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Abstract: The effect of ionic surfactants and manufacturing methods on the separation and 

distribution of multi-wall carbon nanotubes (CNTs) in a silicone matrix are investigated. 

The CNTs are dispersed in an aqueous solution of the anionic surfactant dodecylbenzene 

sulfonic acid (DBSA), the cationic surfactant cetyltrimethylammonium bromide (CTAB), 

and in a DBSA/CTAB surfactant mixture. Four types of CNT-based composites of  

various concentrations from 0 to 6 vol.% are prepared by simple mechanical mixing and 

sonication. The morphology, electrical and thermal conductivity of the CNT-based 

composites are analyzed. The incorporation of both neat and modified CNTs leads to an 

increase in electrical and thermal conductivity. The dependence of DC conductivity versus 

CNT concentration shows percolation behaviour with a percolation threshold of about 2 vol.% 

in composites with neat CNT. The modification of CNTs by DBSA increases the 

percolation threshold to 4 vol.% due to the isolation/separation of individual CNTs. This, 

in turn, results in a significant decrease in the complex permittivity of CNT–DBSA-based 

composites. In contrast to the percolation behaviour of DC conductivity, the concentration 

dependence of thermal conductivity exhibits a linear dependence, the thermal conductivity 

of composites with modified CNTs being lower than that of composites with neat CNTs. 

All these results provide evidence that the modification of CNTs by DBSA followed by 

sonication allows one to produce composites with high homogeneity. 
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1. Introduction 

Carbon nanotubes (CNTs) are of great interest as a conductive filler for polymer composites. Owing 

to their potential mechanical, electrical and thermal properties, CNTs have attracted considerable 

scientific attention and have been the subject of numerous studies since their development [1,2]. The 

method of CNT synthesis determines the surface electronic structure of the nanotubes and their 

conducting properties. During their synthesis, CNTs are strongly entangled, forming aggregates due to 

van der Waals forces [3]. To create polymer nanocomposites with CNTs, one should uniformly 

disperse CNTs over a polymer matrix, while maintaining the aspect ratio and the electronic structure of 

the CNTs [4]. To solve this problem, several methods of de-agglomeration of CNTs have been 

developed. Basically, these methods can be divided into mechanical and chemical methods [5]. In turn, 

the chemical methods can be divided into covalent and non-covalent ones. In the former method, 

CNTs are separated due to the formation of covalent bonds between various chemical groups and the 

CNT surface. In the non-covalent method, CNTs are de-aggregated due to van der Waals forces 

between the CNT surface and modifiers [6,7], for example, ionic surfactants [8]. 

Surfactants are classified according to the sign of the charge on a surfactant molecule when it is 

dissolved in water. Generally, there are two groups of surfactants–non-ionic, with no charge in its 

head, and ionic: cationic, anionic and zwitterionic. Ionic surfactants can be used with water soluble 

polymers such as polyvinyl alcohol (PVA) [9]. In our work we used an anionic surfactant–

dodecylbenzenesulfonic acid (DBSA)—which forms a negative charge when dissolved in water, a 

cationic surfactant—cetyltrimethylammonium bromide (CTAB)—forming a positive charge when 

dissolved in water, and a DBSA/CTAB surfactant mixture, with the aim of studying the influence of 

surfactant type on the dispersion in solution of CNTs. Surfactant can also cause the non-covalent 

modification of the CNT surface, which is helpful for dispersion of this kind of filler in polymeric matrix. 

The high electrical conductivity of CNTs makes them good filler candidates for electrically 

conductive polymer composites. For a certain critical concentration of a conducting filler, the so-called 

percolation threshold c [10], the conductivity of a composite exhibits a transition from dielectric to 

conducting state. The value of c depends on the shape and the aspect ratio of the filler, the production 

process, and the type of interaction between the filler and the polymer matrix. Experimental values of 

c in CNT-based composites vary significantly (from 0.1 to 10 wt.%) [11,12]. A composite of 

polycarbonate (PC) with CNTs produced by melt mixing using the masterbatch dilution method has c 

~1.0 wt.% [13]. Polymethyl methacrylate (PMMA) composites with CNTs prepared by solvent casting 

technique demonstrate c of about 4 wt.% [14]. Polyethylene (PE)CNT composites prepared by melt 

blending using a mini-twin screw extruder show a c of about 7.5 wt.% [15]. The percolation threshold 

of polypropylene (PP)CNT nanocomposites prepared by diluting a master-batch with different types 

of PPs varied from 1.1 to 2.0 vol.%; the lower values were obtained for matrices with high melt flow 
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index [16]. In our research we used polydimethylsiloxane (PDMS) as a matrix due to its flexibility and ease 

of processing. Composites of PDMS with CNTs are important for creating new electronic devices [17]. 

