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Abstract: Efavirenz is a non-nucleoside reverse transcriptase inhibitor used for the 

treatment of human immunodeficiency virus type 1 infections. Drug interactions of efavirenz 

have been reported due to in vitro inhibition of CYP2C9, CYP2C19, CYP3A4, and  

UDP-glucuronosyltransferase 2B7 (UGT2B7) and in vivo CYP3A4 induction. The inhibitory 

potentials of efavirenz on the enzyme activities of four major UDP-glucuronosyltransferases 

(UGTs), 1A1, 1A4, 1A6, and 1A9, in human liver microsomes were investigated  

using liquid chromatography-tandem mass spectrometry. Efavirenz potently inhibited  

UGT1A4-mediated trifluoperazine N-glucuronidation and UGT1A9-mediated propofol 

glucuronidation, with Ki values of 2.0 and 9.4 μM, respectively. [I]/Ki ratios of efavirenz 

for trifluoperazine N-glucuronidation and propofol glucuronidation were 6.5 and 1.37, 

respectively. Efavirenz also moderately inhibited UGT1A1-mediated 17β-estradiol  

3-glucuronidation, with a Ki value of 40.3 μM, but did not inhibit UGT1A6-mediated  

1-naphthol glucuronidation. Those in vitro results suggest that efavirenz should be 

examined for potential pharmacokinetic drug interactions in vivo due to strong inhibition of 

UGT1A4 and UGT1A9. 

Keywords: efavirenz; UDP-glucuronosyltransferase inhibition; human liver microsomes; 
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1. Introduction 

Efavirenz is a non-nucleoside reverse transcriptase inhibitor (NNRTI) used in combination with 

other antiretroviral agents for the treatment of human immunodeficiency virus type 1 infections [1,2]. 

Metabolism studies of efavirenz in humans and in vitro studies have demonstrated that efavirenz is 

mainly metabolized to inactive 8-hydroxyefavirenz, 7-hydroxyefavirenz, and 8,14-dihydroxyefavirenz 

catalyzed by CYP2B6, CYP3A4, and CYP2A6, which are subsequently conjugated by multiple  

UDP-glucuronosyltransferases (UGTs) (Scheme 1) [3–10]. Formation of efavirenz N-glucuronide  

from efavirenz is catalyzed by UGT2B7 and may contribute minimally to the overall clearance  

of efavirenz [8–10]. 

Scheme 1. Metabolic pathways of efavirenz in humans. 
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In vitro studies have shown that efavirenz inhibited CYPs 2C9, 2C19, and 3A4, with Ki values  

(8.5 to 17 μM) in the range of observed efavirenz plasma concentrations, but efavirenz did not inhibit 

CYP2E1 and inhibited CYP2D6 and CYP 1A2 (Ki values 82 to 160 μM) only at concentrations well 

above those achieved clinically [3]. Efavirenz has been shown to cause hepatic enzyme induction  

in vivo, thus increasing the biotransformation of some drugs metabolized by CYP3A. Co-administration of 

efavirenz with drugs primarily metabolized by 2C9, 2C19, and 3A isozymes may result in altered 

plasma concentrations of the co-administered drug. Drugs that induce CYP3A activity would be 

expected to increase the clearance of efavirenz resulting in lowered plasma concentrations. Cisapride, 

midazolam, triazolam, ergot alkaloids and derivative (dihydroergotamine, ergonovine, ergotamine, and 

ergonovine), bepridil, pimozide, and St. John’s wort are contraindicated with efavirenz [3]. Efavirenz 

was shown to be one of the most selective and potent competitive inhibitors of UGT2B7-mediated 

azidothymidine glucuronidation, with a Ki value of 17 μM in human liver microsomes, supporting the 

idea that efavirenz could potentially interfere with azidothymidine glucuronidation in vivo [10]. 
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UGT enzymes are divided into two families, UGT1 and UGT2, and three subfamilies, UGT1A 

(1A1, 1A3, 1A4, 1A5, 1A6, 1A7, 1A8, 1A9, and 1A10), 2A (2A1 and 2A2), and 2B (2B4, 2B7, 2B10, 

2B11, 2B15, 2B17, and 2B28), based on sequence homology [11]. UGT enzymes are widely and 

differentially expressed throughout the human body, with the liver and as the main sites for xenobiotic 

glucuronidation [12,13]. Because many drugs and phytochemicals are glucuronidated by UGT1A1, 

UGT1A4, UGT1A6, and UGT1A9 enzymes, there is a potential for drug interaction through the 

modulation of those UGT enzyme activities [14–17]. Selective probes for the evaluation of UGT1A1, 

UGT1A4, UGT1A6, and UGT1A9 activities in UGT inhibition studies are also available [15,18–20]. 

