molecules

ISSN 1420-3049
www.mdpi.com/journal/molecules

Article

Asymmetric Construction of All-Carbon Quaternary Stereocenters by Chiral-Auxiliary-Mediated Claisen Rearrangement and Total Synthesis of (+)-Bakuchiol

Ken-ichi Takao *, Shu Sakamoto, Marianne Ayaka Touati, Yusuke Kusakawa and Kin-ichi Tadano *
Department of Applied Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
* Authors to whom correspondence should be addressed; E-Mails: takao@applc.keio.ac.jp (K.T.); tadano@applc.keio.ac.jp (K.T.); Tel.: +81-45-566-1570 (Ken-ichi Takao); Fax: +81-45-566-1551 (Ken-ichi Takao).

Received: 9 October 2012; in revised form: 23 October 2012 / Accepted: 2 November 2012 /
Published: 8 November 2012

Abstract

An asymmetric Claisen rearrangement using Oppolzer's camphorsultam was developed. Under thermal conditions, a geraniol-derived substrate underwent the rearrangement with good stereoselectivity. The absolute configuration of the newly formed all-carbon quaternary stereocenter was confirmed by the total synthesis of (+)-bakuchiol from the rearrangement product.

Keywords: Claisen rearrangement; chiral auxiliary; camphorsultam; quaternary stereocenter; total synthesis

1. Introduction

The construction of asymmetric quaternary stereocenters remains a challenge in organic synthesis [1-3]. All-carbon quaternary stereocenters are found in a wide range of complex natural products which share such a structural motif, including (+)-hyperforin (1) [4], (+)-perforatumone (2) [5,6], (+)-vibsanin A (3) [7], and (+)-bakuchiol (4) [8-13] (Figure 1). To achieve the total synthesis of these natural products, a practical method for constructing the quaternary stereocenter is necessary. We focused on the Claisen rearrangement as an approach to this challenge. The [3,3]-sigmatropic rearrangement of allyl vinyl ethers, that is, the Claisen rearrangement, is among the most useful tools for forming carbon-carbon bonds and its asymmetric variants have been well studied [14,15]. Herein, we describe a new method for
the asymmetric construction of an all-carbon quaternary stereocenter by a chiral-auxiliary-mediated Claisen rearrangement.

Figure 1. Structures of (+)-hyperforin, (+)-perforatumone, (+)-vibsanin A, and (+)-bakuchiol.

(+)-hyperforin (1)

(+)-perforatumone (2)

2. Results and Discussion

Oppolzer's camphorsultam was used as a chiral auxiliary for the asymmetric Claisen rearrangement. We designed a novel substrate, a β-(allyloxy)acrylate derivative bearing the camphorsultam. Accordingly, N-propioloyl camphorsultam 5 was prepared by our previously reported procedure (Scheme 1) [16-18]. The oxy-Michael addition of geraniol to $\mathbf{5}$ in the presence of a catalytic amount of tributylphosphine gave adduct $\mathbf{6}$ with complete E-stereoselectivity [19]. A toluene solution of $\mathbf{6}$ in the presence of butylated hydroxytoluene (BHT) used as a polymerization inhibitor was heated in a sealed tube at $140{ }^{\circ} \mathrm{C}$ to provide mainly the $(2 R, 3 S)$-isomer $7 \mathbf{a}$ as the rearrangement product in 72% yield, securing the two contiguous stereocenters including the quaternary carbon. The minor $(2 S, 3 R)$-isomer $7 \mathbf{b}(8 \%)$ was easily separated from $7 \mathbf{a}$ by column chromatography on silica gel [20].

Scheme 1. Claisen rearrangement of geraniol-derived substrate 6.

By using a similar procedure, nerol-derived substrate $\mathbf{8}$ was prepared from $\mathbf{5}$ and nerol (Scheme 2). The Claisen rearrangement of $\mathbf{8}$ afforded $(2 R, 3 R)$-isomer $7 \mathbf{c}$ and $(2 S, 3 S)$-isomer $7 \mathbf{d}$, accompanied by a
small amount of $\mathbf{7 a}$ and $\mathbf{7 b}$, respectively. Compared with the case of $\mathbf{6}$, however, lower stereoselectivity was observed. Brief exposure of 7a to base caused epimerization at C-2 to produce isomer $7 \mathbf{d}$, indicating that the quaternary stereocenter in nerol-derived rearrangement product $7 \mathbf{c}$ has stereochemistry opposite to that in $7 \mathbf{a}$.

Scheme 2. Claisen rearrangement of nerol-derived substrate 8.

The stereochemistry of the newly formed quaternary stereocenter (C-3) in 7a was determined by the total synthesis of (+)-bakuchiol (4), a major component of the Indian medicinal plant Psoralea corylifolia Linn [8]. Base hydrolysis of 7a followed by decarboxylation provided enantiomerically pure aldehyde $\mathbf{9}$, and the chiral auxiliary was recovered (Scheme 3). Treatment of $\mathbf{9}$ with $p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{MgBr}$ afforded alcohol 10, which was subjected to dehydration using phosphoryl chloride to afford bakuchiol methyl ether $\mathbf{1 1}$ [21]. By comparing the optical rotation of synthetic $\mathbf{1 1}\left\{[\alpha]_{\mathrm{D}}{ }^{25}+28.4\left(c 0.855, \mathrm{CHCl}_{3}\right)\right\}$ with that reported for the authentic sample $\left\{\right.$ lit. $\left.[\alpha]_{D}{ }^{29}+31.2\left(c 1.45, \mathrm{CHCl}_{3}\right)\right\}$ [9], the absolute configuration of the quaternary stereocenter in $7 \mathbf{7 a}$ was assigned as (S). According to a known procedure [22], demethylation of $\mathbf{1 1}$ finally provided (+)-bakuchiol (4), which was identical to the natural product in all respects.

Scheme 3. Determination of the stereochemistry at C-3 in 7a and total synthesis of (+)-bakuchiol.

To determine the configuration at C-2, rearrangement product 7a was heated at $160^{\circ} \mathrm{C}$ (Scheme 4). The intramolecular carbonyl-ene reaction proceeded to provide cyclized 12a as a mixture of four diastereomers ($\mathrm{dr}=3: 2: 2: 1$). Similarly, $\mathbf{7 c}$ was converted into $\mathbf{1 2 c}(\mathrm{dr}=9: 8: 2: 1)$. Through NOE experiments on the isolated major diastereomers 12aa and 12ca, the stereochemistry at the C-2 in 7a and $7 \mathbf{c}$ was assigned as (R). Therefore, the configurations of all stereocenters in the rearrangement products $7 \mathbf{7 a - d}$ were unambiguously assigned.

Scheme 4. Determination of the stereochemistry at C-2 in 7a and 7c.

To expand the scope of this reaction, $(E, E)-\beta$-(allyloxy)acrylate substrates $\mathbf{1 4}$ and $\mathbf{1 7}$ were synthesized by oxy-Michael addition of allylic alcohols $\mathbf{1 3}$ and $\mathbf{1 6}$ [23] to $\mathbf{5}$ (Scheme 5). In both cases, the Claisen rearrangements of $\mathbf{1 4}$ and $\mathbf{1 7}$ afforded ($2 R, 3 S$)-isomers $\mathbf{1 5 a}$ and 18a preferentially, with good stereoselectivity in more than 70% yield, similarly to the reaction of $\mathbf{6}$.

Scheme 5. Claisen rearrangements of 14 and 17.

The vicinal stereocenters in 15a and 18a were assigned by chemical transformation (Scheme 6). Chemoselective reduction of 7a, followed by acetylation of the resulting alcohol, provided acetate $\mathbf{1 9 a}$. The spectroscopic data (${ }^{1} \mathrm{H}$ - and $\left.{ }^{13} \mathrm{C}-\mathrm{NMR}\right)$ of $\mathbf{1 9 a}$ were distinguishable from those of $\mathbf{1 9 b}$ derived from 7b. On the other hand, 15a was converted into acetate 20a. Desilylation of 20a, oxidation of the resulting alcohol to aldehyde, and subsequent Wittig olefination afforded 19a whose NMR spectra matched those of 19a derived from 7a. Compound 18a was also converted into 19a via acetate 21a. Therefore, the configuration of the vicinal stereocenters at the C-2 and C-3 in 15a and 18a coincides with that of $7 \mathbf{7 a}$.

Scheme 6. Determination of the stereochemistry at C-2 and C-3 in 15a and 18a.

,

1) HF•pyridine, THF quant.
2) Dess-Martin periodinane $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ quant.
3) $i-\mathrm{PrP}^{+} \mathrm{Ph}_{3} I^{-}, t$-BuLi, THF 45%

The stereochemical outcomes observed in the reactions of $\mathbf{6}, \mathbf{1 4}, \mathbf{1 7}$, and $\mathbf{8}$ can be explained by the transition states depicted in Scheme 7.