To date much work has been done in obtaining CNTsilicone composites after chemical pre-

treatment of CNTs by silane coupling agents. Vast [18] introduced CNTs modified by 7-octenyl-

trichlorosilane and showed that oxidation of CNTs induces defects, which does not allow one to obtain 

conducting composites. Chen et al. [19] showed that the addition of up to 5 wt.% of CNTs modified by 

3-aminopropyltriethoxysilane to a silicone matrix did not change the electrical conductivity of the 

composite. Chua et al. [20] observed an increase of electrical conductivity of silicone composites from 

10−7 to 10−4 S·m−1 in the range from 0.5 to 2 wt.% of modified CNTs in the same silane. The electrical 

conductivity of unmodified CNT/PDMS nanocomposites prepared by soft lithography micromolding 

increased from 10−3 to 10−2 S·m−1 (from 0.5 to 2.5 wt.%) as reported by Khosla and Gray [21].  

Hwang et al. [22] achieved a homogeneous dispersion of CNTs in PDMS using a wrapping method for 

CNT modification with poly(3-hexylthiophene). However the value of electrical conductivity of the 

resulting nanocomposites was found to be low. 

An important property of CNTs is their high thermal conductivity, which is about 3,000 W·m−1K−1 

in multi-walled CNTs and ranges from 2,000 to 6,000 W·m−1K−1 in single-walled CNTs. This makes 

CNTs one of the most promising fillers for the design of thermally conductive composites [23]. 

However, in practice the thermal conductivity of CNT/polymer nanocomposites is much lower 

compared with the conductivity of neat CNTs because of the interfacial thermal resistance between 

CNTs and the polymer matrix [24]. 

The present work is devoted to the development of homogeneous silicone composites filled with 

CNТs. To this end, we modify CNTs with an ionic surfactant, which provides uniform distribution of 

CNTs in a polymer but does not affect the electronic structure of the CNTs. We study the effect of 

surfactants followed by sonication on the morphology and the electrical and thermal conductivity of 

CNT-based composites. To this end, we prepare three types of CNT/silicone composites with filler 

concentrations varying from 0 to 6 vol.% and compare the electrical and thermal conductivity of the 

composites with modified and neat CNTs. 

2. Results and Discussion  

2.1. Morphology of Modified and Neat CNTs: Effect of Ionic Surfactants  

The morphology of neat and modified CNTs is shown in Figures 1 and 2. According to the TEM images, 

the diameter of the neat CNTs is about 30–40 nm, and the SEM images show that CNTs create aggregates.  

Modification of CNTs by CTAB and by a DBSACTAB mixture does not produce a desired effect 

of separation of CNTs (Figure 2b,c). In contrast, the use of DBSA followed by sonication leads to a 

proper separation of CNTs (Figure 2a). The positive effect of anionic surfactant on the 

disentanglement of CNTs can be explained in the following way: it is known that the charged head 

group of an ionic surfactant plays an important role in the location of the surfactant on the CNT 

surface [25,26]. In the case of an anionic surfactant (DBSA), the hydrophobic interaction between 

alkyl chains of DBSA and CNTs surface is likely to play the main role in the isolation/separation of 
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CNTs. On the other hand, in the case of a cationic surfactant (CTAB), as well as of a mixture of 

cationic and anionic surfactants (DBSACTAB), a micellar structure is formed. 

Figure 1. (a) TEM and (b) SEM images of neat CNTs.  

   

Figure 2. TEM micrographs of (a) CNT–DBSA, (b) CNT–CTAB, and (c) CNT–DBSA–CTAB. 