To our knowledge, no previous study has reported the effect of efavirenz on other human UGT 

enzymes except UGT2B7. In this study, the effect of efavirenz on the activities of four major human 

UGTs, 1A1, 1A4, 1A6, and 1A9, were examined using pooled human liver microsomes to evaluate the 

possibility of efavirenz-drug interactions due to the inhibition of UGTs. 

2. Results and Discussion 

The inhibitory effects of efavirenz on four major human UGT enzymes, 1A1, 1A4, 1A6, and 1A9, 

were evaluated using each UGT probe substrate in human liver microsomes and human  

cDNA-expressed UGT isozymes. IC50 values of efavirenz inhibited UGT1A1-mediated 17β-estradiol 

3-glucuronidation, UGT1A4-mediated trifluoperazine N-glucuronidation, and UGT1A9-mediated 

propofol glucuronidation, were 45.9, 2.1, and 15.8 μM, respectively, in human liver microsomes and 

33.8, 4.0, and 11.6 μM, respectively, in each UGT isozyme (Table 1, Figure 1). Efavirenz at 100 μM 

showed negligible inhibition of UGT1A6-mediated 1-naphthol glucuronidation in human liver 

microsomes and UGT1A6 isozyme. Efavirenz showed noncompetitive inhibition for 17β-estradiol  

3-glucuronidation, with a Ki value of 40.3 μM, which was higher than the steady-state maximum 

plasma concentrations of efavirenz (12.9 μM) [22], suggesting that drug interaction of efavirenz  

based on UGT1A1 inhibition is not possible. Efavirenz competitively inhibited trifluoperazine  

N-glucuronidation and propofol glucuronidation, with Ki values of 2.0 and 9.4 μM, respectively, in 

human liver microsomes (Table 1 and Figure 2). 

Table 1. Effect of efavirenz on UGT metabolic activity in pooled human liver microsomes H161. 

UGT Marker enzyme IC50 (μM) Ki (μM) Inhibition mode 

UGT1A1 17-Estradiol-3-glucuronidation 45.9  6.4 40.3  0.6 Noncompetitive 
UGT1A4 Trifluoperazine N-glucuronidation 2.1  0.2 2.0  0.3 Competitive 
UGT1A6 Naphthol 1-glucuronidation No Inhibition - - 
UGT1A9 Propofol glucuronidation 15.8  2.8 9.4  0.9 Competitive 

Efavirenz has shown potent inhibitory activity of trifluoperazine N-glucuronidation similar to a 

selective UGT1A4 inhibitor, hecogenine (IC50, 1.5 μM) [18]. After an efavirenz oral dose of 600 mg 

daily, steady-state maximum plasma concentration (Cmax) and minimum plasma concentration (Cmin) 

values of efavirenz are 12.9 and 5.6 μM, respectively, with a half-life of more than 40 hours [22]. 

Considering that the ratio of steady-state Cmax of efavirenz to its apparent Ki (2.0 μM) ([I]/Ki) is 6.5, 

the inhibition of efavirenz on UGT1A4-mediated trifluoperazine N-glucuronidation is likely, but 

remains to be demonstrated in vivo. According to this in vitro data, efavirenz should be used carefully 
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with the drugs metabolized by UGT1A4, such as antifungal drugs (alprazolam, posaconazole, 

ketoconazole, miconazole) [23], hydroxymidazolam [24], tamoxifen [25], lamotrigine [26], and 

tacrolimus [27], in order to avoid drug interactions. 

Figure 1. Inhibitory effect of efavirenz on (a) UGT1A1-catalyzed 17-estradiol  

3-glucuronidation; (b) UGT1A4-catalyzed trifluoperazine N-glucuronidation;  

(c) UGT1A6-catalyzed naphthol 1-glucuronidation; and (d) UGT1A9-catalyzed propofol 

glucuronidation in pooled human liver microsomes H161 () and each human  

cDNA-expressed UGT1A1, 1A4, 1A6, and 1A9 supersomes (). 
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Figure 2. Representative Dixon plots for inhibitory effects of efavirenz on (a)  

UGT1A1-catalyzed 17-estradiol 3-glucuronidation; (b) UGT1A4-catalyzed trifluoperazine 

N-glucuronidation; and (c) UGT1A9-catalyzed propofol glucuronidation in pooled human 

liver microsomes H161.  
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Each symbol represents the substrate concentration: (a) 17-estradiol, 10 μM (), 20 μM (),  
40 μM (), 60 μM (▽); (b) trifluoperazine, 5 μM (), 10 μM (), 20 μM (); (c) propofol,  
5 μM (), 10 μM (), 20 μM (), 40 μM (▽). Each data represents the mean and standard 
deviation of triplicate experiments. 