Scheme 7. Plausible transition states for the Claisen rearrangements of 6, 14, 17, and $\mathbf{8}$.

In the more favorable conformation of $\mathbf{6}, \mathbf{1 4}$, and $\mathbf{1 7}$, the carbonyl group is directed anti to the sulfonyl group and adopts an s-cis conformation with respect to the α, β-unsaturated bond [24]. The rearrangement proceeds predominantly from the $\mathrm{C} \alpha-R e$-face through a six-membered chair-like transition state to avoid the steric repulsion that would be encountered along the C $\alpha-S i$-face path. As a result, 7a, 15a, and 18a were obtained as the major isomers. Also nerol-derived substrate $\mathbf{8}$ rearranges through the same $\mathrm{C} \alpha-R e$-face path to produce 7 c . In this case, the bulky homoprenyl group takes an axial orientation, which causes a decrease of the stereoselectivity.

3. Experimental

General

Melting points are uncorrected. Specific rotations were measured in a 100 mm cell. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded at 500 MHz with tetramethylsilane as an internal standard on a JEOL JNM-ECA500 spectrometer. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded at 125 MHz . All spectra were recorded in CDCl_{3}. High-resolution mass spectra (HRMS) were measured in EI mode (70 eV) on a JEOL JMS-GCmate spectrometer. Thin-layer chromatography (TLC) was performed on Merck Kieselgel $60 \mathrm{~F}_{254}$ plates. The crude reaction mixtures and extracted materials were purified by column chromatography on Silica gel 60 (Merck) or Wakogel C-300 (Wako). Unless otherwise noted, reactions were carried out at room temperature. Combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvents were removed from the reaction mixture and the combined organic extracts by concentration under reduced pressure using an evaporator with bath at $35-45^{\circ} \mathrm{C}$.
(2R)-N-\{(E)-3-[((2E)-3,7-Dimethylocta-2,6-dien-1-yl)oxy]acryloyl\}bornane-10,2-sultam (6). The following reaction was carried out under Ar . To a cooled $\left(0^{\circ} \mathrm{C}\right)$ stirred solution of $5(302 \mathrm{mg}, 1.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL})$ were added geraniol ($218 \mu \mathrm{~L}, 1.24 \mathrm{mmol}$) and $n-\mathrm{Bu}_{3} \mathrm{P}(42 \mu \mathrm{~L}, 0.17 \mathrm{mmol})$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined extracts were washed with saturated brine (20 mL), dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{hexane}$, $1: 30)$ to provide $368 \mathrm{mg}(77 \%)$ of $\mathbf{6}$ as a colorless oil: TLC $R_{f} 0.54$ (EtOAc/hexane, 1:3); $[\alpha]_{\mathrm{D}}{ }^{19}-59.2$ (c 1.19, CHCl_{3}); IR (neat) 2962, 2885, 1678, $1608 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}): \delta 0.97(\mathrm{~s}, 3 \mathrm{H}), 1.18$ (s, $3 \mathrm{H}), 1.34-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.68(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.71(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.86-1.91(\mathrm{~m}, 3 \mathrm{H}), 2.05-2.17$ (m, 6H), $3.43(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}$), $3.48(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 3.91(\mathrm{dd}, 1 \mathrm{H}, J=4.9,7.7 \mathrm{~Hz}), 4.45$ $(\mathrm{d}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 5.08(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{qt}, 1 \mathrm{H}, J=1.0,6.9 \mathrm{~Hz}), 5.97(\mathrm{~d}, 1 \mathrm{H}, J=12.1 \mathrm{~Hz}), 7.70(\mathrm{~d}, 1 \mathrm{H}$, $J=12.1 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}) \delta 16.6,17.6,19.9,20.7,25.6,26.1,26.5,32.7,38.5,39.4,44.6$, 47.7, 48.2, 53.0, 65.0, 68.1, 97.0, 117.5, 123.5, 131.9, 143.4, 163.3, 164.9; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right) m / z$ 421.2287, found 421.2286.
(2R)-N-[(2R,3S)-2-Formyl-3,7-dimethyl-3-vinyloct-6-enoyl]bornane-10,2-sultam (7a) and (2R)-N$[(2 S, 3 R)]$-isomer $(7 b)$. A solution of $\mathbf{6}(400 \mathrm{mg}, 949 \mu \mathrm{~mol})$ and BHT $(10.5 \mathrm{mg}, 47.5 \mu \mathrm{~mol})$ in toluene (50 mL) was stirred at $140{ }^{\circ} \mathrm{C}$ for 65 h in a sealed tube and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{hexane}, 1: 30$) to provide 289 mg (72%) of $7 \mathbf{7 a}$ and $30.9 \mathrm{mg}(8 \%)$ of $\mathbf{7 b}$. Compound $\mathbf{7 a}$ was obtained as white crystals: $\mathrm{mp} 84-87{ }^{\circ} \mathrm{C}$;