   

 

2.2. Thermogravimetric Analysis of Neat CNTs and CNTs Modified by DBSA 

Thermogravimetric analysis (TGA) was used to determine the mass loading of surfactants 

modifiers. Weight loss of CNT starts at 550 °C and the maximum decomposition temperature is 647 °C, 

as obtained from derivation of TGA curve (not shown in Figure 3). The residue of about 1.5 wt.% 

comes from catalysts, which corresponds with the given purity of used nanotubes. TGA curves of CNT 

modified with the anionic surfactant DBSA, evidently show two decomposition steps. The first one, at 

lower temperature, corresponds to the decomposition of the surfactants and the second one at about 

600 °C is assigned to the decomposition of CNT (Figure 3). The CNT–DBSA sample has a 

decomposition maximum at 256 °C and the amount of surfactant present in the sample is about 8 wt.%. 

Sample was modified using theoretically 20 wt.% of surfactants to the mass of CNTs, but the real 
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surfactant content in the modified CNT is lower. This is partially caused by the filtration procedure 

when a part of the surfactant was washed out.  

Figure 3. TGA curves of CNTs and CNTs modified by DBSA.  
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2.3. Morphology of CNT based Composites  

We prepared two sets of СNT composites of different volume filler concentrations. Both sets were 

prepared by two different processing conditions: mechanical mixing and by sonication. In the first set, 

we used neat CNTs (Figure 4) as a filler and in the second set, we used CNTs modified by anionic 

surfactant (DBSA) (Figure 5). 

Figure 4. SEM micrographs of CNT/silicone composites with different concentrations (a,b) 

0.5 vol.% (c,d) 1.5 vol.%, (e,f) 3.5 vol.%, (g,h) 5 vol.%, prepared by mechanical mixing. 
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Figure 4. Cont. 

 

Four concentration regions were chosen to study the morphology of CNT/silicone-composites:  

0.5 vol.% of CNT, which is below c (Figure 4a,b), 1.5 vol.% of CNT, which is at the c (Figure 4c,d), 

3.5 vol.% of CNT (Figure 4e,f) and 5 vol.% of CNT, which is above c (Figure 4g,h). 

The micrographs show the structures of composites below, at and above the critical CNT 

concentration at different magnification scales. According to the results obtained, there are large 

aggregates of CNTs, even at low CNT concentrations in the silicone matrix. The amount of aggregates 

increases with the CNT concentration, which in turn leads to the defect structure of composites  

(Figure 4d,f,g). 

The structure of CNTDBSA/silicone composite were investigated in three concentration regions, 

namely below c (2.5 vol.% of CNTDBSA, Figure 5a,b), at the c (3.4 vol.% CNTDBSA,  

Figure 5c,d), and above the c (4.2 vol.% CNTDBSA, Figure 5e,f). 

In contrast with CNTs-based composites, CNTDBSA/silicone composites do not show the 

presence of CNT aggregates at the whole concentration region, even above c. It is visible from the 

SEM images that the distribution of CNTDBSA in silicone is uniform. Moreover, the surface of 

CNTDBSA/silicone composite is smooth, which indicate the presence of filler-matrix interaction, 

resulting in denseness of composites. 
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Figure 5. SEM micrographs of CNTDBSA/silicone composites with different 

concentrations (a,b) 2,5 vol.%, (c,d) 3.4 vol.% (e,f) 4.2 vol.%, prepared by sonication. 

 

2.4. Correlation between the Morphology and the Electrical Properties of CNT-Based Composites  

DC Conductivity  

The incorporation of neat and modified CNT increases the electrical conductivity of composites 

(Figure 6). The dependence of DC conductivity versus CNT concentration demonstrates a percolation 

behaviour. The experimental data were fitted by the model proposed by Kirkpatrick [10]. According to 

this model, for a filler content below c, the electrical conductivity follows the power law: 

q
fcmDC )(     (1) 

where DC is the electrical conductivity of composite,m is the electrical conductivity of the matrix, c 

is the critical filler volume fraction, f is the filler volume fraction, and q is an experimentally 

determined exponent. 
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Figure 6. The dependence of DC electrical conductivity on CNT content is shown for 

CNT/silicone composite (• mechanical mixing, + sonication) and CNT–DBSA/silicone 

composites (▲mechanical mixing, ♦ sonication). 