The Ki value (9.4 μM) for inhibition of efavirenz on UGT1A9-mediated propofol glucuronidation 

was higher than those produced by potent inhibitors of UGT1A9, niflumic acid (Ki, 0.1–0.4 μM) [28,29] 

and sorafenib (Ki, 2 μM) [30] but was in the range of its steady-state Cmax and Cmin values. Since the 
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[I]/Ki ratio of efavirenz for UGT1A9-mediated propofol glucuronidation was 1.37, inhibition of 

glucuronidation of UGT1A9 substrates by efavirenz may be possible, suggesting that efavirenz may be 

used carefully with drugs metabolized by UGT1A9, such as S-etodolac [31], entacapone [32], 

gaboxadol [33], retigabine [34], and scopoletin [35], to avoid drug interactions. 

Bélanger et al. [10] estimated that efavirenz, a selective substrate of UGT2B7, with Ki value of  

17 μM, could reduce azidothymidine glucuronidation by approximately 43% at steady-state Cmax 

vlaues. Ki values of efavirenz for inhibition of UGT1A4-mediated trifluoperazine N-glucuronidation 

and UGT1A9-mediated propofol glucuronidation were 2.0 and 9.4 μM, respectively, which were much 

less than its Ki for UGT2B7-mediated azidothymidine glucuronidation (17.4 μM in our unpublished 

data). Those in vitro results indicate that efavirenz can potentially inhibit the glucuronidation of drugs 

catalyzed by UGT1A4 and/or UGT1A9 and therefore should be examined for potential pharmacokinetic 

drug interactions in vivo due to inhibition of UGT1A4 and UGT1A9. 

3. Experimental 

3.1. Materials and Reagents 

Efavirenz and propofol glucuronide were obtained from Toronto Research Chemicals (Toronto, ON, 

Canada). 17β-Estradiol, 17β-estradiol 3-glucuronide, 1-naphthol, naphthol glucuronide, propofol, 

trifluoperazine, alamethicin (from Trichoderma viride), hecogenin, and uridine-5-diphosphoglucuronic 

acid trisodium salt (UDPGA) were obtained from Sigma-Aldrich (St. Louis, MO, USA). Pooled 

human liver microsomes (H161) were obtained from BD Gentest Co. (Woburn, MA, USA). 

Acetonitrile and methanol (HPLC grade) were obtained from Burdick & Jackson Inc. (Muskegon, MI, 

USA), and the other chemicals were of the highest quality available. 

3.2. Inhibitory Effects of Efavirenz on Activities of Four UGTs in Human Liver Microsomes 

The inhibitory potencies (IC50 values) of efavirenz were determined with UGT assays in the 

presence and absence of efavirenz (final concentrations of 0–200 μM with acetonitrile concentration 

less than 0.5% v/v) using pooled human liver microsomes and human cDNA-expressed UGT1A1, 

UGT1A4, UGT1A6 and UGT1A9 isozymes. The incubation mixtures were prepared in a total volume 

of 100 μL as follows: pooled human liver microsomes or UGT isozymes (0.2 mg/mL for 17β-estradiol 

and trifluoperazine; 0.1 mg/mL for 1-naphthol and propofol), 2 mM UDPGA, 25 μg/mL alamethicin, 

10 mM MgCl2, 50 mM tris buffer (pH 7.4), UGT-isoform specific probe substrate (20 μM  

17β-estradiol for UGT1A1, 5 μM for trifluoperazine for UGT1A4, 20 μM 1-naphthol for UGT1A6, 

and 10 μM propofol for UGT1A9), and various concentrations of efavirenz (0–200 μM). Reactions 

were initiated by the addition of UDPGA, and incubations were carried out at 37 C in a shaking water 

bath for 30 min. Reactions were terminated by addition of 100 μL of ice-cold methanol containing 

internal standard (3 μg/mL ezetimibe for 17β-estradiol 3-glucuronide, 1-naphthol glucuronide, and 

propofol glucuronide; 0.3 μg/mL meloxicam for trifluoperazine N-glucuronide). The incubation 

mixtures were centrifuged at 13,000 × g for 5 min, and then 40 μL of the supernatant was diluted with 

60 μL of water. The aliquot (5 μL) was injected onto an LC/MS/MS instrument. All incubations were 

performed in triplicate and the mean values were used. The glucuronides produced from UGT  
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isoform-specific substrates were respectively determined by LC/MS/MS [21]. The system consisted of 

a tandem quadrupole mass spectrometer (TSQ Quantum Access, ThermoFisher Scientific, San Jose, 

