-d6), δ: 162.54, 

150.03, 145.88, 138.22, 138.20, 138.03, 130.68, 129.35, 128.94, 128.65, 128.35, 128.15,  

124.75, 120.72, 118.70, 117.35, 21.23; HR-MS: for C17H15N2O [M+H]+ calculated 263.1184 m/z, 

found 263.1191 m/z. 

N-(4-Methylphenyl)quinoline-2-carboxamide (14c). Yield 44%; Mp. 107–108 °C (Mp. 109.5–110 °C 

[39]); 1H-NMR (DMSO-d6), δ: 10.67 (bs, 1H), 8.59 (d, J = 8.5 Hz, 1H), 8.18–8.30 (m, 2H), 8.08 (d,  

J = 8.0 Hz, 1H), 7.79–7.94 (m, 3H), 7.72 (t, J = 7.4 Hz, 1H), 7.18 (d, J = 8.3 Hz, 2H), 2.27 (s, 3H);  
13C-NMR (DMSO-d6), δ: 162.51, 150.17, 145.93, 138.21, 135.86, 133.09, 130.69, 129.39, 129.24, 128.94, 

128.35, 128.18, 120.27, 118.77, 20.59; HR-MS: for C17H15N2O [M+H]+ calculated 263.1184 m/z,  

found 263.1193 m/z. 

N-(2-Fluorophenyl)quinoline-2-carboxamide (15a). Yield 30%; Mp. 116–117 °C; IR (Zn/Se ATR,  

cm−1): 3,328w, 1,691m, 1,615m, 1,591w, 1,530s, 1,504m, 1,477w, 1,454m, 1,428m, 1,317w, 1,247w, 

1,185w, 1,126m, 1,088w, 910w, 837m, 772s, 746s, 683m; 1H-NMR (DMSO-d6), δ: 10.48 (bs, 1H), 

8.57 (d, J = 8.5 Hz, 1H), 8.17–8.25 (m, 2H), 8.13 (d, J = 8.5 Hz, 1H), 8.05 (d, J = 8.0 Hz, 1H), 7.85 (t,  

J = 7.3 Hz, 1H), 7.65–7.76 (m, 1H), 7.28–7.40 (m, 1H), 7.13–7.27 (m, 2H); 13C-NMR (DMSO-d6),  

δ: 162.00, 153.58 (d, 1JFC = 244 Hz), 148.95, 145.67, 138.39, 130.76, 129.24, 129.15 (d,  
2JFC = 19.1 Hz), 128.45, 128.08, 125.70 (d, 3JFC = 11.0 Hz), 125.53 (d, 3JFC = 7.3 Hz), 124.63 (d,  
4JFC = 3.7 Hz), 122.91, 118.37, 115.43 (d, 2JFC = 19.1 Hz); HR-MS: for C16H12FN2O [M+H]+ 

calculated 267.0934 m/z, found 267.0950 m/z. 

N-(3-Fluorophenyl)quinoline-2-carboxamide (15b). Yield 38%; Mp. 126–127 °C; IR (Zn/Se ATR,  

cm−1): 3,343w, 1,690s, 1,588m, 1,531s, 1,504m, 1,481s, 1,409s, 1,170m, 1,137m, 899m, 841s, 791m, 

768s, 738m, 682s; 1H-NMR (DMSO-d6), δ: 10.91 (bs, 1H), 8.58 (d, J = 8.5 Hz, 1H), 8.16–8.31 (m, 

2H), 8.08 (d, J = 8.3 Hz, 1H), 7.95 (d, J = 11.8 Hz, 1H), 7.86–7.92 (m, 1H), 7.79 (d, J = 8.3 Hz, 1H),  

7.68–7.75 (m, 1H), 7.35–7.49 (m, 1H), 6.96 (td, J = 8.4 Hz, J = 2.0 Hz, 1H); 13C-NMR (DMSO-d6),  

δ: 163.01, 162.15 (d, 1JFC = 241 Hz), 149.73, 145.86, 140.11 (d, 3JFC = 11.0 Hz), 138.18, 130.65, 

130.31 (d, 3JFC = 9.5 Hz), 129.33, 128.97, 128.39, 128.12, 118.77, 116.15 (d, 4JFC = 2.9 Hz), 110.47 (d,  
2JFC = 21.3 Hz), 107.09 (d, 2JFC = 26.4 Hz); HR-MS: for C16H12FN2O [M+H]+ calculated 267.0934 m/z, 

found 267.0953 m/z. 

N-(4-Fluorophenyl)quinoline-2-carboxamide (15c) [46,48]. Yield 33%; Mp. 115–116 °C; 1H-NMR 

(DMSO-d6), δ: 10.83 (bs, 1H), 8.57 (d, J = 8.3 Hz, 1H), 8.17–8.29 (m, 2H), 8.06 (d, J = 8.0 Hz, 1H), 

7.94–8.02 (m, 2H), 7.87 (td, J = 7.7 Hz, J = 1.3 Hz, 1H), 7.66–7.76 (m, 1H), 7.17–7.28 (m, 2H);  
13C-NMR (DMSO-d6), δ: 162.76, 158.58 (d, 1JFC = 237 Hz), 150.03, 145.95, 138.18, 134.81 (d,  
4JFC = 2.2 Hz), 130.67, 129.39, 128.98, 128.37, 128.17, 122.31 (d, 3JFC = 7.3 Hz), 118.83, 115.26 (d, 
2JFC = 22.7 Hz); HR-MS: for C16H12FN2O [M+H]+ calculated 267.0934 m/z, found 267.0954 m/z. 

N-(2-Chlorophenyl)quinoline-2-carboxamide (16a) [48]. Yield 39%; Mp. 130–131 °C; 1H-NMR 

(DMSO-d6), δ: 10.77 (bs, 1H), 8.58 (d, J = 8.5 Hz, 1H), 8.43 (d, J = 8.0 Hz, 1H), 8.21 (d, J = 8.5 Hz, 

1H), 8.10 (d, J = 8.5 Hz, 1H), 8.05 (d, J = 8.3 Hz, 1H), 7.85 (t, J = 7.5 Hz, 1H), 7.64–7.75 (m, 1H), 

7.54 (d, J = 7.8 Hz, 1H), 7.39 (t, J = 7.7 Hz, 1H), 7.10–7.24 (m, 1H); 13C-NMR (DMSO-d6), δ: 161.54, 
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148.70, 145.47, 138.50, 134.21, 130.75, 129.29, 129.20, 129.07, 128.46, 128.00, 127.88, 125.23, 123.38, 

121.27, 118.15; HR-MS: for C16H12ClN2O [M+H]+ calculated 283.0638 m/z, found 283.0652 m/z. 

N-(3-Chlorophenyl)quinoline-2-carboxamide (16b) [48]. Yield 46%; Mp. 127–128 °C; 1H-NMR 

(DMSO-d6), δ: 10.90 (bs, 1H), 8.58 (d, J = 8.5 Hz, 1H), 8.18–8.31 (m, 2H), 8.15 (s, 1H), 8.07 (d,  

J = 8.0 Hz, 1H), 7.82–7.97 (m, 2H), 7.66–7.78 (m, 1H), 7.40 (t, J = 8.0 Hz, 1H), 7.11–7.23 (m, 1H); 
13C-NMR (DMSO-d6), δ: 163.02, 149.67, 145.87, 139.85, 138.20, 133.12, 130.68, 130.36, 129.34, 

128.98, 128.43, 128.14, 123.70, 119.82, 118.77; HR-MS: for C16H12ClN2O [M+H]+ calculated 

283.0638 m/z, found 283.0648 m/z. 

N-(4-Chlorophenyl)quinoline-2-carboxamide (16c). Yield 34%; Mp. 134–135 °C (Mp. 135–135.5 °C [39]); 
1H-NMR (DMSO-d6), δ: 10.88 (bs, 1H), 8.58 (d, J = 8.5 Hz, 1H), 8.17–8.30 (m, 2H), 8.08 (d,  

J = 8.0 Hz, 1H), 8.01 (d, J = 8.8 Hz, 2H), 7.84–7.93 (m, 1H), 7.68–7.77 (m, 1H), 7.43 (d, J = 8.8 Hz, 

2H); 13C-NMR (DMSO-d6), δ: 162.87, 149.85, 145.88, 138.16, 137.34, 130.65, 129.34, 128.95, 

128.62, 128.37, 128.14, 127.69, 121.92, 118.78; HR-MS: for C16H12ClN2O [M+H]+ calculated 

283.0638 m/z, found 283.0631 m/z. 