 

In accordance with percolation theory, the electrical conductivity of a composite increases 

considerably as infinite conductive clusters are formed in the composite. The composites studied differ 

in c and the value of electric conductivity above the percolation threshold. Both sonication and filler 

modification increase c. Thus, the highest value of c (~4 vol.%) was obtained when CNTs are 

modified by DBSA and dispersed by sonication. The composites prepared by mechanical mixing of 

neat CNTs with silicone show the lowest value of c (~2 vol.%). Therefore, the homogenization of 

CNTs in a silicone matrix, i.e., the separation of nanotubes, decreases the probability of formation of 

conductive clusters and thus leads to higher values of c. The variation of c in CNT-based composites 

correlates with the morphology of the composites. The modification of CNTs by DBSA followed by 

sonication leads to the separation of CNTs (Figure 5e) and thus decreases the c compared with that of 

composites with neat CNTs, which contain CNT agglomerates (Figure 4f).  

2.5. AC Conductivity  

The frequency dependence of AC conductivity, σAC of CNT/silicone and CNTDBSA/silicone 

composites at different filler concentrations is illustrated in Figure 7. According to Equation (6), AC is 

proportional to frequency and the imaginary part of the complex permittivity. The value of the 

imaginary part of complex permittivity is determined by the filler content.  
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Figure 7. AC electrical conductivity as a function of frequency for (a) CNT/silicone 

(mechanical mixing) and (b) CNT–DBSA/silicone composites (sonication) with various 

filler contents.  

  

The DC conductivity manifests itself in the frequency dependence of AC conductivity in the form 

of a plateau region. This is in agreement with the fact that the DC plateau appears above c. 

Composites with filler concentrations lower than c do not have conductive paths; in this case, 

conductivity is due to polarization processes. Composites with filler concentrations above c (2 vol.% 

for CNT/silicone composite) exhibit a DC plateau. In the case of CNTDBSA, the DC plateau appears 

only at 4 vol.% of the filler, which is in good agreement with the results of DC conductivity 

measurements. 

2.6. Dielectric Properties  

The dielectric properties of CNT-based composites were examined in an alternating electric field. 

Figure 8 shows the real part of complex permittivity of CNT/silicone and CNTDBSA/silicone 

composites. The results obtained are in agreement with assumption that the number of charge carriers 

in composites increases with the filler concentration. It is well known that, at low frequencies, all types 

of polarization contribute to the resulting value of permittivity; the dominant contribution is made by 

interfacial polarization, which is typical of materials consisting of phases with different conductivities. 

At high frequencies, the permittivity is determined by the atomic and electronic polarizations; 

therefore, there is little difference between the composites.  

The difference in  between the CNT/silicone and CNT–DBSA/silicone composites increases 

rapidly as the filler concentration increases. Both composites do not differ significantly at 1.5 vol.% of 

filler:  is 8 for CNT/silicone and at 1.7 vol.% filler:  is 7 for CNT–DBSA/silicone. However, at  

4 vol.% of filler (above c)  of CNT/silicone is about 2,500, whereas, in CNT–DBSA/silicone,  = 20. 
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Figure 8. Real part of complex permittivity as a function of frequency for (a) CNT/silicone 

composites (mechanical mixing) and (b) CNTDBSA/silicone composites (sonication) 

with various filler contents. 

 

Since both composites contain the same amount of filler, this enormous difference between their 

permittivity  is likely to be attributed to the composite structure (see the schematic illustration of 

interfacial polarization in Figure 9).  

Figure 9. Schematic illustration of interfacial polarization of composites: (a) poor 

dispersion (large agglomerates); (b) good dispersion (small or no agglomerates). 

 

The systems of well (modified) and poorly (neat) dispersed CNTs do not differ significantly in the 

number of charge carriers. However, neat CNTs form large bundles (represented as bigger circlets in 

Figure 9a) whose count is much lower compared to much less aggregated modified CNTs with many 

but small bundles (Figure 9b). The intensity of electric field in the system (Ein) with large clusters is 
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higher due to stronger effect of charge elimination (see Figure 9). Thus also its permittivity, i.e., the 

ratio of E0 to Eres, is proportionally higher. 