TLC $R_{f} 0.49$ (EtOAc/hexane, 1:3); [$\left.\alpha\right]_{\mathrm{D}}{ }^{21}-77.9$ (c 2.55, CHCl_{3}); IR (neat) 2960, 2925, 1730, $1680 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}) \delta 0.98(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.37-1.46(\mathrm{~m}, 3 \mathrm{H}), 1.56(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.65$ (br s, 3 H), $1.67(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.96(\mathrm{~m}, 5 \mathrm{H}), 2.06-2.15(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 3.51(\mathrm{~d}, 1 \mathrm{H}$, $J=13.8 \mathrm{~Hz}), 3.96(\mathrm{dd}, 1 \mathrm{H}, J=5.2,7.4 \mathrm{~Hz}), 4.01(\mathrm{~d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}), 5.02(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{~d}, 1 \mathrm{H}$, $J=17.4 \mathrm{~Hz}), 5.21(\mathrm{~d}, 1 \mathrm{H}, J=10.6 \mathrm{~Hz}), 5.92(\mathrm{dd}, 1 \mathrm{H}, J=10.6,17.4 \mathrm{~Hz}), 9.61(\mathrm{~d}, 1 \mathrm{H}$, $J=2.3 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}) \delta 17.6,19.7,19.9,20.7,22.2,25.6,26.4,32.9,38.5$ (2C), 44.8, 45.5, 47.7, 48.1, 53.2, 65.4 (2C), 115.2, 123.7, 131.9, 142.3, 167.5, 197.3; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{~S}$ $\left(\mathrm{M}^{+}\right) \mathrm{m} / \mathrm{z} 421.2287$, found 421.2283 . Compound $7 \mathbf{b}$ was obtained as white crystals: $\mathrm{mp} 81-87^{\circ} \mathrm{C}$; TLC $R_{f} 0.61$ (EtOAc/hexane, 1:3); $[\alpha]_{\mathrm{D}}{ }^{17}+38.5$ (c $0.965, \mathrm{CHCl}_{3}$); IR (neat) 2960, 2925, 1730, $1700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}) \delta 0.95(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.68(\mathrm{~m}, 2 \mathrm{H})$, $1.56(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.65(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.88-1.93(\mathrm{~m}, 5 \mathrm{H}), 2.08(\mathrm{dd}, 1 \mathrm{H}, J=7.8,13.9 \mathrm{~Hz}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 3.43$ $(\mathrm{d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}), 3.48(\mathrm{~d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}), 3.90(\mathrm{dd}, 1 \mathrm{H}, J=4.9,7.8 \mathrm{~Hz}), 4.21(\mathrm{~d}, 1 \mathrm{H}, J=0.9 \mathrm{~Hz})$, $5.04(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{dd}, 1 \mathrm{H}, J=0.6,17.5 \mathrm{~Hz}), 5.26(\mathrm{dd}, 1 \mathrm{H}, J=0.6,10.8 \mathrm{~Hz}), 6.01(\mathrm{dd}, 1 \mathrm{H}, J=10.8$, $17.5 \mathrm{~Hz}), 9.60(\mathrm{~d}, 1 \mathrm{H}, J=0.9 \mathrm{~Hz}){ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}) \delta 17.6,19.3,19.9,20.4,22.2,25.7,26.5$, 32.7, 38.2, 38.9, 42.9, 44.5, 47.8, 48.2, 53.1, 65.1, 65.3, 115.1, 124.0, 131.7, 143.5, 166.3, 197.7; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right) m / z 421.2287$, found 421.2281.
(2R)-N-\{(E)-3-[((2Z)-3,7-Dimethylocta-2,6-dien-1-yl)oxy]acryloyl\}bornane-10,2-sultam (8). As described for the preparation of $\mathbf{6}$, compound $5(210 \mathrm{mg}, 785 \mu \mathrm{~mol})$ and nerol $(155 \mu \mathrm{~L}, 882 \mu \mathrm{~mol})$ were treated with n - $\mathrm{Bu}_{3} \mathrm{P}(32 \mu \mathrm{~L}, 0.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ to provide $234 \mathrm{mg}(71 \%)$ of $\mathbf{8}$ as white crystals: mp $62-64{ }^{\circ} \mathrm{C}$; TLC $R_{f} 0.52$ (EtOAc/hexane, 1:3); [$\left.\alpha\right]_{\mathrm{D}}{ }^{26}-71.0\left(c 1.22, \mathrm{CHCl}_{3}\right.$); IR (neat) 2964, 2884, 1677, $1607 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}) \delta 0.97(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.69$ (br s, 3 H), $1.78(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.87-1.91(\mathrm{~m}, 3 \mathrm{H}), 2.05-2.17(\mathrm{~m}, 6 \mathrm{H}), 3.43(\mathrm{~d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}), 3.48$ $(\mathrm{d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}), 3.91(\mathrm{dd}, 1 \mathrm{H}, J=4.9,7.8 \mathrm{~Hz}), 4.41(\mathrm{~d}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 5.08(\mathrm{~m}, 1 \mathrm{H}), 5.39(\mathrm{t}, 1 \mathrm{H}$, $J=7.0 \mathrm{~Hz}), 5.96(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 7.69(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}) \delta 17.6,19.9$, $20.8,23.5,25.7,26.5$ (2C), 32.3, 32.8, 38.6, 44.7, 47.8, 48.2, 53.1, 65.0, 67.9, 97.0, 118.5, 123.3, 132.5, 143.8, 163.4, 165.0; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right) \mathrm{m} / \mathrm{z} 421.2287$, found 421.2287.
(2R)-N-[(2R,3R)-2-Formyl-3,7-dimethyl-3-vinyloct-6-enoyl]bornane-10,2-sultam (7c) and (2R)-N$[(2 S, 3 S)]$-isomer $(\mathbf{7 d})$. As described for the preparation of $\mathbf{7 a}$ and $\mathbf{7 b}$ from $\mathbf{6}$, a solution of $\mathbf{8}(223 \mathrm{mg}$, $529 \mu \mathrm{~mol})$ and BHT ($5.8 \mathrm{mg}, 26 \mu \mathrm{~mol}$) in toluene (27 mL) was heated at $140{ }^{\circ} \mathrm{C}$ for 26 h to provide $147 \mathrm{mg}(66 \%)$ of a mixture of $\mathbf{7 c}$ and $\mathbf{7 a}(7 \mathbf{c} / 7 \mathbf{a}=19: 1)$ and $25.0 \mathrm{mg}(11 \%)$ of a mixture of $7 \mathbf{d}$ and $\mathbf{7 b}$ $(7 \mathbf{d} / 7 \mathbf{b}=10: 1)$, and $27.9 \mathrm{mg}(13 \%)$ of $\mathbf{8}$ was recovered. A mixture of $\mathbf{7 c}$ and $\mathbf{7 a}(7 \mathbf{c} / 7 \mathbf{a}=19: 1)$ was obtained as a colorless oil: TLC $R_{f} 0.49$ (EtOAc/hexane, 1:3); [$\left.\alpha\right]_{\mathrm{D}}{ }^{28}-82.4$ (c 1.26, CHCl_{3}); IR (neat) 2965, 2930, 1727, $1684 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ for $7 \mathrm{c} \delta 0.97(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H})$, $1.34-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.55(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.65(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.93(\mathrm{~m}, 5 \mathrm{H}), 2.03-2.09(\mathrm{~m}$, $2 \mathrm{H}), 3.43(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 3.50(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 3.89(\mathrm{~d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}), 3.92(\mathrm{dd}, 1 \mathrm{H}$, $J=5.5,7.4 \mathrm{~Hz}), 5.02(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{dd}, 1 \mathrm{H}, J=1.0,17.4 \mathrm{~Hz}), 5.14(\mathrm{dd}, 1 \mathrm{H}, J=1.0,10.9 \mathrm{~Hz}), 6.02$ (dd, $1 \mathrm{H}, J=10.9,17.4 \mathrm{~Hz}$), $9.66(\mathrm{~d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ for $7 \mathrm{c} \delta 17.6,18.9,19.9$, 20.7, 22.2, 25.6, 26.4, 33.0, 38.2, 39.5, 44.7, 45.8, 47.7, 48.1, 53.3, 65.4, 65.5, 115.2, 123.7, 131.8, 141.7, 167.9, 197.8; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right) m / z 421.2287$, found 421.2289. A mixture of $\mathbf{7 d}$ and $\mathbf{7 b}(7 \mathbf{d} / 7 \mathbf{b}=10: 1)$ was obtained as a colorless oil: TLC $R_{f} 0.61\left(\right.$ EtOAc/hexane, 1:3); $[\alpha]_{\mathrm{D}}{ }^{26}+2.9$
(c $1.25, \mathrm{CHCl}_{3}$); IR (neat) 2964, 2924, 1728, $1697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ for $7 \mathbf{d} \delta 0.95(\mathrm{~s}, 3 \mathrm{H})$, $1.09(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.65(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.76(\mathrm{~m}$, $1 \mathrm{H}), 1.87-1.95(\mathrm{~m}, 5 \mathrm{H}), 2.07(\mathrm{dd}, 1 \mathrm{H}, J=7.9,14.0 \mathrm{~Hz}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~d}, 1 \mathrm{H}, J=13.9 \mathrm{~Hz}), 3.49$ $(\mathrm{d}, 1 \mathrm{H}, J=13.9 \mathrm{~Hz}), 3.90(\mathrm{dd}, 1 \mathrm{H}, J=4.9,7.9 \mathrm{~Hz}), 4.19(\mathrm{~d}, 1 \mathrm{H}, J=1.1 \mathrm{~Hz}), 5.06(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{~d}$, $1 \mathrm{H}, J=17.2 \mathrm{~Hz}), 5.17(\mathrm{~d}, 1 \mathrm{H}, J=10.9 \mathrm{~Hz}), 6.14(\mathrm{dd}, 1 \mathrm{H}, J=10.9,17.2 \mathrm{~Hz}), 9.68(\mathrm{~d}, 1 \mathrm{H}, J=1.1 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$-NMR (125 MHz) for 7d $\delta 17.6,19.9,20.4,21.2,23.4,25.6,26.4,32.7,38.2,39.1,43.3,44.5$, 47.7, 48.2, 53.1, 65.3, 66.2, 114.7, 123.9, 131.7, 142.6, 166.3, 197.0; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{~S}$ $\left(\mathrm{M}^{+}\right) m / z 421.2287$, found 421.2288 .

Epimerization of $7 \mathbf{7 a}$. To a stirred solution of $7 \mathbf{7 a}(7.9 \mathrm{mg}, 19 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added DBU $(3.6 \mu \mathrm{~L}, 24 \mu \mathrm{~mol})$. The mixture was stirred at room temperature for 45 min , diluted with 1 M aqueous $\mathrm{HCl}(1 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL} \times 3)$. The combined extracts were washed with saturated brine $(1 \mathrm{~mL})$, dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:25) to provide $1.1 \mathrm{mg}(14 \%)$ of $7 \mathbf{d}$ and 6.7 mg (85%) of 7 a was recovered.
(1RS,3R)-1-(4-Methoxyphenyl)-3,7-dimethyl-3-vinyloct-6-enol (10). To a cooled $\left(0^{\circ} \mathrm{C}\right)$ stirred solution of $7 \mathrm{a}(233 \mathrm{mg}, 553 \mu \mathrm{~mol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(1: 1,5 \mathrm{~mL})$ was added 1.00 M aqueous $\mathrm{KOH}(1.11 \mathrm{~mL}, 1.11 \mathrm{mmol})$. The mixture was stirred at room temperature for 24 h , quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, diluted with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, and extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL} \times 3)$. The combined extracts were washed with saturated brine $(15 \mathrm{~mL})$ and dried to provide a solution of aldehyde 9 in $\mathrm{Et}_{2} \mathrm{O}$, which was used in the next step without further evaporation and purification.

