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Abstract: Density-functional theory calculations are presented for low-energy La@C72,
La@C74 and La@C76 isomers with IPR (isolated pentagon rule) and non-IPR cages. The
relative isomeric production yields at high temperatures are evaluated using the calculated
terms, and the relationships to observations are discussed.
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1. Introduction

There are only two species [1,2] among C60–C96 empty fullerenes that are not yet isolated—C72

and C74. However, their metallofullerenes are well known—for example Ca@C72 [3], La@C72 [4],
Ca@C74 [5], Sm@C74 [6], Sr@C74 [7], Ba@C74 [8], La@C74 [9,10], Eu@C74 [11], Yb@C74 [12],
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Sc2@C74 [13] or Er3@C74 [14]. Among them, La@C72 and La@C74 have a special position as their
X-ray crystallographic analysis is available [4,10], though for solvent-related derivatives, namely
La@C72-C6H3Cl2 with a non-IPR (IPR: isolated pentagon rule [15]) carbon cage and La@C74-C6H3Cl2
(IPR cage). Finally, while La@C76 has also been observed [16,17], its cage structure is not yet known.

The metallofullerenes based on the Cn (n = 72, 74, 76) cages have also been computed [18–26].
The first relative isomeric stabilities were evaluated [21,22] for Ca@C72 and Ca@C74 and it was shown
that the non-IPR encapsulations are significant only in Ca@C72. The present paper deals with such
calculations for La@C72, La@C74 and La@C76, consistently using the Gibbs energies as required by
high temperatures [27–30].

2. Calculations

There is [17] just one IPR isomer for C72 (D6d) and C74 (D3h) while there are two IPR isomers for
C76 (D2 and Td symmetry). In addition, a few relevant (most populated) non-IPR cages are considered
here (the cages are labeled by some conventional code numbers or by symmetry groups).

The geometry optimizations were carried out using density functional theory (DFT), namely
employing Becke’s three parameter functional [31] with the non-local Lee–Yang–Parr correlation
functional [32] (B3LYP, as we deal with open-shell systems—the unrestricted B3LYP, or UB3LYP,
treatment is applied) in the combined basis set of the 3–21G basis for C atoms and a dz basis set for
La suggested by Hay and Wadt [33] with the effective core potential (denoted here by 3–21G∼dz). The
B3LYP/3–21G∼dz geometry optimizations were carried out with the analytically constructed energy
gradient as implemented in the Gaussian 03 program package [34].

In the optimized B3LYP/3–21G∼dz geometries, the harmonic vibrational analysis was carried
out with the analytical force-constant matrix. In the same B3LYP/3–21G∼dz optimized geometries,
higher-level single-point energy calculations were also performed, using the standard 6–31G* basis set
for C atoms, i.e., the B3LYP/6–31G∗∼dz level. Moreover, the SDD (Stuttgart/Dresden) basis set [35]
was also employed (with the SDD effective core potential for La) for comparison. The Gibbs energies
were evaluated using the rotational-vibrational partition functions constructed [36] from the calculated
structural and vibrational data using the rigid rotator and harmonic oscillator (RRHO) approximation.
Although the temperature region where fullerene or metallofullerene electric-arc synthesis takes place
is not yet known, the new observations [37] supply some arguments to expect it to be around or above
1500K. Thus, the computed results discussed here are also focused on the temperature region.

Relative concentrations (mole fractions) xi of m isomers can be evaluated [36] through their partition
functions qi and the enthalpies at the absolute zero temperature or ground-state energies ∆Ho

0,i (i.e., the
relative potential energies corrected for the vibrational zero-point energies) by a compact formula:

xi =
qi exp[−∆Ho

0,i/(RT )]∑m
j=1 qj exp[−∆Ho

0,j/(RT )]
(1)

where R is the gas constant and T is the absolute temperature. Equation (1) is an exact formula that
can be directly derived [36] from the standard Gibbs energies of the isomers, supposing the conditions
of the inter-isomeric thermodynamic equilibrium. The electronic partition functions for Equation (1)
were constructed by direct summation of the TD B3LYP/3-21G∼dz electronic excitation energies.



Molecules 2012, 17 13148

However, the isomeric populations are not very sensitive to the electronic contributions, and therefore
the vibrational-rotational partition functions for the electronic excited states are taken as equal to those
of the ground state. The chirality contribution was included accordingly [38].

Let us note that in addition to the conventional RRHO treatment in Equation (1), a further
modified approach for the description of the encapsulate motions can be considered [39], following the
findings [40] that the encapsulated atoms can exercise large amplitude motions, especially so at elevated
temperatures (unless the motions are restricted by cage derivatizations [41]). One can expect that if
the encapsulate is relatively free, then at sufficiently high temperatures its behavior in different cages
will bring about the same contribution to the partition functions. However, such uniform contributions
would then cancel out in Equation (1). This simplification is called [39] the free, fluctuating, or
floating encapsulate model (FEM) and requires two steps. In addition to the removal of the three
lowest vibrational frequencies (belonging to the metal motions in the cage), the symmetries of the cages
should be treated as the highest (topologically) possible, which reflects the averaging effects of the
large amplitude motions. For example, for the C74 IPR isomer species, the D3h symmetry is employed
within the FEM scheme, although its statical symmetry (i.e., after the geometry optimization) is just
C2v. Generally, the FEM treatment gives a better agreement [42] with the available observed data than
the RRHO approach.