N-(2-Bromophenyl)quinoline-2-carboxamide (17a). Yield 26%; Mp. 134–135 °C; IR (Zn/Se ATR,  

cm−1): 3,277w, 1,689s, 1,588m, 1,579m, 1,543m, 1,530s, 1,496m, 1,440m, 1,427m, 1,302w, 1,132w, 

1,204m, 908w, 842m, 768s, 736m, 698m; 1H-NMR (DMSO-d6), δ: 10.82 (bs, 1H), 8.60 (d, J = 8.5 Hz, 

1H), 8.44 (d, J = 8.3 Hz, 1H), 8.23 (d, J = 8.5 Hz, 1H), 8.13 (d, J = 8.5 Hz, 1H), 8.07 (d, J = 8.3 Hz, 

1H), 7.87 (t, J = 7.5 Hz, 1H), 7.64–7.77 (m, 2H), 7.44 (t, J = 7.8 Hz, 1H), 7.10 (t, J = 7.7 Hz, 1H);  
13C-NMR (DMSO-d6), δ: 161.61, 148.71, 145.50, 138.60, 135.46, 132.58, 130.83, 129.26, 129.13, 

128.55, 128.53, 128.08, 125.74, 121.39, 118.19, 114.08; HR-MS: for C16H12BrN2O [M+H]+ calculated 

327.0133 m/z, found 327.0138 m/z. 

N-(3-Bromophenyl)quinoline-2-carboxamide (17b). Yield 35%; Mp. 139–140 °C; IR (Zn/Se ATR,  

cm−1): 3,318w, 1,687m, 1,581m, 1,519m, 1,478w, 1,408m, 1,296w, 1,124m, 1,067w, 912w, 847m, 764s, 

685m; 1H-NMR (DMSO-d6), δ: 10.89 (bs, 1H), 8.60 (d, J = 8.3 Hz, 1H), 8.19–8.32 (m, 3H), 8.09 (d,  

J = 8.0 Hz, 1H), 7.96 (d, J = 7.5 Hz, 1H), 7.87–7.93 (m, 1H), 7.68–7.78 (m, 1H), 7.27–7.40 (m, 2H); 
13C-NMR (DMSO-d6), δ: 163.02, 149.67, 145.86, 139.98, 138.21, 130.69, 130.67, 129.32, 128.97, 

128.44, 128.14, 126.59, 122.66, 121.55, 119.14, 118.77; HR-MS: for C16H12BrN2O [M+H]+ calculated 

327.0133 m/z, found 327.0143 m/z. 

N-(4-Bromophenyl)quinoline-2-carboxamide (17c). Yield 57%; Mp. 157–158 °C; IR (Zn/Se ATR,  

cm−1): 3,355w, 1,693s, 1,581m, 1,522s, 1,496s, 1,423w, 1,389m, 1,305w, 1,120m, 1,095w, 1,068m, 

998w, 907w, 839s, 807s, 769s, 693w; 1H-NMR (DMSO-d6), δ: 10.84 (bs, 1H), 8.58 (d, J = 8.5 Hz, 

1H), 8.18–8.30 (m, 2H), 8.07 (d, J = 8.3 Hz, 1H), 7.95 (d, J = 8.8 Hz, 2H), 7.86–7.92 (m, 1H),  

7.67–7.78 (m, 1H), 7.56 (d, J = 8.8 Hz, 2H); 13C-NMR (DMSO-d6), δ: 162.86, 149.82, 145.87, 138.16, 

137.74, 131.53, 130.64, 129.33, 128.94, 128.37, 128.12, 122.28, 118.77, 115.80; HR-MS: for 

C16H12BrN2O [M+H]+ calculated 327.0133 m/z, found 327.0129 m/z. 
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N-(2-Trifluoromethylphenyl)quinoline-2-carboxamide (18a). Yield 32%; Mp. 120–121 °C; IR (Zn/Se 

ATR, cm−1): 3,316w, 1,698s, 1,590s, 1,537s, 1,498w, 1,452m, 1,423m, 1,320m, 1,288m, 1,244w, 

1,202w, 1,165m, 1,124m, 1,094m, 1,054m, 1,026m, 953w, 906w, 871w, 836m, 792w, 763s, 676m;  
1H-NMR (DMSO-d6), δ: 10.78 (bs, 1H), 8.61 (d, J = 8.3 Hz, 1H), 8.36 (d, J = 8.3 Hz, 1H), 8.23 (d,  

J = 8.3 Hz, 1H), 8.07 (t, J = 8.3 Hz, 2H), 7.87 (t, J = 7.5 Hz, 1H), 7.64–7.81 (m, 3H), 7.38 (t,  

J = 7.7 Hz, 1H); 13C-NMR (DMSO-d6), δ: 162.05, 148.48, 145.53, 138.74, 135.14, 133.57, 131.01, 

129.48 (q, 2JFC = 37 Hz), 129.21, 129.17, 128.68, 128.16, 126.41 (q, 3JFC = 5.1 Hz), 125.05, 124.10 (q, 
1JFC = 274 Hz), 123.89 (q, 3JFC = 5.9 Hz), 118.31; HR-MS: for C17H12F3N2O [M+H]+ calculated 

317.0896 m/z, found 317.0891 m/z. 

N-(3-Trifluoromethylphenyl)quinoline-2-carboxamide (18b). Yield 31%; Mp. 121–122 °C; IR (Zn/Se 

ATR, cm−1): 3,339w, 1,692s, 1,614w, 1,536m, 1,490m, 1,424w, 1,330s, 1,223w, 1,166m, 1,109s, 

1,091s, 1,065m, 952w, 933w, 874s, 844m, 808s, 771s, 744w, 698s; 1H-NMR (DMSO-d6), δ: 11.08 (bs, 

1H), 8.59 (d, J = 8.5 Hz, 1H), 8.46 (s, 1H), 8.17–8.31 (m, 3H), 8.08 (d, J = 8.0 Hz, 1H), 7.89 (t,  

J = 7.4 Hz, 1H), 7.68–7.78 (m, 1H), 7.61 (t, J = 8.0 Hz, 1H), 7.46 (d, J = 7.5 Hz, 1H); 13C-NMR 

(DMSO-d6), δ: 163.26, 149.64, 145.90, 139.23, 138.21, 130.69, 129.86, 129.35 (q, 2JFC = 32 Hz), 129.34, 

129.03, 128.45, 128.16, 124.20 (q, 1JFC = 273 Hz), 123.91, 120.24 (q, 3JFC = 3.7 Hz), 118.78, 116.61 

(q, 3JFC = 3.7 Hz); HR-MS: for C17H12F3N2O [M+H]+ calculated 317.0896 m/z, found 317.0892 m/z. 

N-(4-Trifluoromethylphenyl)quinoline-2-carboxamide (18c) [41,44]. Yield 43%; Mp. 147–148 °C;  
1H-NMR (DMSO-d6), δ: 11.02 (bs, 1H), 8.59 (d, J = 8.3 Hz, 1H), 8.26 (d, J = 8.5 Hz, 1H), 8.23 (d,  

J = 8.3 Hz, 1H), 8.19 (d, J = 8.5 Hz, 2H), 8.08 (d, J = 8.0 Hz, 1H), 7.86–7.93 (m, 1H), 7.69–7.77 (m, 

3H); 13C-NMR (DMSO-d6), δ: 163.27, 149.63, 145.88, 141.95, 138.23, 130.69, 129.38, 129.03, 

128.48, 128.14, 125.96 (q, 3JFC = 3.7 Hz), 124.39 (q, 1JFC = 271 Hz), 124.00 (q, 2JFC = 32 Hz), 120.29, 

118.81; HR-MS: for C17H12F3N2O [M+H]+ calculated 317.0896 m/z, found 317.0890 m/z. 