The following reaction was carried out under Ar. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ stirred solution of aldehyde 9 in $\mathrm{Et}_{2} \mathrm{O}$ obtained above was added 4-methoxyphenylmagnesium bromide (1.50 M solution in $\mathrm{Et}_{2} \mathrm{O}$, total 6.27 mL , total 9.41 mmol) in ten times over a period of 2 h . The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$, diluted $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL} \times 3)$. The combined extracts were dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:40) to provide $86.7 \mathrm{mg}(55 \%)$ of $\mathbf{1 0}$ and 114 mg (96%) of camphorsultam. Compound $\mathbf{1 0}(\mathrm{dr}=1: 1)$ was obtained as a colorless oil: TLC $R_{f} 0.61$ (EtOAc/hexane, 1:3); IR (neat) 3442, 2965, 2924, 1612, $1512 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}) \delta 1.10$ $(\mathrm{s}, 3 \mathrm{H} \times 1 / 2), 1.11(\mathrm{~s}, 3 \mathrm{H} \times 1 / 2), 1.34(\mathrm{t}, 2 \mathrm{H} \times 1 / 2, J=8.5 \mathrm{~Hz}), 1.40-1.43(\mathrm{~m}, 2 \mathrm{H} \times 1 / 2), 1.57(\mathrm{br} \mathrm{s}$, $3 \mathrm{H} \times 1 / 2$), $1.59(\mathrm{br} \mathrm{s}, 3 \mathrm{H} \times 1 / 2), 1.66(\mathrm{br} \mathrm{s}, 3 \mathrm{H} \times 1 / 2), 1.67(\mathrm{br} \mathrm{s}, 3 \mathrm{H} \times 1 / 2), 1.80-1.93(\mathrm{~m}, 4 \mathrm{H}), 3.79$ $(\mathrm{s}, 3 \mathrm{H}), 4.74(\mathrm{dd}, 1 \mathrm{H} \times 1 / 2, J=2.6,8.6 \mathrm{~Hz}), 4.79(\mathrm{dd}, 1 \mathrm{H} \times 1 / 2, J=2.6,9.3 \mathrm{~Hz}), 5.02(\mathrm{dd}, 1 \mathrm{H} \times 1 / 2$, $J=1.1,17.7 \mathrm{~Hz}), 5.07(\mathrm{dd}, 1 \mathrm{H} \times 1 / 2, J=1.1,10.8 \mathrm{~Hz}), 5.07(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{dd}, 1 \mathrm{H} \times 1 / 2, J=0.9$, $17.7 \mathrm{~Hz}), 5.14(\mathrm{dd}, 1 \mathrm{H} \times 1 / 2, J=0.9,10.8 \mathrm{~Hz}), 5.83(\mathrm{dd}, 1 \mathrm{H} \times 1 / 2, J=10.8,17.7 \mathrm{~Hz}), 5.97(\mathrm{dd}, 1 \mathrm{H} \times 1 / 2$, $J=10.8,17.7 \mathrm{~Hz}), 6.86(\mathrm{~d}, 2 \mathrm{H} \times 1 / 2, J=8.8 \mathrm{~Hz}), 6.86(\mathrm{~d}, 2 \mathrm{H} \times 1 / 2, J=8.6 \mathrm{~Hz}), 7.24(\mathrm{~d}, 2 \mathrm{H} \times 1 / 2$, $J=8.8 \mathrm{~Hz}), 7.25(\mathrm{~d}, 2 \mathrm{H} \times 1 / 2, J=8.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}) \delta 17.6,21.3(1 / 2 \mathrm{C}), 22.5(1 / 2 \mathrm{C}), 22.7$ (1/2C), 23.5 ($1 / 2 \mathrm{C}$), $25.7,39.5,40.5$ (1/2C), 42.5 (1/2C), 50.3 (1/2C), 51.1 ($1 / 2 \mathrm{C}), 55.3,71.4$ ($1 / 2 \mathrm{C}$), 71.5 ($1 / 2 \mathrm{C}$), 112.2 ($1 / 2 \mathrm{C}$), 112.9 ($1 / 2 \mathrm{C}$), 113.7, 113.8, 124.6 (1/2C), 124.8 ($1 / 2 \mathrm{C}$), 126.9 (2 C), 131.2 $(1 / 2 \mathrm{C}), 131.3(1 / 2 \mathrm{C}), 137.7(1 / 2 \mathrm{C}), 138.3$ (1/2C), 147.4 (1/2C), 147.7 ($1 / 2 \mathrm{C}), 158.8$; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right) m / z 288.2089$, found 288.2090.
(1E,3S)-1-(4-Methoxyphenyl)-3,7-dimethyl-3-vinylocta-1,6-diene (11). The following reaction was carried out under Ar. To a stirred solution of $\mathbf{1 0}(22.5 \mathrm{mg}, 78.0 \mu \mathrm{~mol})$ in pyridine (1 mL) was added $\mathrm{POCl}_{3}(8.6 \mu \mathrm{~L}, 95 \mu \mathrm{~mol})$. The mixture was refluxed for 4 h , diluted with EtOAc (15 mL), and washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and saturated brine $(10 \mathrm{~mL})$. The organic layer was dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:100) to provide $18.9 \mathrm{mg}(90 \%)$ of $\mathbf{1 1}$ as a colorless oil: TLC $R_{f} 0.80$ (EtOAc/hexane, 1:3); $[\alpha]_{\mathrm{D}}{ }^{25}+28.4\left(c 0.855, \mathrm{CHCl}_{3}\right)$; IR (neat) 2966, 2916, 1609, $1511 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}) \delta 1.20(\mathrm{~s}$, $3 \mathrm{H}), 1.48-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.67(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.93-1.98(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 5.01(\mathrm{dd}, 1 \mathrm{H}$, $J=1.4,17.5 \mathrm{~Hz}), 5.03(\mathrm{dd}, 1 \mathrm{H}, J=1.4,10.7 \mathrm{~Hz}), 5.11(\mathrm{~m}, 1 \mathrm{H}), 5.88(\mathrm{dd}, 1 \mathrm{H}, J=10.7,17.5 \mathrm{~Hz}), 6.06$ $(\mathrm{d}, 1 \mathrm{H}, J=16.4 \mathrm{~Hz}), 6.26(\mathrm{~d}, 1 \mathrm{H}, J=16.4 \mathrm{~Hz}), 6.83(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.29(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}) ;$ ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}) \delta 17.6,23.2,23.4,25.7,41.3,42.5,55.3,111.8,113.9$ (2C), 124.8, 126.5, 127.1 (2C), 130.7, 131.3, 135.8, 146.0, 158.7; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}\left(\mathrm{M}^{+}\right) \mathrm{m} / \mathrm{z} 270.1984$, found 270.1983.
(+)-Bakuchiol (4). The following reaction was carried out under Ar. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of 11 ($30.2 \mathrm{mg}, 112 \mu \mathrm{~mol}$) in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added $\mathrm{MeMgI}\left(0.500 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 1.57 \mathrm{~mL}, 785 \mu \mathrm{~mol}\right)$. The solvent was removed under reduced pressure. The residue was heated at $180{ }^{\circ} \mathrm{C}$ for 15 min and cooled to room temperature. The mixture was quenched with 1 M aqueous $\mathrm{HCl}(2 \mathrm{~mL})$, diluted with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} \times 3)$. The combined extracts were dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, $1: 60$) to provide 26.1 mg (91\%) of 4 as a pale yellow oil: TLC $R_{f} 0.63$ (EtOAc/hexane, 1:3); $[\alpha]_{D}{ }^{29}+25.6$ (c 0.795, CHCl_{3}); IR (neat) 3359, 2967, 2924, 1610, $1513 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}) \delta 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.47-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.67(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.93-1.97(\mathrm{~m}$, $2 \mathrm{H}), 4.85(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 5.01(\mathrm{dd}, 1 \mathrm{H}, J=1.5,17.4 \mathrm{~Hz}), 5.03(\mathrm{dd}, 1 \mathrm{H}, J=1.5,10.8 \mathrm{~Hz}), 5.11(\mathrm{~m}, 1 \mathrm{H})$, 5.88 (dd, $1 \mathrm{H}, J=10.8,17.4 \mathrm{~Hz}), 6.05(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}), 6.25(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}), 6.76$ (d, 2H, $J=8.6 \mathrm{~Hz}), 7.24(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}) \delta 17.6,23.2,23.3,25.7,41.3,42.5,111.9$, 115.3 (2C), 124.8, 126.4, 127.4 (2C), 130.9, 131.3, 135.9, 145.9, 154.6; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}$ $\left(\mathrm{M}^{+}\right) m / z 256.1827$, found 256.1829 .
(2R)-N-[(1R,2S,5R,6R)-6-Hydroxy-5-isopropenyl-2-methyl-2-vinylcyclohexanecarbonyl]bornane-10,2sultam (12aa) and its diastereomers. A solution of $7 \mathbf{7 a}(22.8 \mathrm{mg}, 54.1 \mu \mathrm{~mol})$ and BHT (a crystal) in toluene (6 mL) was stirred at $160^{\circ} \mathrm{C}$ for 50 h in a sealed tube and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:15) to provide 4.9 $\mathrm{mg}(21 \%)$ of 12aa, $3.2 \mathrm{mg}(14 \%)$ of 12ab, $3.3 \mathrm{mg}(14 \%)$ of 12ac, and $1.7 \mathrm{mg}(7 \%)$ of $\mathbf{1 2 a d}$. Compound 12aa was obtained as white crystals: mp 198-200 ${ }^{\circ} \mathrm{C}$; TLC $R_{f} 0.43$ (EtOAc/hexane, 1:2); $[\alpha]_{\mathrm{D}}{ }^{21}-10.5\left(c 0.27, \mathrm{CHCl}_{3}\right)$; IR (neat) $3520,2960,1695 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}) \delta 0.97(\mathrm{~s}, 3 \mathrm{H})$, $1.16(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.36-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{br} \mathrm{s}, 3 \mathrm{H})$, $1.86-1.92(\mathrm{~m}, 3 \mathrm{H}), 2.02(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{OH}), 2.08-2.15(\mathrm{~m}, 3 \mathrm{H}), 2.99(\mathrm{~d}, 1 \mathrm{H}, J=10.6 \mathrm{~Hz}), 3.47$ $(\mathrm{d}, 1 \mathrm{H}, J=13.9 \mathrm{~Hz}), 3.53(\mathrm{~d}, 1 \mathrm{H}, J=13.9 \mathrm{~Hz}), 3.94(\mathrm{dt}, 1 \mathrm{H}, J=8.3,10.6 \mathrm{~Hz}), 4.00(\mathrm{dd}, 1 \mathrm{H}, J=5.1,7.7$ $\mathrm{Hz}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{dd}, 1 \mathrm{H}, J=1.2,17.5 \mathrm{~Hz}), 5.12(\mathrm{dd}, 1 \mathrm{H}, J=1.2,11.2 \mathrm{~Hz}), 6.43$ (dd, $1 \mathrm{H}, J=11.2,17.5 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}) \delta 19.2,20.0,20.9,26.4,26.5,27.8,33.0,38.7,39.0$, $42.5,44.8,47.6,47.7,53.6,54.1,60.7,65.9,70.3,112.5,113.1,141.5,146.2,171.9$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right) \mathrm{m} / \mathrm{z} 421.2287$, found 421.2291.
(2R)-N-[(1R,2R,5R,6R)-6-Hydroxy-5-isopropenyl-2-methyl-2-vinylcyclohexanecarbonyl]bornane-10,2sultam (12ca) and its diastereomers. As described for the preparation of 12aa and its diastereomers from 7a, a solution of $7 \mathbf{c}(23.5 \mathrm{mg}, 55.7 \mu \mathrm{~mol})$ and BHT (a crystal) in toluene (6 mL) was heated at $160{ }^{\circ} \mathrm{C}$ for 40 h to provide $8.7 \mathrm{mg}(37 \%)$ of 12ca, $9.2 \mathrm{mg}(39 \%)$ of a mixture of $\mathbf{1 2 c b}$ and $\mathbf{1 2 c c}$, and $0.9 \mathrm{mg}(4 \%)$ of 12cd. Compound 12ca was obtained as white crystals: TLC $R_{f} 0.32$ (EtOAc/hexane, 1:2); ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}) \delta 0.95(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.23-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.70(\mathrm{~m}$, $3 \mathrm{H}), 1.78(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.81-1.96(\mathrm{~m}, 3 \mathrm{H}), 2.02-2.06(\mathrm{~m}, 3 \mathrm{H}), 2.10(\mathrm{dt}, 1 \mathrm{H}, J=5.0,10.6 \mathrm{~Hz}), 3.00(\mathrm{~d}$, $1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 3.45(\mathrm{~d}, 1 \mathrm{H}, J=13.9 \mathrm{~Hz}), 3.50(\mathrm{~d}, 1 \mathrm{H}, J=13.9 \mathrm{~Hz}), 3.95(\mathrm{dd}, 1 \mathrm{H}, J=5.2,7.8 \mathrm{~Hz})$, $4.00(\mathrm{q}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~d}, 1 \mathrm{H}, J=10.6 \mathrm{~Hz}), 4.98(\mathrm{~d}, 1 \mathrm{H}, J=17.5 \mathrm{~Hz})$, $6.00(\mathrm{dd}, 1 \mathrm{H}, J=10.6,17.5 \mathrm{~Hz})$.
(2R)-N-\{(E)-3-[((2E)-6-(tert-Butyldiphenysilyloxy)-3-methylhex-2-en-1-yl)oxy]acryloyl\}bornane-10,2sultam (14). As described for the preparation of 6, compound $\mathbf{5}(109 \mathrm{mg}, 408 \mu \mathrm{~mol})$ and $\mathbf{1 3}(165 \mathrm{mg}$, $448 \mu \mathrm{~mol})$ were treated with $n-\mathrm{Bu}_{3} \mathrm{P}(15 \mu \mathrm{~L}, 61 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ to provide $223 \mathrm{mg}(86 \%)$ of 14 as white crystals: $\mathrm{mp} 74-77{ }^{\circ} \mathrm{C}$; TLC $R_{f} 0.78$ (EtOAc/toluene, $1: 4$); $[\alpha]_{\mathrm{D}}{ }^{26}-45.6\left(c 1.02, \mathrm{CHCl}_{3}\right)$; IR (neat) 2958, 2858, 1678, $1608 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}) \delta 0.97(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H})$, $1.36-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.91(\mathrm{~m}, 3 \mathrm{H}), 2.08(\mathrm{dd}, 1 \mathrm{H}, J=7.8,13.8$ $\mathrm{Hz}), 2.13(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 3.48(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 3.64$ $(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}), 3.91(\mathrm{dd}, 1 \mathrm{H}, J=4.9,7.8 \mathrm{~Hz}), 4.41(\mathrm{~d}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 5.35(\mathrm{t}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz})$, $5.96(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 7.36-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.65-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.70(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 MHz) $\delta 16.6,19.2,19.9,20.8,26.5,26.9$ (3C), 30.5, 32.8, 35.7, 38.6, 44.7, 47.8, 48.2, 53.1, 63.3, 65.0, 68.1, 97.0, 117.6, 127.6 (4C), 129.5 (2C), 134.0 (2C), 135.6 (4C), 143.4, 163.4, 165.0; HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{NO}_{5} \mathrm{SSi}\left(\mathrm{M}^{+}-t-\mathrm{C}_{4} \mathrm{H}_{9}\right) m / z$ 578.2396, found 578.2398.
(2R)-N-[(2R,3S)-6-(tert-Butyldiphenysilyloxy)-2-formyl-3-methyl-3-vinylhexanoyl]bornane-10,2-sultam (15a) and (2R)-N-[(2S,3R)]-Isomer (15b). As described for the preparation of 7a and 7b from 6, a solution of $14(209 \mathrm{mg}, 329 \mu \mathrm{~mol})$ and BHT ($3.6 \mathrm{mg}, 16 \mu \mathrm{~mol}$) in toluene (17 mL) was heated at $140^{\circ} \mathrm{C}$ for 71 h to provide $150 \mathrm{mg}(72 \%)$ of $\mathbf{1 5 a}$ and $32.1 \mathrm{mg}(15 \%)$ of $\mathbf{1 5 b}$. Compound $\mathbf{1 5 a}$ was obtained as a colorless oil: TLC $R_{f} 0.59$ (EtOAc/toluene, 1:5); [$\left.\alpha\right]_{\mathrm{D}}{ }^{23}-88.2$ (c 1.46, CHCl_{3}); IR (neat) 2961, 2859, $1731,1686 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}) \delta 0.95(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.40$ $(\mathrm{m}, 2 \mathrm{H}), 1.48-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.91(\mathrm{~m}, 4 \mathrm{H}), 2.07-2.13(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{~d}, 1 \mathrm{H}, J=13.8$ $\mathrm{Hz}), 3.50(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 3.60(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}), 3.95(\mathrm{dd}, 1 \mathrm{H}, J=5.4,7.5 \mathrm{~Hz}), 4.01(\mathrm{~d}, 1 \mathrm{H}$, $J=2.5 \mathrm{~Hz}), 5.05(\mathrm{~d}, 1 \mathrm{H}, J=17.5 \mathrm{~Hz}), 5.19(\mathrm{~d}, 1 \mathrm{H}, J=10.9 \mathrm{~Hz}), 5.88(\mathrm{dd}, 1 \mathrm{H}, J=10.9,17.5 \mathrm{~Hz})$, $7.35-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.63-7.65(\mathrm{~m}, 4 \mathrm{H}), 9.60(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}) \delta 19.2,19.8$, $19.9,20.8,26.4,26.7,26.8$ (3C), $32.9,34.5,38.5,44.7,45.3,47.7,48.1,53.2,63.9,65.4,65.5,115.3$, 127.6 (4C), 129.5 (2C), 134.0 (2C), 135.6 (4C), 142.3, 167.4, 197.2; HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{NO}_{5} \mathrm{SSi}$ $\left(\mathrm{M}^{+}-t-\mathrm{C}_{4} \mathrm{H}_{9}\right) m / z$ 578.2396, found 578.2401. Compound 15b was obtained as a colorless oil: TLC $R_{f} 0.69(\mathrm{EtOAc} /$ toluene, $1: 5) ;[\alpha]_{\mathrm{D}}{ }^{24}+6.7\left(c \quad 1.50, \mathrm{CHCl}_{3}\right)$; IR (neat) 2961, 2859, 1728, $1696 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}) \delta 0.94(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.33-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~m}$, $1 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.91(\mathrm{~m}, 4 \mathrm{H}), 2.06(\mathrm{dd}, 1 \mathrm{H}, J=7.8,14.0 \mathrm{~Hz}), 2.26(\mathrm{~m}, 1 \mathrm{H})$, $3.41(\mathrm{~d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}), 3.48(\mathrm{~d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}), 3.61(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}), 3.87(\mathrm{dd}, 1 \mathrm{H}, J=4.9,7.8$ $\mathrm{Hz}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~d}, 1 \mathrm{H}, J=17.5 \mathrm{~Hz}), 5.23(\mathrm{~d}, 1 \mathrm{H}, J=10.7 \mathrm{~Hz}), 5.96(\mathrm{dd}, 1 \mathrm{H}$,
$J=10.7,17.5 \mathrm{~Hz}), 7.36-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.64-7.66(\mathrm{~m}, 4 \mathrm{H}), 9.59(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}) \delta 19.2$, $19.5,19.9,20.4,26.4,26.7,26.9$ (3C), $32.8,34.9,38.2,42.7,44.5,47.7,48.2,53.1,64.0,65.2,65.3$, 115.1, 127.6 (4C), 129.5 (2C), 134.0 (2C), 135.6 (4C), 143.4, 166.3, 197.7; HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{NO}_{5} \mathrm{SSi}\left(\mathrm{M}^{+}-t-\mathrm{C}_{4} \mathrm{H}_{9}\right) m / z 578.2396$, found 578.2389.
(2R)-N-\{(E)-3-[((2E)-5-(1,3-Dioxolan-2-yl)-3-methylpent-2-en-1-yl)oxy]acryloyl\}bornane-10,2-sultam (17). As described for the preparation of $\mathbf{6}$, compound $\mathbf{5}(171 \mathrm{mg}, 640 \mu \mathrm{~mol})$ and $\mathbf{1 6}(121 \mathrm{mg}, 703 \mu \mathrm{~mol})$ were treated with $n-\mathrm{Bu}_{3} \mathrm{P}(24 \mu \mathrm{~L}, 97 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ to provide $222 \mathrm{mg}(79 \%)$ of $\mathbf{1 7}$ as a colorless oil: TLC $R_{f} 0.67$ (EtOAc/toluene, 1:3); $[\alpha]_{\mathrm{D}}{ }^{25}-59.7$ (c 1.16, CHCl_{3}); IR (neat) 2958, 2885, 1677, $1609 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}) \delta 0.97(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H})$, $1.77-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.91(\mathrm{~m}, 3 \mathrm{H}), 2.07(\mathrm{dd}, 1 \mathrm{H}, J=7.8,13.9 \mathrm{~Hz}), 2.14(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{t}, 2 \mathrm{H}$, $J=8.1 \mathrm{~Hz}), 3.43(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 3.48(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 3.84-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{dd}, 1 \mathrm{H}$, $J=5.0,7.8 \mathrm{~Hz}), 3.95-3.98(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{~d}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 4.86(\mathrm{t}, 1 \mathrm{H}, J=4.7 \mathrm{~Hz}), 5.41(\mathrm{t}, 1 \mathrm{H}$, $J=6.9 \mathrm{~Hz}), 5.96(\mathrm{~d}, 1 \mathrm{H}, J=12.1 \mathrm{~Hz}), 7.69(\mathrm{~d}, 1 \mathrm{H}, J=12.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}) \delta 16.7,19.9$, $20.8,26.5,31.8,32.7,33.6,38.5,44.6,47.7,48.2,53.0,64.9$ (2C), 65.0, 68.0, 97.0, 104.0, 117.8, 142.7, 163.3, 164.9; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{6} \mathrm{~S}\left(\mathrm{M}^{+}\right) m / z 439.2029$, found 439.2035.
(2R)-N-[(2R,3S)-5-(1,3-Dioxolan-2-yl)-2-formyl-3-methyl-3-vinylpentanoyl]bornane-10,2-sultam (18a) and (2R)-N-[(2S,3R)]-Isomer (18b). As described for the preparation of 7a and 7b from 6, a solution of $17(219 \mathrm{mg}, 498 \mu \mathrm{~mol})$ and BHT ($5.5 \mathrm{mg}, 25 \mu \mathrm{~mol})$ in toluene $(25 \mathrm{~mL})$ was heated at $140^{\circ} \mathrm{C}$ for 116 h to provide $159 \mathrm{mg}(73 \%)$ of $\mathbf{1 8 a}$ and $34.0 \mathrm{mg}(16 \%)$ of $\mathbf{1 8 b}$. Compound 18a was obtained as white crystals: $\mathrm{mp} 116-118{ }^{\circ} \mathrm{C}$; TLC $R_{f} 0.67$ (EtOAc/toluene, 1:2); $[\alpha]_{\mathrm{D}}{ }^{21}-119$ (c 1.34, CHCl_{3}); IR (neat) 2964, 2886, 1731, $1684 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}) \delta 0.98(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.43(\mathrm{~m}$, $2 \mathrm{H}), 1.53-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.96(\mathrm{~m}, 4 \mathrm{H}), 2.11-2.12(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{~d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz})$, $3.51(\mathrm{~d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}), 3.80-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.91-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{t}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 4.01(\mathrm{~d}, 1 \mathrm{H}$, $J=2.3 \mathrm{~Hz}), 4.81(\mathrm{t}, 1 \mathrm{H}, J=4.2 \mathrm{~Hz}), 5.08(\mathrm{~d}, 1 \mathrm{H}, J=17.5 \mathrm{~Hz}), 5.22(\mathrm{~d}, 1 \mathrm{H}, J=10.6 \mathrm{~Hz}), 5.89(\mathrm{dd}, 1 \mathrm{H}$, $J=10.6,17.5 \mathrm{~Hz}), 9.62(\mathrm{~d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}) \delta 19.7,19.9,20.8,26.4,28.0,32.0$, $33.0,38.5,44.8,45.0,47.7,48.1,53.2,64.9$ (2C), 65.4 (2C), 104.3, 115.6, 141.9, 167.4, 197.1; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{6} \mathrm{~S}\left(\mathrm{M}^{+}\right) m / z 439.2029$, found 439.2036. Compound 18b was obtained as a colorless oil: TLC $R_{f} 0.75$ (EtOAc/toluene, 1:2); $[\alpha]_{\mathrm{D}}{ }^{22}+10.4$ (c 1.67, CHCl_{3}); IR (neat) 2962, 2885, 1728, $1697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}) \delta 0.94(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.65$ (m, 2H), $1.74(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.94(\mathrm{~m}, 4 \mathrm{H}), 2.07(\mathrm{dd}, 1 \mathrm{H}, J=7.8,13.8 \mathrm{~Hz}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~d}, 1 \mathrm{H}$, $J=13.9 \mathrm{~Hz}), 3.48(\mathrm{~d}, 1 \mathrm{H}, J=13.9 \mathrm{~Hz}), 3.81-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.95(\mathrm{~m}, 3 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{t}$, $1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 5.12(\mathrm{~d}, 1 \mathrm{H}, J=17.5 \mathrm{~Hz}), 5.26(\mathrm{~d}, 1 \mathrm{H}, J=10.9 \mathrm{~Hz}), 5.98(\mathrm{dd}, 1 \mathrm{H}, J=10.9,17.5 \mathrm{~Hz})$, $9.61(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}) \delta 19.2,19.9,20.4,26.4,28.1,32.6,32.7,38.1,42.5,44.5,47.7$, 48.2, 53.0, 64.9 (2C), 65.2 (2C), 104.4, 115.5, 143.0, 166.2, 197.5; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{6} \mathrm{~S}\left(\mathrm{M}^{+}\right)$ $\mathrm{m} / \mathrm{z} 439.2029$, found 439.2032.
(2R)- N - $[(2 R, 3 S)-2-($ Acetoxymethyl $)$-3,7-dimethyl-3-vinyloct-6-enoyl]bornane-10,2-sultam (19a). To a cooled $\left(0^{\circ} \mathrm{C}\right)$ stirred solution of $7 \mathrm{a}(158 \mathrm{mg}, 375 \mu \mathrm{~mol})$ in $\mathrm{EtOH}(4 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(14.2 \mathrm{mg}$, $375 \mu \mathrm{~mol})$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 4 h , quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$, diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined extracts were dried
and concentrated under reduced pressure to provide crude alcohol (152 mg), which was used in the next step without further purification.