3. Results and Discussion

Table 1 presents the separation energetics for the three La@C72 isomers (Figure 1). As the sole IPR
species is considerably higher in energy, it is not significantly populated even at very high temperatures
(Figure 2). Although the potential energy difference is very small between the C2v and C2 non-IPR
isomers, the C2-cage-based La@C72 structure is always more populated and the C2 cage is indeed
present in the observation [4] (as the only isomer isolated). The effects of the cage derivatizations
during chromatographic separation should however also be evaluated as a final step in theory-experiment
comparisons. The relative-stability picture is basically the same from the FEM and RRHO treatments
as the two decisive non-IPR species do have the same symmetry number in both approaches. The
IPR-cage-based La@C72 is somewhat more populated in the RRHO approximation owing to symmetry
number reduction, but still remains as a very minor isomer.

Table 1. La@C72 relative potential energies ∆Epot,rel computed a in the B3LYP/3–21G∼dz
optimized geometries.

Species b ∆Epot,rel (kcal/mol)
B3LYP/3–21G∼dz B3LYP/6–31G∗∼dz

IPR 36.80 37.40

C2v 4.40 0.26

C2 0 0
a See the text for the abbreviations; b See Figure 1.
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Figure 1. B3LYP/3–21G∼dz optimized structures of the three studied La@C72 isomers.

D6d IPR C2v C2

Figure 2. Relative concentrations of the La@C72 isomers computed with the
B3LYP/6–31G∗∼dz energetics, B3LYP/3–21G∼dz entropy, and FEM treatment.
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The role of the sole IPR cage is however quite different in the La@C74 isomeric system. The La@C74

isomer with the IPR cage (Figure 3) is the lowest in energy [25] and the non-IPR species are located
rather high. Temperature developments of the relative concentrations of the three La@C74 isomers in
the RRHO and FEM treatments are presented in Figure 4—it is a system where the populations from
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the two approaches are considerably different. In the temperature region around 1500K, the D3h species
is clearly prevailing while two non-IPR cage related isomers 103 and 4 represent just a few percent of
the equilibrium isomeric mixture. The pronounced difference between the RRHO and FEM treatments
is substantially related to the considerable change in the symmetry number of the IPR-cage-based
endohedral (from 2 in the rigid RRHO to 6 in the flexible FEM approach). Still, both evaluations are
in agreement with the observation [10] in which just one La@C74 species was isolated and evidenced
by X-ray analysis to contain the IPR carbon cage. According to the calculations, the La endohedrals
with non-IPR C74 cages could possibly be isolated only with a considerable separation effort (though the
derivatization effects by solvent are yet to be evaluated).

Figure 3. B3LYP/3-21G∼dz optimized structure of the observed La@C74 IPR-based isomer.

D3h IPR

The sensitivity to the symmetry representation is even larger in the La@C76 isomeric set
(Figure 5)—owing to the effective Td symmetry of the lowest energy species (Table 2) in the FEM
approach. Interestingly enough, La encapsulation into the other IPR cage (D2) produces an endohedral
higher by some 20 kcal/mol so that it cannot compete with structure 6244 and a few other non-IPR
La@C76 isomers (Table 2). Figure 6 demonstrates that while the Td-IPR-based endohedral is the major
isomer in the relevant temperature region, there should be a significant minor isomer, namely derived
from the 6244 cage, and possibly even a second minor species related to the 6247 non-IPR cage.
However, this computational prediction remains to be checked by observations. Thus, in the studied
triad of isomeric systems, La@C76 comes rather in the middle, between La@C72 as non-IPR controlled
and La@C74 just the opposite.
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Figure 4. Relative concentrations of the La@C74 isomers computed with the
B3LYP/6–311G∗∼sdd energetics, B3LYP/3-21G∼dz entropy, and RRHO (left) or FEM
(right) treatment.
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Figure 5. B3LYP/3-21G∼dz optimized structures of the three most populated
La@C76 isomers.
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Table 2. La@C76 relative potential energies ∆Epot,rel computed a in the B3LYP/3–21G∼dz
optimized geometries.

Species b ∆Epot,rel (kcal/mol)
B3LYP/3–21G∼dz B3LYP/6–31G∗∼dzc

6727 15.86 19.46

1603 12.26 17.76

6247 10.00 13.22

6244 6.90 7.36

Td IPR 0 0
a See the text for the abbreviations; b See Figure 5; c In the B3LYP/6-31G∗∼dz optimized geometry.

Figure 6. Relative concentrations of the La@C76 isomers computed with the
B3LYP/6-31G∗∼dz energetics, B3LYP/3-21G∼dz entropy, and FEM treatment.
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Various endohedral cage compounds have been suggested as possible candidate species for molecular
memories and other future nanotechnological applications. One approach is built on endohedral species
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with two possible location sites of the encapsulated atom [43] while another concept of quantum
computing aims at a usage of spin states [44] or fullerene-based molecular transistors [45]. For the
first memory concept, the otherwise low potential barriers for a three-dimensional rotational motion of
encapsulates in the cages [46,47] could be restricted by an additional cage derivatization [41]. Obviously,
a further accumulation of knowledge on endohedral properties is needed, both computed [48–53] and
observed [54–56], before such applications can be truly explored.

4. Conclusions

The computational study shows that while La@C72 is dominated by non-IPR cages and in La@C74

the IPR moiety prevails, for La@C76 a non-IPR cage should be present as a minor isomer. The sensitivity
of the computed populations to the symmetry treatment is also highlighted.
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