N-(2-Nitrophenyl)quinoline-2-carboxamide (19a). Yield 29%; Mp. 181–182 °C (Mp. 179.5–180 °C [39]); 
1H-NMR (DMSO-d6), δ: 12.55 (bs, 1H), 8.75 (d, J = 8.5 Hz, 1H), 8.60 (d, J = 8.3 Hz, 1H), 8.17–8.28 

(m, 2H), 8.09 (dd, J = 13.9, 8.4 Hz, 2H), 7.86–7.95 (m, 1H), 7.78–7.85 (m, 1H), 7.70–7.77 (m, 1H), 

7.34 (t, J = 7.8 Hz, 1H); 13C-NMR (DMSO-d6), δ: 162.61, 148.50, 145.57, 138.55, 137.44, 135.73, 

133.47, 130.94, 129.20, 129.16, 128.70, 128.09, 125.80, 123.97, 121.77, 118.38; HR-MS: for 

C16H12N3O3 [M+H]+ calculated 294.0879 m/z, found 294.0888 m/z. 

N-(3-Nitrophenyl)quinoline-2-carboxamide (19b). Yield 30%; Mp. 189–190 °C; IR (Zn/Se ATR, 

cm−1): 3,305w, 1,687m, 1,620w, 1,591w, 1,529m, 1,496w, 1,427m, 1,344m, 1,202w, 1,128m, 1,068w, 

939w, 291m, 837m, 798m, 773s, 733s, 675s; 1H-NMR (DMSO-d6), δ: 11.14 (bs, 1H), 8.95 (t,  

J = 1.9 Hz, 1H), 8.57 (d, J = 8.5 Hz, 1H), 8.34 (dd, J = 8.0 Hz, J = 1.0 Hz, 1H), 8.16–8.28 (m, 2H), 

8.06 (d, J = 8.0 Hz, 1H), 7.83–7.99 (m, 2H), 7.69–7.77 (m, 1H), 7.64 (t, J = 8.2 Hz, 1H); 13C-NMR 

(DMSO-d6), δ: 163.35, 149.40, 147.88, 145.85, 139.56, 138.16, 130.64, 129.94, 129.30, 128.99, 128.44, 

128.10, 126.34, 118.74, 118.34, 114.54; HR-MS: for C16H12N3O3 [M+H]+ calculated 294.0879 m/z, 

found 294.0871 m/z. 
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N-(4-Nitrophenyl)quinoline-2-carboxamide (19c) [48,49]. Yield 29%; Mp. 227–228 °C; 1H-NMR 

(DMSO-d6), δ: 11.29 (bs, 1H), 8.64 (d, J = 8.5 Hz, 1H), 8.18–8.35 (m, 6H), 8.12 (d, J = 8.0 Hz, 1H), 

7.88–7.99 (m, 1H), 7.78 (d, J = 7.8 Hz, 1H); 13C-NMR (DMSO-d6), δ: 163.61, 149.43, 145.88, 144.58, 

142.77, 138.38, 130.83, 129.40, 129.11, 128.68, 128.21, 124.81, 120.17, 118.92; HR-MS: for 

C16H12N3O3 [M+H]+ calculated 294.0879 m/z, found 294.0870 m/z. 

3.2.2. General Procedure for Synthesis of Carboxamide Derivatives 20–38c 

2-Naphthoic acid (1 g, 5.8 mmol) was suspended in dry toluene (40 mL) and SOCl2 (0.6 mL,  

8 mmol, 1.4 eq.) was added dropwise. The mixture was refluxed for 2 h and then evaporated to 

dryness. The crystalline residue was washed with dry toluene and used directly in the next step. Yield: 

99%; Mp. 46–47 °C (Mp. 43 °C [50]). Into the solution of 2-naphtoyl chloride (1.1 g, 5.8 mmol) in dry 

CH2Cl2 (30 mL), triethylamine (1.2 mL, 0.88 g, 8.66 mmol, 1.5 eq.) and corresponding substituted amine 

(5.8 mmol) were added dropwise. The mixture was stirred at room temperature for 20 h after which the 

solvent was removed under reduced pressure. The solid residue was washed with 10% HCl and the 

crude product was recrystallized from EtOH, cyclohexan, CHCl3 or acetone. The studied compounds 

20–38c are presented in Table 2. 

N-Isopropyl-2-naphthamide (20). Yield 18%; Mp. 174–176 °C (Mp. 170 °C [51]); IR (Zn/Se ATR,  

cm−1): 3,246m, 3,054w, 2,969w, 2,935w, 1,632m, 1,618s, 1,543s 1,499w, 1,352w, 1,327w, 1,294m, 

1,201w, 1,168m, 1,136w, 1,106w, 953w, 911m, 835m, 781m 766w, 736m, 690w; 1H-NMR (DMSO-d6), 

δ: 8.37–8.51 (m, 2H), 7.88–8.09 (m, 4H), 7.47–7.67 (m, 2H), 4.18 (dsxt, J = 13.8 Hz, J = 6.7 Hz, 1H), 

1.21 (d, J = 6.5 Hz, 6H); 13C-NMR (DMSO-d6), δ: 165.42, 134.05, 132.23, 132.16, 128.79, 127.72, 

127.60, 127.44, 127.33, 126.66, 124.38, 41.14, 22.41; HR-MS: for C14H16NO [M+H]+ calculated 

214.1226 m/z, found 214.1187 m/z. 

N-Dodecyl-2-naphthamide (21). Yield 15%; Mp. 102–103 °C; IR (Zn/Se ATR, cm−1): 3,259m, 2,915s, 

2,848s, 1,643m, 1,619s, 1,552s, 1,501w, 1,467w, 1,432w, 1,317m, 1,204w, 1,146w, 954w, 912w, 871w, 

839w, 779w, 734w; 1H-NMR (DMSO-d6), δ: 8.61 (t, J = 5.8 Hz, 1H), 8.37–8.52 (m, 1H), 7.88–8.10 

(m, 4H), 7.46–7.69 (m, 2H), 3.26–3.34 (m, 2H), 1.55 (quin, J = 7.2 Hz, 2H), 1.13–1.37 (m, 18H), 

0.78–0.87 (m, 3H); 13C-NMR (DMSO-d6), δ: 166.06, 134.06, 132.17, 132.08, 128.78, 127.76, 127.59, 

127.43, 127.28, 126.63, 124.20, 39.34, 31.32, 29.17, 29.16, 29.09, 29.06, 29.05, 28.84, 28.75, 26.55, 

22.11, 13.95; HR-MS: for C23H34NO [M+H]+ calculated 340.2635 m/z, found 340.2655 m/z. 

1-(2-Naphthoyl)pyrrolidine (22). Yield 12%; Mp. 76–77 °C (Mp. 75.5–76.5 °C [52]); IR (Zn/Se ATR, 

cm−1): 3,050m, 2,963s, 2,863s, 1,629m, 1,608s, 1,469m, 1,434w, 1,417m, 1,353w, 1,337w; 1H-NMR  

(DMSO-d6), δ: 8.10 (s, 1H), 7.97–8.03 (m, 1H), 7.91–7.97 (m, 2H), 7.51–7.64 (m, 3H), 3.51 (t,  

J = 6.9 Hz, 2H), 3.37–3.45 (m, 2H), 1.82–1.92 (m, 2H), 1.69–1.82 (m, 2H); 13C-NMR (DMSO-d6),  

δ: 168.18, 134.50, 133.23, 132.15, 128.47, 127.77, 127.60, 127.10, 126.62, 126.59, 124.61, 48.97, 

46.01, 25.99, 23.97; HR-MS: for C15H16NO [M+H]+ calculated 226.1226 m/z, found 226.1200 m/z. 

1-(2-Naphthoyl)piperidine (23) [53]. Yield 40%; Mp. 97–98 °C; IR (Zn/Se ATR, cm−1): 3,050w, 

2,933m, 2,852m, 1,633w, 1,612s, 1,476m, 1,432m, 1,347w, 1,278m, 1,269m, 1,229w, 1,199w, 1,126w, 
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1,100w, 1,007w, 954w, 906w, 833w, 807w, 758m; 1H-NMR (DMSO-d6), δ: 7.86–8.08 (m, 4H),  

7.39–7.67 (m, 4H), 3.09–3.85 (m, 4H), 1.26–1.77 (m, 6H); 13C-NMR (DMSO-d6), δ: 168.84, 133.91, 

132.96, 132.31, 128.27, 127.98, 127.65, 126.93, 126.66, 125.96, 124.29, 48.95, 43.22, 26.51, 26.01, 

24.05; HR-MS: for C16H18NO [M+H]+ calculated 240.1383 m/z, found 240.1349 m/z. 