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ stirred solution of crude alcohol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ were added $\mathrm{Ac}_{2} \mathrm{O}(85 \mu \mathrm{~L}$, $0.90 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(150 \mu \mathrm{~L}, 1.08 \mathrm{mmol})$, and DMAP ($4.4 \mathrm{mg}, 36 \mu \mathrm{~mol}$). The mixture was stirred at room temperature for 2.5 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} \times 2)$. The combined aqueous layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The combined organic layer and extract were dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:15) to provide 137 mg (78% for 2 steps) of 19a as a colorless oil: TLC $R_{f} 0.61$ (EtOAc/hexane, 1:2); [$\left.\alpha\right]_{\mathrm{D}}{ }^{21}-38.4$ (c 1.46, CHCl_{3}); IR (neat) 2964, 2884, $1745,1690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}) \delta 0.96(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.47(\mathrm{~m}, 3 \mathrm{H})$, $1.55(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.64(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.92(\mathrm{~m}, 5 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.13(\mathrm{~m}, 2 \mathrm{H}), 3.35$ $(\mathrm{m}, 1 \mathrm{H}), 3.43(\mathrm{~d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}), 3.50(\mathrm{~d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}), 3.94(\mathrm{t}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 4.22(\mathrm{t}, 1 \mathrm{H}$, $J=10.6 \mathrm{~Hz}), 4.37(\mathrm{dd}, 1 \mathrm{H}, J=3.4,10.6 \mathrm{~Hz}), 5.01(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{~d}, 1 \mathrm{H}, J=17.5 \mathrm{~Hz}), 5.16(\mathrm{~d}, 1 \mathrm{H}$, $J=10.9 \mathrm{~Hz}$), $5.79(\mathrm{dd}, 1 \mathrm{H}, J=10.9,17.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}) \delta 17.5,17.8,20.0,20.4,20.9$, $22.3,25.6,26.5,32.9,38.6,38.7,43.3,44.5,47.7$ (2C), 52.2, 53.3, 63.0, 65.6, 114.5, 124.1, 131.5, 143.3, 171.0, 172.7; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{NO}_{5} \mathrm{~S}\left(\mathrm{M}^{+}\right) m / z 465.2549$, found 465.2556 .
(2R)-N-[(2S,3R)-2-(Acetoxymethyl)-3,7-dimethyl-3-vinyloct-6-enoyl]bornane-10,2-sultam (19b). As described for the preparation of $\mathbf{1 9 a}$ from $\mathbf{7 a}$, compound $\mathbf{7 b}(33.7 \mathrm{mg}, 79.9 \mu \mathrm{~mol})$ was treated with $\mathrm{NaBH}_{4}(1.5 \mathrm{mg}, 40 \mu \mathrm{~mol})$ in $\mathrm{EtOH}(1 \mathrm{~mL})$ to provide crude alcohol (37.0 mg), which was then treated with $\mathrm{Ac}_{2} \mathrm{O}(19 \mu \mathrm{~L}, 0.20 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(33 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$, and DMAP $(1.1 \mathrm{mg}, 9.0 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL) to provide 24.2 mg (65% for 2 steps) of $\mathbf{1 9 b}$ as a colorless oil: TLC $R_{f} 0.68$ (EtOAc/hexane, 1:2); $[\alpha]_{\mathrm{D}}{ }^{20}-54.7$ (c 1.06, CHCl_{3}); IR (neat) 2966, 2886, 1742, $1687 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}) \delta 0.97$ $(\mathrm{s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.48(\mathrm{~m}, 3 \mathrm{H}), 1.57(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{br} \mathrm{s}, 3 \mathrm{H})$, $1.86-1.93(\mathrm{~m}, 5 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{dd}, 1 \mathrm{H}, J=7.8,13.8 \mathrm{~Hz}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{dd}, 1 \mathrm{H}, J=3.7$, $10.6 \mathrm{~Hz}), 3.47(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 3.52(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 3.94(\mathrm{dd}, 1 \mathrm{H}, J=5.2,7.8 \mathrm{~Hz}), 4.06$ (t, $1 \mathrm{H}, J=10.6 \mathrm{~Hz}), 4.56(\mathrm{dd}, 1 \mathrm{H}, J=3.7,10.6 \mathrm{~Hz}), 5.02(\mathrm{~d}, 1 \mathrm{H}, J=17.4 \mathrm{~Hz}), 5.06(\mathrm{~m}, 1 \mathrm{H}), 5.16$ (d, $1 \mathrm{H}, J=11.3 \mathrm{~Hz}$), 5.84 (dd, $1 \mathrm{H}, J=11.3,17.4 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}) \delta 17.6,18.6,19.9,20.8$, 21.1, 22.5, 25.7, 26.3, 33.0, 37.9, 38.6, 42.4, 44.6, 47.7, 47.8, 52.0, 53.3, 64.6, 65.8, 114.2, 124.5, 131.2, 143.9, 170.6, 172.6; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{NO}_{5} \mathrm{~S}\left(\mathrm{M}^{+}\right) m / z 465.2549$, found 465.2558.
(2R)-N-[(2R,3S)-2-(Acetoxymethyl)-6-(tert-butyldiphenysilyloxy)-3-methyl-3-vinylhexanoyl]bornane-10,2-sultam (20a). As described for the preparation of 19a from 7a, compound 15a ($150 \mathrm{mg}, 236$ $\mu \mathrm{mol})$ was treated with $\mathrm{NaBH}_{4}(4.4 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{EtOH}(3 \mathrm{~mL})$ to provide crude alcohol $(152 \mathrm{mg})$, which was then treated with $\mathrm{Ac}_{2} \mathrm{O}(56 \mu \mathrm{~L}, 0.59 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(99 \mu \mathrm{~L}, 0.71 \mathrm{mmol})$, and DMAP ($3.0 \mathrm{mg}, 25 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ to provide $151 \mathrm{mg}(94 \%$ for 2 steps$)$ of $\mathbf{2 0 a}$ as a colorless oil: TLC $R_{f} 0.66$ (EtOAc/toluene, 1:5); [$\left.\alpha\right]_{\mathrm{D}}{ }^{23}-28.6\left(c 2.01, \mathrm{CHCl}_{3}\right.$); IR (neat) 2960, 2859, 1744, 1691 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}) \delta 0.92(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.46(\mathrm{~m}, 5 \mathrm{H})$, $1.72(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 2.06-2.09(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 3.41$ $(\mathrm{d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 3.47(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 3.54-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{t}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 4.22(\mathrm{t}, 1 \mathrm{H}$, $J=10.6 \mathrm{~Hz}), 4.36(\mathrm{dd}, 1 \mathrm{H}, J=3.4,10.6 \mathrm{~Hz}), 4.99(\mathrm{~d}, 1 \mathrm{H}, J=17.5 \mathrm{~Hz}), 5.13(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 5.75$ (dd, $1 \mathrm{H}, J=11.0,17.5 \mathrm{~Hz}), 7.35-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.63-7.64(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}) \delta 18.2,19.1$,
19.9, 20.5, 20.9, 26.5, 26.8 (3C), 27.0, 32.9, 34.4, 38.6, 43.0, 44.4, 47.6 (2C), 52.2, 53.3, 63.0, 64.1, $65.6,114.6,127.6$ (4C), 129.5 (2C), 133.9, 134.0, 135.5 (2C), 135.6 (2C), 143.2, 171.0, 172.6; HRMS calcd for $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{NO}_{6} \mathrm{SSi}\left(\mathrm{M}^{+}-t\right.$ - $\left.\mathrm{C}_{4} \mathrm{H}_{9}\right) m / z$ 622.2659, found 622.2677.