CA, USA) coupled with a Nanospace SI-2 LC system (Shiseido, Tokyo, Japan). The separation was 

performed on an Atlantis dC18 column (5 μm, 2.1 mm i.d. × 100 mm, Waters, MA, USA) using the 

gradient elution of a mixture of 5% methanol in 0.1% formic acid (mobile phase A) and 95% methanol 

in 0.1% formic acid (mobile phase B) at a flow rate of 0.25 mL/min: 10% mobile phase B for 2 min 

and 10% to 95% mobile phase B for 4 min. The column and autosampler temperatures were 50 and  

6 C, respectively. After 3.0 min, the LC eluent was diverted from waste to the mass spectrometer 

fitted with electrospray ionization (ESI) source. The ESI source settings were as following: ESI 

voltage for trifluoperazine N-glucuronide, +5.0 kV; electrospray voltage for 17β-estradiol  

3-glucuronide, 1-naphthol glucuronide, and propofol glucuronide, −4.0 kV; vaporizer temperature,  

420 C; capillary temperature 360 C; sheath gas pressure, 35 psi; and auxiliary gas pressure, 10 psi. 

Quantification was performed by selected reaction monitoring (SRM) and SRM transitions for the 

metabolites are summarized in Table 2. The analytical data were processed by Xcalibur® software 

(Thermo Fisher Scientific). 

Table 2. LC/MS/MS measurement conditions for drug glucuronidation catalyzed by human 

UGT enzymes. 

Enzymes Compound Polarity 
SRM 

Transition 
Tube 

lens (V) 
Collision 

energy (V) 

Metabolite 
UGT1A1 17-Estradiol-3-glucuronide negative 446.9 > 270.9 94 34 
UGT1A4 Trifluoperazine N-glucuronide positive 584.20 > 408.13 94 27 
UGT1A6 Naphthol 1-glucuronide negative 319.48 > 143.30 72 18 
UGT1A9 Propofol glucuronide negative 353.18 > 177.19 63 20 

Internal standard 
UGT 1A1, 1A6, 1A9 Ezetimibe negative 408.07 > 271.43 45 21 

UGT 1A4 Meloxicam positive 352.05 > 115.38 63 20 

Ki values for UGT1A1, UGT1A4, and UGT1A9 in human liver microsomes were determined after 

the enzymes were incubated with various concentrations of substrates (10–60 μM 17β-estradiol for 

UGT1A1, 5–20 μM trifluoperazine for UGT1A4, and 5–40 μM propofol for UGT1A9), 2 mM 

UDPGA, 25 μg/mL alamethicin, 10 mM MgCl2, and various concentrations of efavirenz in 50 mM 

Tris buffer (pH 7.4) in a total incubation volume of 100 μL. Reactions were initiated by addition of 

UDPGA at 37 C and stopped after 30 min by placement of the incubation tubes on ice and addition of 

100 μL ice-cold methanol containing an internal standard described above. The incubation mixtures 

were centrifuged at 13,000 × g for 5 min, followed by dilution of 40 μL of the supernatant with 60 μL 

of water. The aliquot (5 μL) was analyzed by LC/MS/MS. 

3.3. Data Analysis 

The IC50 values (concentration of inhibitor causing 50% inhibition of the original enzyme activity) 

were calculated using WinNonlin software, a non-linear regression analysis program (Pharsight, 
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Mountain View, CA, USA). The apparent kinetic parameters for inhibitory potential (Ki values) were 

estimated from the fitted curves using Enzyme Kinetics Ver. 1.3 program (Systat Software Inc.,  

San Jose, CA, USA). 

4. Conclusions 

The effect of efavirenz on four UGTs, 1A1, 1A4, 1A6, and 1A9, was evaluated across a wide range 

of substrate and efavirenz concentrations using in vitro human liver microsomes. UGT1A4-mediated 

trifluoperazine N-glucuronidation and UGT1A9-mediated propofol glucuronidation activities were 

potently inhibited by efavirenz during incubation with UDPGA in microsomes. Efavirenz also 

inhibited UGT1A1-mediated 17β-estradiol 3-glucuronidation in a dose-dependent manner but did not 

inhibit UGT1A6-mediated 1-naphthol glucuronidation. Those results suggest that efavirenz has the 

potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by 

UGT1A4 and UGT1A9. However, the clinical relevance of the inhibitory interaction of efavirenz with 

UGT1A4- and UGT1A9-substrate drugs has not been investigated. Clinical trials to evaluate the 

inhibitory effects of efavirenz on UGT1A4 and UGT1A9 remain to be conducted. 
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