N-Cyclopentyl-2-naphthamide (24). Yield 21%; Mp. 190–191 °C; IR (Zn/Se ATR, cm−1): 3,245s, 

2,954m, 2,867w, 1,618m, 1,545m; 1H-NMR (DMSO-d6), δ: 8.37–8.56 (m, 2H), 7.89–8.11 (m, 4H),  

7.48–7.67 (m, 2H), 4.31 (sxt, J = 7.0 Hz, 1H), 1.42–2.05 (m, 8H); 13C-NMR (DMSO-d6), δ: 166.00, 

134.04, 132.20, 132.15, 128.78, 127.68, 127.60, 127.41, 127.38, 126.62, 124.45, 51.08, 32.20, 23.70; 

HR-MS: for C16H18NO [M+H]+ calculated 240.1383 m/z, found 240.1372 m/z. 

N-Cyclohexyl-2-naphthamide (25). Yield 45%; Mp. 184–185 °C (Mp. 183–184 °C [52]); IR (Zn/Se 

ATR, cm−1): 3,316m, 3,051w, 2,933s, 2,917m, 2,850m, 1,635m, 1,622s, 1,601m, 1,531s, 1,446w, 

1,318m, 1,288m, 1,231m, 1,202w, 1,151w, 1,081m, 890m, 859w, 819m, 779m, 758m, 728w, 667w;  
1H-NMR (DMSO-d6), δ: 8.30–8.54 (m, 2H), 7.85–8.12 (m, 4H), 7.46–7.71 (m, 2H), 3.70–3.97 (m, 

1H), 1.87 (d, J = 9.8 Hz, 2H), 1.74 (dd, J = 9.8 Hz, J = 2.5 Hz, 2H), 1.61 (d, J = 12.6 Hz, 1H),  

1.23–1.43 (m, 4H), 1.04–1.21 (m, 1H); 13C-NMR (DMSO-d6), δ: 165.42, 134.04, 132.26, 132.15, 

128.78, 127.68, 127.59, 127.41, 127.34, 126.63, 124.42, 48.49, 32.50, 25.31, 25.00; HR-MS: for 

C17H20NO [M+H]+ calculated 254.1539 m/z, found 254.1493 m/z. 

N-Cycloheptyl-2-naphthamide (26). Yield 18%; Mp. 157–158 °C; IR (Zn/Se ATR, cm−1): 3,318m, 

2,918m, 2,655m, 1,635m, 1,623s, 1,600w, 1,529s, 1,504m, 1,446w, 1,314m, 1,234w, 1,201w, 1,186w, 

1,053w, 907w, 819w, 777w, 758w, 729w, 679w; 1H-NMR (DMSO-d6), δ: 8.34–8.56 (m, 2H),  

7.87–8.12 (m, 4H), 7.45–7.71 (m, 2H), 4.04 (qt, J = 8.8 Hz, J = 4.6 Hz, 1H), 1.81–2.03 (m, 2H),  

1.29–1.77 (m, 10H); 13C-NMR (DMSO-d6), δ: 165.20, 134.05, 132.35, 132.17, 128.78, 127.69, 127.61, 

127.41, 127.35, 126.63, 124.47, 50.59, 34.42, 27.89, 24.00; HR-MS: for C18H22NO [M+H]+ calculated 

268.1696 m/z, found 268.1621 m/z. 

N-Cyclooctyl-2-naphthamide (27). Yield 17%; Mp. 145–146 °C; IR (Zn/Se ATR, cm−1): 3,252s, 

2,921s, 2,849m, 1,634s, 1,623s, 1,548s, 1,446w, 1,348w, 1,326m, 1,279w, 1,243w, 1,199w, 1,066m, 

897w, 864w, 825w, 774m, 762w, 737m, 712m; 1H-NMR (DMSO-d6), δ: 8.30–8.55 (m, 2H), 7.87–8.10 

(m, 4H), 7.46–7.69 (m, 2H), 4.09 (qt, J = 8.3 Hz, J = 4.2 Hz, 1H), 1.37–1.92 (m, 14H); 13C-NMR 

(DMSO-d6), δ: 165.18, 134.03, 132.37, 132.15, 128.76, 127.66, 127.59, 127.38, 127.32, 126.60,  

124.47, 49.39, 31.72, 26.86, 25.14, 23.60; HR-MS: for C19H24NO [M+H]+ calculated 282.1852 m/z,  

found 282.1873 m/z. 

N-Phenyl-2-naphthamide (28). Yield 96%; Mp. 175–176 °C (170 °C [50], Mp. 160 °C [54]); IR (Zn/Se 

ATR, cm−1): 3,360m, 3,256w, 3,053w, 2,989w, 1,640s, 1,595s, 1,519s, 1,489s, 1,431s, 1,313m, 1,245w, 

1,131w, 1,076w, 956w, 912m, 870w, 824w, 777w, 749s, 731m, 689m; 1H-NMR (DMSO-d6) [55,56],  

δ: 10.48 (bs, 1H), 8.61 (s, 1H), 7.96–8.17 (m, 4H), 7.88 (d, J = 8.0 Hz, 2H), 7.56–7.71 (m, 2H), 7.39 (t, 

J = 7.5 Hz, 2H), 7.05–7.19 (m, 1H); 13C-NMR (DMSO-d6), δ: 165.66, 139.31, 134.30, 132.35, 132.12, 

128.98, 128.69, 128.04, 128.03, 127.83, 127.71, 126.87, 124.53, 123.72, 120.42; HR-MS: for 

C17H14NO [M+H]+ calculated 248.1070 m/z, found 248.1095 m/z. 
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N-Benzyl-2-naphthamide (29). Yield 42%; Mp. 138–139 °C (Mp. 140–143 °C [57]); IR (Zn/Se ATR, 

cm−1): 3,287s, 3,054w, 3,027w, 2,920w, 1,635s, 1,622s, 1,600w, 1,543s, 1,504m, 1,495m, 1,449w, 

1,414m, 1,359w, 1,316m, 1,300m, 1,263m, 1,206w, 1,146w, 1,119w, 1,047w, 996w, 910m, 869m, 

835m, 777m, 737w, 719m, 693m; 1H-NMR (DMSO-d6), δ: 9.25 (t, J = 6.02 Hz, 1H), 8.53 (s, 1H), 

7.91–8.11 (m, 4H), 7.53–7.70 (m, 2H), 7.29–7.46 (m, 4H), 7.21–7.28 (m, 1H), 4.56 (d, J = 6.02 Hz, 

2H); 13C-NMR (DMSO-d6), δ: 166.29, 139.70, 134.17, 132.18, 131.72, 128.87, 128.32, 127.92, 

127.63, 127.61, 127.55, 127.30, 126.77, 126.74, 124.22, 42.77; HR-MS: for C18H16NO [M+H]+ calculated 

262.1226 m/z, found 262.1257 m/z. 

N-(2-Phenylethyl)-2-naphthamide (30). Yield 26%; Mp. 133–134 °C (Mp. 133–134 °C [52]); IR 

(Zn/Se ATR, cm−1): 3,325s, 3,054w, 3,027w, 2,933w, 2,900w, 1,639s, 1,626m, 1,600m, 1,541s, 

1,452m, 1,302w, 1,211w, 1,074w, 829w, 779w, 756w, 692w; 1H-NMR (DMSO-d6), δ: 8.78 (t,  

J = 5.5 Hz, 1H), 8.45 (s, 1H), 7.86–8.11 (m, 4H), 7.48–7.71 (m, 2H), 7.12–7.41 (m, 5H), 3.49–3.66 (m, 

2H), 2.91 (t, J = 7.5 Hz, 2H); 13C-NMR (DMSO-d6), δ: 166.23, 139.58, 134.11, 132.17, 131.99, 

128.84, 128.71, 128.38, 127.87, 127.63, 127.54, 127.37, 126.73, 126.13, 124.17, 41.06, 35.19;  

HR-MS: for C19H18NO [M+H]+ calculated 276.1383 m/z, found 276.1353 m/z. 