2.7. Thermal Conductivity  

The thermal conductivity of composites is shown in Figure 10 as a function of CNT concentration.  

Figure 10. The dependence of thermal conductivity on the CNT content for CNT/silicone 

composite (• mechanical mixing, + sonication) and CNT–DBSA/silicone composites  

(♦ sonication). Experimental data fitted by linear regression.  

 

Incorporating of CNTs to the silicone matrix significantly increases the thermal conductivity of the 

composite: while the thermal conductivity of pure silicone is 0.16 W·m−1K−1, the thermal conductivity 

of a composite with 6 vol.% of CNT is 0.27 W·m−1K−1.  

The considerable difference in the morphology of composites (Figure 4) also manifests itself in the 

thermal conductivity (λ). In contrast to electrical conductivity, which exhibits a percolative behaviour 

due to the presence of conductive paths formed by the filler, the behaviour of thermal conductivity is 

determined by the large interfacial thermal resistance between the filler and the matrix [27]. Even 

though some authors [4] employ Lichtenecker’s equation [28] to describe the concentration 

dependence of thermal conductivity of CNT-based composites, often experimental results are quite 

well approximated by a linear model [29]. This also applies to our case. 

Despite the fact that all three investigated system (CNT/mechanical mixing, CNT/sonication and 

CNTDBSA/sonication in silicone matrix) show a linear dependence on filler content, the slopes of λ 

vs. concentration differ significantly. Considering that in all cases we deal with the same filler 
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concentration, this implies that the resulting λ depends on how well the filler is dispersed in the matrix. 

Assuming that the reduction in the heat transfer is caused by phonon scattering on the filler/matrix 

interface, one can expect that highest reduction occurs in the case of the best homogenisation, which 

has largest area of filler/matrix interface (the case of CNTDBSA/sonication). 

Thus, the concentration dependence of thermal conductivity in the case of CNTDBSA can be 

explained in the following way. At low concentrations of filler, the intrinsic thermal conductivity of 

filler plays a dominant role in increasing the thermal conductivity of the composites; however, as the 

concentration of filler increases, the dominant role moves to the resistance of the overall contact region [30]. 

3. Experimental  

3.1. Materials  

As filler, we used commercially available multiwall CNTs (MWNT–2040, Conyuan Biochemical 

Technology, Taipei, Taiwan). The fundamental properties of nanotubes are as follows: purity ≥ 95%, 

diameter of 20–40 nm, length of 5–15 µm, specific surface area of 40–300 m2·g−1, and density of  

1.8 g·cm−1 according to the authors of [31]. We chose Sylgard 184 silicone elastomer (Dow Corning, 

Midland, MI, USA) as a polymer matrix for its thermal stability (up to 200 C), resistance to oxygen 

and flexibility. The silicone elastomer was supplied in the liquid form and consisted of Part A (Base) 

and Part B (Curing agent). To modify CNTs, we used DBSA (Figure 11a) with purity >90% (Sigma-

Aldrich, Sant Louis, MO, USA) as an anionic surfactant and CTAB (Figure 11b) with purity >98% 

(Penta, Prague, Czech Republic) as a cationic surfactant. Acetone (99.5%, Mikrochem, Pezinok, 

Slovakia) and distilled water were used without further purification.  

Figure 11. Chemical structure of (a) DBSA and (b) CTAB. 

(a)                                                                   (b) 

 

3.2. CNT Modification 

For non-covalent surface modification of CNTs, we used anionic surfactant (DBSA), cationic 

surfactant (CTAB) and a mixture of DBSA and CTAB (with molar ratio of 1:1). The rate of CNT 

entanglement was evaluated by scanning electron microscope images. 