Synthesis of 19a from 20a. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ stirred solution of $\mathbf{2 0 a}(12.2 \mathrm{mg}, 17.9 \mu \mathrm{~mol})$ in THF (3 mL) was added HF-pyridine $(0.2 \mathrm{~mL})$. The mixture was stirred at room temperature for 5 h and quenched with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$. This was diluted with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 4)$. The combined extracts were dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:2) to provide 8.0 mg (quant.) of alcohol as white crystals: mp $113-115{ }^{\circ} \mathrm{C}$; TLC $R_{f} 0.24$ (EtOAc/hexane, 1:2); $[\alpha]_{\mathrm{D}}{ }^{20}-42.7$ (c $1.02, \mathrm{CHCl}_{3}$); IR (neat) $3529,2961,2882,1741,1690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}) \delta 0.97(\mathrm{~s}, 3 \mathrm{H})$, $1.09(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.58(\mathrm{~m}, 5 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.15$ $(\mathrm{m}, 2 \mathrm{H}), 3.37(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{~d}, 1 \mathrm{H}, J=13.9 \mathrm{~Hz}), 3.50(\mathrm{~d}, 1 \mathrm{H}, J=13.9 \mathrm{~Hz}), 3.54(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~m}$, $1 \mathrm{H}), 3.95(\mathrm{t}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}), 4.20(\mathrm{t}, 1 \mathrm{H}, J=10.7 \mathrm{~Hz}), 4.40(\mathrm{dd}, 1 \mathrm{H}, J=3.4,10.7 \mathrm{~Hz}), 5.02(\mathrm{~d}, 1 \mathrm{H}$, $J=17.5 \mathrm{~Hz}), 5.15(\mathrm{~d}, 1 \mathrm{H}, J=11.3 \mathrm{~Hz}), 5.80(\mathrm{dd}, 1 \mathrm{H}, J=11.3,17.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}) \delta 18.7$, $19.9,20.5,20.9,26.5,27.1,32.9,34.4,38.6,42.9,44.5,47.7$ (2C), 51.8, 53.3, 63.0, 63.1, 65.7, 114.5, 143.1, 171.2, 172.6; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{6} \mathrm{~S}\left(\mathrm{M}^{+}\right) m / z 441.2185$, found 441.2192 .