N-(3-Hydroxyphenyl)-2-naphthamide (31b). Yield 69%; Mp. 194 °C; IR (Zn/Se ATR, cm−1): 3,349s, 

1,712s, 1,663s, 1,603s, 1,530s, 1,432s, 1,277s, 1,220s, 1,192s, 1,144s, 1,081s, 970s, 913s, 861s, 820s, 

772s, 760s, 679s; 1H-NMR (DMSO-d6), δ: 10.32 (s, 1H), 8.57 (s, 1H), 8.11–7.99 (m, 5H), 7.69–7.60 

(m, 2H), 7.43 (t, J = 1.8 Hz, 1H), 7.25–7.10 (m, 2H), 6.54 (dt, J = 7.7 Hz, J = 2.2 Hz, 1H); 13C-NMR 

(DMSO-d6), δ: 165.36, 157.44, 140.13, 134.10, 132.34, 131.97, 129.04, 128.76, 127.75, 127.73, 

127.58, 127.50, 126.62, 124.35, 111.09, 110.74, 107.51; HR-MS: for C17H14NO2 [M+H]+ calculated 

264.1019 m/z, found 264.1012 m/z. 

N-(4-Hydroxyphenyl)-2-naphthamide (31c). Yield 66%; Mp. 250–255 °C; IR (Zn/Se ATR, cm−1): 

3,376s, 3,055w, 1,731s, 1,660s, 1,520s, 1,311s, 1,267s, 1,221s, 1,202s, 1,081s, 953s, 802s, 775s, 760s, 

754s; 1H-NMR (DMSO-d6), δ: 10.58 (s, 1H), 8.61 (s, 1H), 8.14–7.99 (m, 5H), 7.70–7.61 (m, 2H), 

7.40–7.34 (m, 2H), 6.79–6.74 (m, 2H); 13C-NMR (DMSO-d6), δ: 165.53, 153.65, 146.38, 134.21, 

132.04, 131.36, 128.84, 127.93, 127.90, 127.66, 127.57, 124.32, 121.91, 121.31, 114.91; HR-MS: for 

C17H14NO2 [M+H]+ calculated 264.1019 m/z, found 264.1010 m/z. 

N-(2-Methoxyphenyl)-2-naphthamide (32a). Yield 46%; Mp. 82 °C; IR (Zn/Se ATR, cm−1): 3,274s, 

3,060w, 2,997w, 2,973w, 1,647s, 1,598m, 1,535s, 1,493s, 1,460s, 1,433s, 1,336s, 1,259s, 1,026m, 749s;  
1H-NMR (DMSO-d6), δ: 9.62 (s, 1H), 8.62 (s, 1H), 8.10–8.08 (m, 1H), 8.04 (d, J = 1.0 Hz, 2H), 8.01 

(dd, J = 8.2 Hz, J = 1.1 Hz, 1H), 7.85 (dd, J = 7.9 Hz, J = 1.3 Hz, 1H), 7.66–7.60 (m, 2H), 7.22–7.18 

(m, 1H), 7.12–7.10 (m, 1H), 7.00 (td, J = 7.7 Hz, J = 1.2 Hz, 1H), 3.86 (s, 3H); 13C-NMR (DMSO-d6), 

δ: 165.08, 151.52, 134.30, 132.16, 131.84, 129.02, 128.12, 127.92, 127.84, 127.66, 126.89, 126.83, 

125.76, 124.36, 124.24, 120.24, 111.41, 55.73; HR-MS: for C18H16NO2 [M+H]+ calculated 278.1176 m/z, 

found 278.1179 m/z. 

N-(3-Methoxyphenyl)-2-naphthamide (32b). Yield 47%; Mp. 142 °C; IR (Zn/Se ATR, cm−1): 3,243s, 

3,005w, 1,640s, 1,591s, 1,530s, 1,451s, 1,429s, 1,301s, 1,282s, 1,158s, 1,049s, 771s; 1H-NMR 
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(DMSO-d6), δ: 10.43 (s, 1H), 8.59 (s, 1H), 8.11–8.07 (m, 1H), 8.05 (s, 1H), 8.04 (d, J = 1.5 Hz, 1H), 

8.02–8.00 (m, 1H), 7.66–7.60 (m, 2H), 7.55 (t, J = 2.3 Hz, 1H), 7.45 (dd, J = 8.0 Hz, J = 1.0 Hz, 1H), 

7.28 (t, J = 8.2 Hz, 1H), 6.71 (dd, J = 8.2 Hz, J = 1.8 Hz, 1H); 3.78 (s, 3H); 13C-NMR (DMSO-d6),  

δ: 165.44, 159.38, 140.30, 134.13, 132.16, 131.95, 129.20, 128.75, 127.81, 127.75, 127.61, 127.49, 

126.64, 124.26, 112.51, 109.10, 106.06, 54.90; HR-MS: for C18H16NO2 [M+H]+ calculated 278.1176 m/z, 

found 278.1175 m/z. 

N-(4-Methoxyphenyl)-2-naphthamide (32c). Yield 65%; Mp. 182 °C; IR (Zn/Se ATR, cm−1): 3,371s, 

3,049w, 2,949w, 2,835w, 1,656s, 1,598s, 1,527s, 1,511s, 1,463s, 1,414s, 1,314s, 1,303s, 1,220s, 

1,182s, 1,033s, 820s, 761s; 1H-NMR (DMSO-d6), δ: 10.34 (s, 1H), 8.58 (s, 1H), 8.08 (d, J = 8.8 Hz, 

1H), 8.04 (s, 2H), 8.00 (d, J = 8.3 Hz, 1H), 7.75 (d, J = 8.3 Hz, 2H), 7.66–7.59 (m, 2H), 6.69 (d,  

J = 8.3 Hz, 2H), 3.76 (s, 3H); 13C-NMR (DMSO-d6), δ: 165.15, 155.57, 134.21, 132.39, 132.33, 

132.12, 128.92, 127.97, 127.81, 127.72, 127.67, 126.81, 124.46, 121.99, 113.78, 55.18; HR-MS: for 

C18H16NO2 [M+H]+ calculated 278.1176 m/z, found 278.1173 m/z. 

N-(2-Methylphenyl)-2-naphthamide (33a). Yield 33%; Mp. 146 °C; IR (Zn/Se ATR, cm−1): 3,239s, 

3,057w, 1,639s, 1,584s, 1,531s, 1,454s, 1,315s, 1,134s, 916s, 777s, 749s, 731s, 692m; 1H-NMR  

(DMSO-d6), δ: 10.09 (s, 1H), 8.63 (s, 1H), 8.10–8.08 (m, 1H), 8.08–8.06 (m, 2H), 8.04–8.01 (m, 1H), 

7.67–7.60 (m, 2H), 7.41 (d, J = 6.7 Hz, 1H), 7.30 (d, J = 7.3 Hz, 1H), 7.28 (td, J = 7.5 Hz, J = 1.5 Hz, 

1H), 7.19 (td, J = 7.3 Hz, J = 1.3 Hz, 1H); 2.29 (s, 3H); 13C-NMR (DMSO-d6), δ: 166.05,  

137.16, 134.95, 134.41, 132.82, 132.55, 131.02, 129.62, 128.69, 128.68, 128.42, 128.33, 127.49, 

127.27, 126.70, 126.67, 125.12, 18.66; HR-MS: for C18H16NO [M+H]+ calculated 262.1226 m/z,  

found 262.1225 m/z. 

N-(3-Methylphenyl)-2-naphthamide (33b). Yield 59%; Mp. 160 °C; IR (Zn/Se ATR, cm−1): 3,246s, 

3,055w, 1,641s, 1,590s, 1,550s, 1,432s, 1,309s, 1,130s, 777s, 749s, 731s, 690s; 1H-NMR (DMSO-d6), 

δ: 10.37 (s, 1H), 8.59 (s, 1H), 8.10–8.07 (m, 1H), 8.04–8.02 (m, 2H), 8.02–8.00 (m, 1H), 7.69 (s, 1H), 

7.66–7.60 (m, 3H), 7.26 (t, J = 7.8 Hz, 1H), 6.94 (d, J = 7.3 Hz, 1H), 2.33 (s, 3H); 13C-NMR (DMSO-d6), 

δ: 165.35, 139.02, 137.61, 134.12, 132.22, 131.97, 128.75, 128.28, 127.81, 127.72, 127.60, 127.49, 

126.64, 124.29, 124.23, 120.84, 117.47, 21.03; HR-MS: for C18H16NO [M+H]+ calculated 262.1226 m/z, 

found 262.1224 m/z. 