The calculated weight fraction of a surfactant (DBSA, CTAB, or a mixture of surfactants) was 

stirred in distilled water (200 mL) for 15 min. Subsequently, CNTs (2 g) in distilled water (200 mL) 

was added and the mixture was stirred for 50 min. The amount of surfactants was 20 wt.% of the 

weight of the final composite. After that we subjected the product to ultrasonic treatment for 50 min 

using a Hielscher 400S ultrasound finger (Hielscher, Teltow, Germany). Then the suspension (covered 

by perforated aluminum foil) was kept for 14 h. Next, we filtered the product through filter paper with 

glass fibres and porosity of 0.2 µm (Millipore) and rinsed several times in distilled water. Finally, the 

N
+

Br
S

O

O

OH



Molecules 2012, 17 13169 

 

 

samples were dried at 60 °C and atmospheric pressure for 14 h. The product was carefully ground by 

pestle in a mortar. We prepared three sets of composites with CNT volume varying from 0 to 6 vol.%. 

In all cases, we used silicone as a polymer matrix. 

3.3. Thermogravimetric Analysis  

Thermogravimetric analysis (TGA) was performed on samples of CNTs and CNT DBSA about  

7 mg by weight in air flow (50 mL·min−1). The heating rate was set at 10 °C·min−1 over temperature 

range from 25 °C to 800 °C by using a thermogravimeter (SETARAM TG-GA 12, Thermal  

Analysis Instruments, New Castle, DE, USA). The results were evaluated with the TA Universal 

Analysis programme. 

3.4. Preparation of Neat CNT/Silicone Composites by Mechanical Mixing 

The first set of composites consisted of several samples with CNT concentrations varying from 0 to 

6 vol.%. We placed the calculated amount of neat CNT and silicone in a 50-mL beaker and mixed 

them by an EURO-ST-D mechanical stirrer (IKA Labortechnik, Staufen, Germany) for 30 min; then 

we added a catalyst and mixed the product another 30 min. 1-mm-thick disc-shaped samples,  

15 mm in diameter, were produced by cast moulding into vacuum desiccators, where air bubbles were 

removed. Finally, the form was closed and placed into a drying oven, where the material was cured at 

100 °C for 2 h.  

3.5. Preparation of Neat CNT/Silicone Composites by Sonication  

The second set of composites with neat CNTs consisted of samples with filler concentration varying 

from 0 to 6 vol.%. We placed the calculated amount of neat CNT and 20 mL of acetone into a 50-mL 

beaker and sonicated for 60 min by an UP 400s ultraprobe at frequency of 24 kHz and power of 400 W. 

After that, we added a matrix and continued the sonication for another 5 min. Then the beaker with 

mixture was placed into a dish with hot oil (100 °C) and mixed by a magnetic stirrer until all acetone 

was evaporated. After that we added a catalyst, mixed the components by a glass stick for 5 min, and 

then cast into vacuum desiccators in order to remove air bubbles from the material. 1-mm-thick  

disc-shaped samples, 15 mm in diameter, were produced by cast moulding into vacuum desiccators, 

where air bubbles were removed. Finally, the form was closed and placed into a drying oven, where 

the material was cured at 100 °C for 2 h.  

3.6. Preparation of Modified CNT–DBSA/Silicone Composites by Mechanical Mixing 

The composites of the third set with the concentration of DBSA-modified CNTs ranging from 0 to 

3.5 vol.% were prepared in the same manner as the composites in Section 3.4.  

3.7. Preparation of Modified CNT–DBSA/Silicone Composites by Sonication 

The composites of the fourth set with the concentration of DBSA-modified CNTs ranging from 0 to 

6 vol.% were prepared in the same manner as the composites in Section 3.5. 
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3.8. Transmission Electron Microscopy  

The morphology of the samples was investigated by a Tesla BM 500 transmission electron 

microscope at 90 kV (Tesla, Prague, Czech Republic). We placed a drop of CNT suspension in water 

or in a surfactant solution (DBSA, CTAB, or mixture of surfactants) on the electron microscope grid 

and, after evaporation of water at room temperature, investigated the sample by an electron microscope. 

3.9. Scanning Electron Microscopy 

Scanning electron microscopy (SEM) analysis was carried out by a Zeiss Gemini Supra microscope 

(Oberkochen, Germany) on thin 500 μm-thick chips cut at room temperature. The structure of a 

silicone composite was observed on a chip by EBL (Electron Beam Lithography) lithographer (e-Line 

RAITH GmbH, Dortmund, Germany). The samples were observed without gold sputtering of surface.  