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ stirred solution of alcohol ($20.9 \mathrm{mg}, 47.3 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added Dess-Martin periodinane ($30.3 \mathrm{mg}, 71.4 \mu \mathrm{~mol}$). The mixture was stirred at room temperature for 2 h and Dess-Martin periodinane ($31.1 \mathrm{mg}, 73.3 \mu \mathrm{~mol}$) was added. After being stirred at room temperature for 2.5 h , the mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$, diluted with $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL} \times 3)$. The combined extracts were washed with saturated brine (20 mL), dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:7) to provide 20.8 mg (quant.) of aldehyde as a colorless oil, which was immediately used in the next step: TLC $R_{f} 0.33$ (EtOAc/hexane, 1:2); ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}) \delta 0.97(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.33-1.48(\mathrm{~m}$, $4 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.89-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 3.38$ $(\mathrm{m}, 1 \mathrm{H}), 3.44(\mathrm{~d}, 1 \mathrm{H}, J=13.9 \mathrm{~Hz}), 3.52(\mathrm{~d}, 1 \mathrm{H}, J=13.9 \mathrm{~Hz}), 3.95(\mathrm{t}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}), 4.21(\mathrm{t}, 1 \mathrm{H}$, $J=10.7 \mathrm{~Hz}), 4.37(\mathrm{dd}, 1 \mathrm{H}, J=3.6,10.7 \mathrm{~Hz}), 5.05(\mathrm{~d}, 1 \mathrm{H}, J=17.5 \mathrm{~Hz}), 5.20(\mathrm{~d}, 1 \mathrm{H}, J=10.7 \mathrm{~Hz}), 5.78$ (dd, $1 \mathrm{H}, J=10.7,17.5 \mathrm{~Hz}$), $9.73(\mathrm{~s}, 1 \mathrm{H})$.