N-(4-Methylphenyl)-2-naphthamide (33c). Yield 67%; Mp. 195 °C (Mp. 191 °C [50); IR (Zn/Se ATR, 

cm−1): 3,254s, 3,056w, 2,917w, 1,640s, 1,602s, 1,538s, 1,513s, 1,404s, 1,329s, 1,132s, 914s, 811s, 

754s, 733s, 707m; 1H-NMR (DMSO-d6) [56], δ: 10.38 (s, 1H), 8.59 (s, 1H), 8.10–8.06 (m, 1H), 8.04 

(s, 2H), 8.02–8.00 (m, 1H), 7.73 (d, J = 8.5 Hz, 2H), 7.66–7.60 (m, 2H), 7.18 (d, J = 8.3 Hz, 2H), 2.29 

(s, 3H); 13C-NMR (DMSO-d6), δ: 165.22, 136.59, 134.10, 132.51, 132.27, 132.00, 128.85, 128.75, 

127.79, 127.69, 127.57, 127.50, 126.64, 124.30, 120.34, 20.34; HR-MS: for C18H16NO [M+H]+ 

calculated 262.1226 m/z, found 262.1225 m/z. 

N-(2-Fluorophenyl)-2-naphthamide (34a). Yield 59%; Mp. 122 °C; IR (Zn/Se ATR, cm−1): 3,316s, 

3,054w, 3,023w, 1,648s, 1,541s, 1,489s, 1,456s, 1,321s, 1,257s, 1,192m, 829m, 750s; 1H-NMR 

(DMSO-d6), δ: 10.33 (s, 1H), 8.64 (s, 1H), 8.11–8.08 (m, 1H), 8.06 (d, J = 1.0 Hz, 2H), 8.03–8.01 (m, 
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1H), 7.70–7.60 (m, 3H), 7.36–7.23 (m, 3H); 13C-NMR (DMSO-d6), δ: 165.38, 155.64 (d,  

J = 245.8 Hz), 134.27, 131.98, 131.21, 128.82, 128.13, 127.88, 127.73, 127.50, 126.72 (d, J = 8.8 Hz), 

126.68, 126.68 (d, J = 7.6 Hz), 125.75 (d, J = 11.4 Hz), 124.24, 124.13 (d, J = 3.8 Hz), 115.65 (d,  

J = 20.5 Hz); HR-MS: for C17H13NOF [M+H]+ calculated 266.0976 m/z, found 266.0974 m/z. 

N-(3-Fluorophenyl)-2-naphthamide (34b). Yield 21%; Mp. 167 °C; IR (Zn/Se ATR, cm−1): 3,267s, 

3,140w, 3,058w, 1,642s, 1,604s, 1,541s, 1,444s, 1,322s, 1,301s, 1,142m, 775m, 765m, 682m; 1H-NMR 

(DMSO-d6), δ: 10.64 (s, 1H), 8.59 (s, 1H), 8.11-8.09 (m, 1H), 8.08–8.01 (m, 3H), 7.83 (dt, J = 11.8 Hz,  

J = 2.5 Hz, 1H), 7.68–7.61 (m, 3H), 7.42 (dt, J = 8.2 Hz, J = 7.0 Hz, 1H), 6.95 (tdd, J = 8.5 Hz,  

J = 2.5 Hz, J = 0.75 Hz, 1H); 13C-NMR (DMSO-d6), δ: 165.71, 161.98 (d, J = 239.7 Hz), 140.89 (d,  

J = 11.4 Hz), 134.23, 131.93, 131.83, 130.06 (d, J = 9.9 Hz), 128.79, 127.93, 127.90, 127.75, 127.53, 

126.73, 124.21, 115.90 (d, J = 3.1 Hz), 109.94 (d, J = 20.5 Hz), 106.90 (d, J = 25.8 Hz); HR-MS: for 

C17H13NOF [M+H]+ calculated 266.0976 m/z, found 266.0972 m/z. 

N-(4-Fluorophenyl)-2-naphthamide (34c). Yield 70%; Mp. 191 °C; IR (Zn/Se ATR, cm−1): 3,380s, 

3,063w, 1,654s, 1,527s, 1,506s, 1,405s, 1,313m, 1,212s, 1,197s, 826s, 814s, 764s; 1H-NMR  

(DMSO-d6) [56], δ: 10.51 (s, 1H), 8.58 (s, 1H), 8.10–8.08 (m, 1H), 8.07–8.00 (m, 3H), 7.88–7.84 (m, 

2H), 7.66–7.60 (m, 2H), 7.25–7.20 (m, 2H); 13C-NMR (DMSO-d6), δ: 165.36, 158.22 (d,  

J = 238.9 Hz), 135.46 (d, J = 2.3 Hz), 134.17, 132.03, 131.98, 128.75, 127.84, 127.78, 127.64, 127.50, 

126.67, 124.24, 122.13 (d, J = 8.0 Hz), 115.01 (d, J = 22.0 Hz); HR-MS: for C17H13NOF [M+H]+ 

calculated 266.0976 m/z, found 266.0975 m/z. 

N-(2-Chlorophenyl)-2-naphthamide (35a) [58]. Yield 45%; Mp. 116 °C; IR (Zn/Se ATR, cm−1): 

3,281s, 3,061w, 1,653s, 1,583s, 1,523s, 1,439s, 1,305s, 1,053m, 777s, 759s, 746s; 1H-NMR  

(DMSO-d6), δ: 10.26 (s, 1H), 8.65 (s, 1H), 8.11–8.09 (m, 1H), 8.09–8.05 (m, 2H), 8.04–8.00 (m, 1H), 

7.68–7.61 (m, 3H), 7.59 (dd, J = 7.9 Hz, J = 1.3 Hz, 1H), 7.42 (td, J = 7.7 Hz, J = 1.5 Hz, 1H), 7.32 

(td, J = 7.8 Hz, J = 1.5 Hz, 1H); 13C-NMR (DMSO-d6), δ: 165.48, 135.16, 134.42, 132.11, 131.30, 

129.61, 129.55, 129.02, 128.50, 128.25, 128.15, 127.96, 127.70, 127.52, 127.51, 126.92, 124.34;  

HR-MS: for C17H13NOCl [M+H]+ calculated 282.0680 m/z, found 282.0679 m/z. 

N-(3-Chlorophenyl)-2-naphthamide (35b). Yield 67%; Mp. 180 °C; IR (Zn/Se ATR, cm−1): 3,262s, 

3,236s, 3,110w, 3,055w, 1,644s, 1,591s, 1,531s, 1,420s, 1,316s, 1,301s, 1,133m, 778s, 765s, 695m;  
1H-NMR (DMSO-d6), δ: 10.61 (s, 1H), 8.59 (s, 1H), 8.11–8.09 (m, 1H), 8.08–8.01 (m, 4H), 7.78 (ddd,  

J = 8.3 Hz, J = 1.8 Hz, J = 0.8 Hz, 1H), 7.68–7.61 (m, 2H), 7.41 (t, J = 8.2 Hz, 1H), 7.18 (ddd,  

J = 8.0 Hz, J = 1.9 Hz, J = 0.8 Hz, 1H); 13C-NMR (DMSO-d6), δ: 165.69, 140.61, 134.24, 132.86, 

131.93, 131.77, 130.14, 128.81, 127.95, 127.92, 127.78, 127.53, 126.75, 124.21, 123.21, 119.68, 

118.55; HR-MS: for C17H13NOCl [M+H]+ calculated 282.0680 m/z, found 282.0681 m/z. 

N-(4-Chlorophenyl)-2-naphthamide (35c). Yield 81%; Mp. 218 °C; IR (Zn/Se ATR, cm−1): 3,377s, 

3,058w, 1,657s, 1,628s, 1,593s, 1,514s, 1,492s, 1,398s, 1,310s, 1,097m, 823s, 760s; 1H-NMR  

(DMSO-d6) [56], δ: 10.58 (s, 1H), 8.59 (s, 1H), 8.10–8.08 (m, 1H), 8.08–8.01 (m, 3H), 7.91–7.87 (m, 

2H), 7.67–7.60 (m, 2H), 7.46–7.42 (m, 2H); 13C-NMR (DMSO-d6), δ: 165.54, 138.10, 134.21, 131.95, 
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131.92, 128.78, 128.38, 127.89, 127.88, 127.72, 127.52, 127.20, 126.72, 124.24, 121.78; HR-MS: for 

C17H13NOCl [M+H]+ calculated 282.0680 m/z, found 282.0679 m/z. 