3.10. DC Conductivity 

The currentvoltage characteristics were measured by a Keithley 6517A programmable 

electrometer (Keithley, Cleveland, OH, USA), which was also used as a DC power source. The Van 

der Pauw four-point method [32] was used for measuring samples with conductivity higher than  

10−1 S·m−1. The main advantage of the four-probe method is the elimination of contact resistance. We 

calculated the electric conductivity DC by the equation: 

A

d

U

I
DC   (2) 

where I is electric current, U is voltage, A is the area of electrodes, and d is the width of the sample. 

The average values x  and standard deviations δ were obtained from five measurements. All the 

properties were measured at room temperature (2225 °C). 

3.11. Dielectric Properties and AC conductivity  

The dielectric properties of CNTsilicone composites were measured by a Hioki 3522 LCR bridge 

in the frequency range 100 Hz–100 kHz and by an Agilent 4991A (Agilent, Santa Clara, CA, USA) 

impedance material analyser in the range from 1 MHz to 3 GHz. The values of the impedance Z, 

capacity C, conductivity G and the loss factor tanwere measured by a Hioki 3522 LCR bridge 

(Hioky, Nagano, Japan) Then the conductivity σAC was calculated by Equation (3), the real part of 

permittivity ' was calculated by Equation (4), and the imaginary part of permittivity ", by Equation (5): 

A

d
GAC   (3) 

A

dC

0
 

 
(4) 

 (5)

The ', " and tan were measured by an Agilent 4992A impedance material analyzer, and the σAC is 

calculated by the Equation (6):  

  tan
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     2 0fAC  
(6) 

where f is frequency and 0 is the permittivity of vacuum. 

3.12. Thermal Conductivity 

For measuring the thermal conductivity by a non-stationary method, one uses an instrument 

described in [33]. The instrument is schematically shown in [34]. This instrument is usually applied for 

measuring the thermal conductivity of thin sheets or slabs of various plastics rubber and leather. 

The measurement principle is as follows: initially, the central brass cylinder (CBC) with diameter of 

5 cm is annealed to reach T2 = 45 °C with the help of another hollow brass cylinder that is connected to 

a water thermostat by rubber hoses. The water thermostat’s accuracy was 0.1 °C. Then the 45 °C CBC 

is quickly removed, and a test sample with diameter of 5 cm and thickness of about 2 mm is placed on 

the top of the CBC, and another hollow brass cylinder connected to another water thermostat with 

temperature T1 = 25 °C is placed on the top of the test sample. Finally, a 100-g weight is placed on the 

top of the pile. The heat is transferred from the CBC through the sample to the colder brass cylinder 

(25 °C). The temperature of the CBC rapidly decreases. The temperature of the CBC is measured by a 

copperconstantan thermocouple connected to an NI USB-9211A data acquisition equipment (Portable 

USB-Based DAQ for Thermocouples), which is connected to a computer through a USB port. The 

measurement takes about 25 min. The non-linear analysis (exponential decay) of the temperature 

versus time curve is performed by SigmaPlot 12 software. Raw measurement data (temperature as a 

function of time for various nanocomposites) are shown in Figure 12. 

Figure 12. Temperature as a function of time for CNT/silicone composites with various CNT contents. 
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The variation of the temperature of the composite with 5 vol.% of CNT is much faster than that of 

the composite with 1 vol.%. The mathematical model and the details of the thermal conductivity 

measurement are described elsewhere [34]. The measurement of each sample was repeated five times. 
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4. Conclusions 

The modification of CNTs by anionic surfactant (DBSA) and sonication leads to a homogeneous 

distribution of a filler in a silicone matrix. This is reflected in the increased value of percolation 

threshold and the decreased values of complex permittivity and thermal conductivity of  

CNTDBSA-based composites compared with those of composites filled with neat CNTs. The 

increased homogeneity of CNTDBSA-based silicone composites and the separation of CNTs in the 

silicone matrix can be observed by SEM analysis and the measurement of the electrical and thermal 

conductivity of the composites. The separation of CNTs decreases the probability of percolation 

cluster formation, but increases the area of the CNTpolymer matrix interface. The former increases 

the value of percolation threshold, while the latter is responsible for the decrease of the thermal 

conductivity due to high phonon scattering on the CNTpolymer matrix interface. 
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