N-(2-Bromophenyl)-2-naphthamide (36a) [58]. Yield 70%; Mp. 123 °C; IR (Zn/Se ATR, cm−1): 

3,277s, 3,060w, 1,652s, 1,629m, 1,578m, 1,523s, 1,433s, 1,304s, 1,028m, 777m, 759m, 745s; 1H-NMR 

(DMSO-d6), δ: 10.25 (s, 1H), 8.65 (s, 1H), 8.10-8.08 (m, 1H), 8.07 (s, 2H), 8.03-8.01 (m, 1H), 7.75 (dd,  

J = 7.8 Hz, J = 0.8 Hz, 1H), 7.68–7.61 (m, 3H), 7.46 (td, J = 7.5 Hz, J = 1.0 Hz, 1H), 7.25 (td,  

J = 7.7 Hz, J = 1.4 Hz, 1H); 13C-NMR (DMSO-d6), δ: 165.43, 136.70, 134.41, 132.73, 132.13, 131.41, 

129.01, 128.93, 128.22, 128.15, 128.15, 127.95, 127.72, 126.94, 124.37, 124.34, 120.68; HR-MS: for 

C17H13NOBr [M+H]+ calculated 326.0175 m/z, found 326.0175 m/z. 

N-(3-Bromophenyl)-2-naphthamide (36b). Yield 69%; Mp. 193 °C; IR (Zn/Se ATR, cm−1): 3,261s, 

3,233s, 3,106w, 3,056w, 1,644s, 1,590s, 1,526s, 1,415s, 1,313s, 1,300s, 1,133m, 778s, 765s, 686m;  
1H-NMR (DMSO-d6) [56], δ: 10.59 (s, 1H), 8.59 (s, 1H), 8.18 (t, J = 1.9 Hz, 1H), 8.11–8.08 (m, 1H), 

8.08–8.00 (m, 3H), 7.83 (dt, J = 7.7 Hz, J = 1.6 Hz, 1H), 7.68–7.61 (m, 2H), 7.37–7.30 (m, 2H);  
13C-NMR (DMSO-d6), δ: 165.63, 140.74, 134.23, 131.92, 131.72, 130.43, 128.78, 127.93, 127.90, 

127.75, 127.52, 126.73, 126.08, 124.20, 122.51, 121.25, 118.92; HR-MS: for C17H13NOBr [M+H]+ 

calculated 326.0175 m/z, found 326.0174 m/z. 

N-(4-Bromophenyl)-2-naphthamide (36c). Yield 55%; Mp. 231 °C; IR (Zn/Se ATR, cm−1): 3,375s, 

3,283w, 3,056w, 1,658s, 1,591s, 1,516s, 1,489s, 1,395s, 1,310s, 1,073m, 1,009m, 820s, 760s; 1H-NMR 

(DMSO-d6) [56], δ: 10.57 (s, 1H), 8.58 (s, 1H), 8.10–8.08 (m, 1H), 8.08–7.99 (m, 3H), 7.83 (d,  

J = 8.5 Hz, 2H), 7.67–7.61 (m, 2H) 7.57 (d, J = 8.5 Hz, 2H); 13C-NMR (DMSO-d6), δ: 165.54, 138.52, 

134.21, 131.93, 131.90, 131.30, 128.79, 127.90, 127.72, 127.52, 126.72, 124.24, 122.16, 122.15, 

115.21; HR-MS: for C17H13NOBr [M+H]+ calculated 326.0175 m/z, found 326.0173 m/z. 

N-(3-Trifluoromethylphenyl)-2-naphthamide (37b). Yield 82%; Mp. 150 °C; IR (Zn/Se ATR, cm−1): 

3,261s, 3,100w, 3,062w, 1,648s, 1,602s, 1,552s, 1,445s, 1,434s, 1,324s, 1,309s, 1,165s, 1,107s, 1,069s, 

778m, 697m; 1H-NMR (DMSO-d6), δ: 10.75 (s, 1H), 8.63 (s, 1H), 8.32 (s, 1H), 8.15–8.01 (m, 5H),  

7.69–7.60 (m, 3H), 7.47 (d, J = 7.8 Hz, 1H); 13C-NMR (DMSO-d6), δ: 165.85, 139.95, 134.29, 131.93, 

131.66, 129.72, 129.31 (q, J = 32.1 Hz), 128.83, 128.02, 127.97, 127.82, 127.55, 126.78, 124.21, 

124.06 (q, J = 273.1 Hz), 123.68, 119.79 (q, J = 3.8 Hz), 116.31 (q, J = 3.8 Hz); HR-MS: for 

C18H13NOF3 [M+H]+ calculated 316.0944 m/z, found 316.0942 m/z. 

N-(4-Trifluoromethylphenyl)-2-naphthamide (37c). Yield 80%; Mp. 224 °C; IR (Zn/Se ATR, cm−1): 

3,372s, 3,073w, 1,662s, 1,600s, 1,556s, 1,514s, 1,408s, 1,316s, 1,159s, 1,112s, 1,067s, 1,018m, 836s, 

826s, 764m; 1H-NMR (DMSO-d6), δ: 10.78 (s, 1H), 8.62 (s, 1H), 8.12–8.01 (m, 6H), 7.76 (d,  

J = 8.8 Hz, 2H), 7.69–7.61 (m, 2H); 13C-NMR (DMSO-d6), δ: 165.97, 142.80, 134.32, 131.93, 131.71, 

128.87, 128.13, 127.97, 127.87, 127.58, 126.81, 125.80 (q, J = 3.8 Hz), 124.29, 124.29 (q, J = 270.9 Hz), 

123.57 (q, J = 32.1 Hz), 120.07; HR-MS: for C18H13NOF3 [M+H]+ calculated 316.0944 m/z,  

found 316.0942 m/z. 
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N-(2-Nitrophenyl)-2-naphthamide (38a). Yield 66%; Mp. 136 °C (Mp. 138–139 °C [59]); IR (Zn/Se 

ATR, cm−1): 3,383s, 3,124w, 3,054w, 1,678s, 1,582s, 1,493s, 1,448s, 1,427s, 1,335s, 1,284s, 1,273s, 

1,195s, 759s, 738s; 1H-NMR (DMSO-d6), δ: 10.97 (s, 1H), 8.62 (s, 1H), 8.15–8.00 (m, 5H), 7.86–7.82 

(m, 1H), 7.81–7.76 (m, 1H), 7.70–7.62 (m, 2H), 7.44 (t, J = 7.7 Hz, 1H); 13C-NMR (DMSO-d6),  

δ: 165.32, 142.68, 134.45, 133.94, 131.98, 131.63, 130.83, 128.92, 128.28, 128.20, 128.04, 127.60, 

126.91, 125.80, 125.43, 124.88, 123.92; HR-MS: for C17H13N2O3 [M+H]+ calculated 293.0921 m/z, 

found 293.0919 m/z. 

N-(3-Nitrophenyl)-2-naphthamide (38b). Yield 68%; Mp. 177 °C; IR (Zn/Se ATR, cm−1): 3,269s, 

3,093w, 1,648s, 1,626s, 1,522s, 1,429s, 1,341s, 1,321s, 1,288s, 1,272s, 761s, 736s, 669s; 1H-NMR  

(DMSO-d6) [56], δ: 10.88 (s, 1H), 8.85 (t, J = 2.1 Hz, 1H), 8.63 (s, 1H), 8.26 (ddd, J = 8.2 Hz, J = 2.0 Hz,  

J = 0.9 Hz, 1H), 8.11–7.99 (m, 4H), 7.97 (ddd, J = 8.2 Hz, J = 2.0 Hz, J = 0.9 Hz, 1H), 7.69–7.61 (m, 

3H); 13C-NMR (DMSO-d6), δ: 165.94, 147.88, 140.34, 134.35, 131.92, 131.42, 129.92, 128.85, 

128.14, 128.02, 127.91, 127.58, 126.82, 126.06, 124.20, 117.96, 114.30; HR-MS: for C17H13N2O3 

[M+H]+ calculated 293.0921 m/z, found 293.0917 m/z. 

N-(4-Nitrophenyl)-2-naphthamide (38c). Yield 46%; Mp. 200 °C; IR (Zn/Se ATR, cm−1): 3,410s, 

3,054w, 1,679s, 1,611s, 1,595s, 1,538s, 1,499s, 1,481s, 1,324s, 1,302s, 1,284s, 1,243s, 1,109s, 849s, 

771s, 750s; 1H-NMR (DMSO-d6) [56], δ: 10.99 (s, 1H), 8.62 (s, 1H), 8.29 (dd, J = 9.3 Hz, J = 2.3 Hz, 

2H), 8.13–8.01 (m, 6H), 7.69–7.61 (m, 2H); 13C-NMR (DMSO-d6), δ: 166.20, 145.45, 142.43, 134.41, 

131.90, 131.43, 128.92, 128.37, 128.07, 128.02, 127.61, 126.88, 124.67, 124.27, 119.80; HR-MS: for 

C17H13N2O3 [M+H]+ calculated 293.0921 m/z, found 293.0918 m/z. 

3.3. Study of Inhibition Photosynthetic Electron Transport (PET) in Spinach Chloroplasts 

Chloroplasts were prepared from spinach (Spinacia oleracea L.) according to Masarovicova and 

Kralova [60]. The inhibition of photosynthetic electron transport (PET) in spinach chloroplasts was 

determined spectrophotometrically (Genesys 6, Thermo Scientific, USA), using an artificial electron 

acceptor 2,6-dichlorophenol-indophenol (DCIPP) according to Kralova et al. [61], and the rate of 

photosynthetic electron transport was monitored as a photoreduction of DCPIP. The measurements 

were carried out in phosphate buffer (0.02 mol/L, pH 7.2) containing sucrose (0.4 mol/L),  

MgCl2 (0.005 mol/L) and NaCl (0.015 mol/L). The chlorophyll content was 30 mg/L in these 

experiments and the samples were irradiated (~100 W/m2 with 10 cm distance) with a halogen lamp 

(250 W) using a 4 cm water filter to prevent warming of the samples (suspension temperature 22 °C). 

The studied compounds were dissolved in DMSO due to their limited water solubility. The applied 

DMSO concentration (up to 4%) did not affect the photochemical activity in spinach chloroplasts. The 

inhibitory efficiency of the studied compounds was expressed by IC50 values, i.e., by molar concentration 

of the compounds causing 50% decrease in the oxygen evolution rate relative to the untreated control. 

The comparable IC50 value for a selective herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea, DCMU 

(Diurone®) was about 1.9 μmol/L. The results are summarized in Tables 1 and 2. 
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3.4. In Vitro Antimycobacterial Evaluation 

Clinical isolates of Mycobacterium tuberculosis CUH071 (Cork University Hospital TB lab, with 

partial INH and PZA resistance), M. avium complex CIT19/06, M. avium paratuberculosis 

ATCC19698, and M. kansasii CIT11/06 were grown in Middlebrook broth (MB), supplemented with 

Oleic-Albumin-Dextrose-Catalase supplement (OADC, Becton Dickinson, UK). Identification of these 

isolates was performed using biochemical and molecular protocols. At log phase growth, culture  

(10 mL) was centrifuged at 15,000 rpm/20 min using a bench top centrifuge (Model CR 4-12, Jouan 

Inc., UK). Following removal of the supernatant, the pellet was washed in fresh Middlebrook 7H9GC 

broth and re-suspended in fresh supplemented MB (10 mL). The turbidity was adjusted to match 

McFarland standard No. 1 (3 × 108 cfu) with MB broth. A further 1:20 dilution of the culture was then 

performed in MB broth. 

The antimicrobial susceptibility of all four mycobacterial species was investigated in a 96-well 

plate format. In these experiments, sterile deionised water (300 µL) was added to all outer-perimeter 

wells of the plates to minimize evaporation of the medium in the test wells during incubation. Each 

evaluated compound (100 µL) was incubated with each of the mycobacterial species (100 µL). 

Dilutions of each compound were prepared in duplicate. For all synthesized compounds, final 

concentrations ranged from 1,000 µg/mL to 8 µg/mL. All compounds were prepared in DMSO and 

subsequent dilutions were made in supplemented MB. The plates were sealed with parafilm and 

incubated at 37 °C, for 5 days in the case of M. kansasii and M. avium complex, 7 days in the case of 

M. tuberculosis and 11 days in the case of M. avium paratuberculosis. Following incubation, a 10% 

addition of alamarBlue (AbD Serotec) was mixed into each well and readings at 570 nm and 600 nm 

were taken, initially for background subtraction and subsequently after 24 h re-incubation. The 

background subtraction is necessary for strongly coloured compounds, where the colour may interfere 

with the interpretation of any colour change. For non-interfering compounds, a blue colour in the well 

was interpreted as an absence of growth and a pink colour was scored as growth. The MIC was 

initially defined as the lowest concentration which prevented a visual colour change from blue to pink. 

Isoniazid (INH) and pyrazinamide (PZA) were used as the standards as it is a clinically used 

antimycobacterial drug. The MIC for mycobacteria was defined as a 90% or greater (IC90) reduction of 

growth in comparison with the control. The MIC/IC90 value is routinely and widely used in bacterial 

assays and is a standard detection limit according to the Clinical and Laboratory Standards Institute 

(CLSI, www.clsi.org). The results are summarized in Table 3. 

3.5. In Vitro Cytotoxicity Assay 

Human monocytic leukemia THP-1 cells were obtained from the European Collection of Cell 

Cultures (ECACC). These cells were routinely cultured in RPMI medium supplemented with 10% 

fetal bovine serum, 2% L-glutamine, 1% penicillin and streptomycin at 37 °C with 5% CO2. The tested 

compounds were dissolved in DMSO and added in four increasing concentrations to the cell 

suspension in the culture medium. Subsequently, the cells were incubated for 24 h at 37 °C with 5% 

CO2. Cell toxicity was determined using a WST-1 assay kit (Roche Diagnostics, Mannheim, Germany) 

according to the manufacturer’s instructions. For WST-1 assays, cells were seeded into 96-well plates 

(5 × 104 cells·well−1 in 100 μL culture medium) in triplicate in serum-free RPMI 1640 medium, and 
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measurements were taken 24 h after the treatment with tested compounds. The median lethal  

dose values, LD50, were deduced through the production of a dose-response curve. All data were 

evaluated using GraphPad Prism 5.00 software (GraphPad Software, San Diego, CA, USA, 

http://www.graphpad.com). The results are summarized in Table 3. 

4. Conclusions 

A series of thirty-five substituted quinoline-2-carboxamides and thirty-three substituted 

naphthalene-2-carboxamides were prepared and characterized. The prepared compounds were tested 

for their ability to inhibit photosynthetic electron transport (PET) in spinach chloroplasts (Spinacia 

oleracea L.) and for their antituberculosis/antimycobacterial activity. Two compounds, N-benzyl-2-

naphthamide (29) and N-(2-hydroxyphenyl)quinoline-2-carboxamide (12a) showed relatively high PET 

inhibition. N-(2-Phenylethyl)quinoline-2-carboxamide (11), N-cycloheptylquinoline-2-carboxamide (7) 

and N-cyclohexylquinoline-2-carboxamide (6) expressed high activity against Mycobacterium 

tuberculosis. 1-(2-Naphthoyl)pyrrolidine (22) and 2-(pyrrolidin-1-ylcarbonyl)quinoline (3) showed 

high activity against M. kansasii and M. avium paratuberculosis. All five compounds exhibited 

activity comparable with or higher than the standards isoniazid or pyrazinamide. Lipophilicity was 

fundamental for the biological activities of all compounds in both biological assays. It can be stated 

that the dependence of PET-inhibiting activity on the lipophilicity decreases with increasing lipophilicity, 

while antimycobacterial activity increases with lipophilicity increase. Highly effective compounds 

against M. tuberculosis were detected, namely quinaldinamides, while naphtamides were more active 

against the other mycobacterial species. Substituted N-quinaldinanilides and/or N-naphtanilides seem 

to be less effective than other discussed N-nonaromatic amide derivatives. The most effective 

antimycobacterial compounds 11, 7, 3 and 22 were tested for their in vitro cytotoxicity against THP-1 

cells. According to the calculated selectivity index of compounds 11, 3 and 22 it can be concluded that 

the discussed amides can be considered as promising agents for subsequent design of novel 

antitubercular/ antimycobacterial agents. 
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