The following reaction was carried out under Ar. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ stirred suspension of $i-\mathrm{PrP}^{+} \mathrm{Ph}_{3} \mathrm{I}^{-}(21.9 \mathrm{mg}, 49.1 \mu \mathrm{~mol})$ in THF $(1 \mathrm{~mL})$ was added $t-\mathrm{BuLi}(1.61 \mathrm{M}$ solution in pentane, $29 \mu \mathrm{~L}, 47 \mu \mathrm{~mol})$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min and a solution of aldehyde $(6.9 \mathrm{mg}$, $16 \mu \mathrm{~mol})$ in THF (1 mL) was added. After being stirred at $0^{\circ} \mathrm{C}$ for 20 min , the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL} \times 3)$. The combined extracts were dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:15) to provide 3.3 mg (45%) of $\mathbf{1 9 a}$.
(2R)-N-[(2R,3S)-2-(Acetoxymethyl)-5-(1,3-dioxolan-2-yl)-3-methyl-3-vinylpentanoyl]bornane-10,2-sultam (21a). As described for the preparation of 19a from 7a, compound 18a ($154 \mathrm{mg}, 350 \mu \mathrm{~mol}$) was treated with $\mathrm{NaBH}_{4}(6.5 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{EtOH}(3 \mathrm{~mL})$ to provide crude alcohol (158 mg), which was then treated with $\mathrm{Ac}_{2} \mathrm{O}(83 \mu \mathrm{~L}, 0.88 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(146 \mu \mathrm{~L}, 1.05 \mathrm{mmol})$, and DMAP ($4.4 \mathrm{mg}, 36 \mu \mathrm{~mol}$)
in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ to provide $150 \mathrm{mg}\left(88 \%\right.$ for 2 steps) of 21a as a colorless oil: TLC $R_{f} 0.65$ (EtOAc/toluene, 1:2); $[\alpha]_{\mathrm{D}}{ }^{21}-39.5$ (c 1.02, CHCl_{3}); IR (neat) 2962, 2884, 1743, $1690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $(500 \mathrm{MHz}) \delta 0.97(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.60(\mathrm{~m}$, $2 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.91(\mathrm{~m}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.18(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~d}, 1 \mathrm{H}$, $J=13.7 \mathrm{~Hz}), 3.50(\mathrm{~d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}), 3.78-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.91-3.95(\mathrm{~m}, 3 \mathrm{H}), 4.22(\mathrm{t}, 1 \mathrm{H}, J=10.7 \mathrm{~Hz})$, $4.38(\mathrm{dd}, 1 \mathrm{H}, J=3.5,10.7 \mathrm{~Hz}), 4.76(\mathrm{t}, 1 \mathrm{H}, J=4.6 \mathrm{~Hz}), 5.01(\mathrm{~d}, 1 \mathrm{H}, J=17.5 \mathrm{~Hz}), 5.17(\mathrm{~d}, 1 \mathrm{H}$, $J=10.7 \mathrm{~Hz}), 5.77(\mathrm{dd}, 1 \mathrm{H}, J=10.7,17.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}) \delta 18.1,20.0,20.5,20.9,26.5$, $28.3,32.3,32.9,38.6,42.8,44.5,47.7$ (2C), 52.2, 53.3, 63.0, 64.7, 64.8, 65.6, 104.5, 114.9, 142.9, 171.0, 172.5; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NO}_{7} \mathrm{~S}\left(\mathrm{M}^{+}\right) m / z 483.2291$, found 483.2291.

Synthesis of 19a from 21a. A solution of 21a ($80.5 \mathrm{mg}, 166 \mu \mathrm{~mol}$) in THF (12 mL) and 4 M aqueous $\mathrm{HCl}(12 \mathrm{~mL})$ was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 h , diluted with saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL} \times 3)$. The combined extracts were dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:7) to provide $58.2 \mathrm{mg}(80 \%)$ of aldehyde, which was identical with the aldehyde derived from 20a and converted into 19a as described above.

4. Conclusions

In conclusion, we have developed an asymmetric Claisen rearrangement using Oppolzer's camphorsultam as a chiral auxiliary. Notably, rearrangement products 7a, 15a, and 18a possess a chiral quaternary carbon with high enantiomeric purity. In addition, this method has been applied to the total synthesis of (+)-bakuchiol (4). Further studies and applications of this work to natural product synthesis are in progress and will be reported in due course.

References

1. Corey, E.J.; Guzman-Perez, A. The catalytic enantioselective construction of molecules with quaternary carbon stereocenters. Angew. Chem. Int. Ed. 1998, 37, 388-401.
2. Denissova, I.; Barriault, L. Stereoselective formation of quaternary carbon centers and related functions. Tetrahedron 2003, 59, 10105-10146.
3. Trost, B.M.; Jiang, C. Catalytic enantioselective construction of all-carbon quaternary stereocenters. Synthesis 2006, 369-396.
4. Bystrov, N.S.; Chernov, B.K.; Dobrynin, V.N.; Kolosov, M.N. The structure of hyperforin. Tetrahedron Lett. 1975, 16, 2791-2794.
5. Wu, J.; Cheng, X.-F.; Harrison, L.J.; Goh, S.-H.; Sim, K.-Y. A phloroglucinol derivative with a new carbon skeleton from Hypericum perforatum (Guttiferae). Tetrahedron Lett. 2004, 45, 9657-9659.
6. Takao, K.; Kojima, Y.; Miyashita, T.; Yashiro, K.; Yamada, T.; Tadano, K. Enantioselective synthesis of a 3,5,5-trialkylated tetronic acid derivative. Heterocycles 2009, 77, 167-172.
7. Kawazu, K. Isolation of vibsanins A, B, C, D, E and F from Viburnum odoratissimum. Agric. Biol. Chem. 1980, 44, 1367-1372.
8. Mehta, G.; Nayak, U.R.; Dev, S. Bakuchiol, A novel monoterpenoid. Tetrahedon Lett. 1966, 7, 4561-4567.
9. Takano, S.; Shimazaki, Y.; Ogasawara, K. Enantiocontrolled synthesis of natural (+)-bakuchiol. Tetrahedron Lett. 1990, 31, 3325-3326.
10. Du, X.-L.; Chen, H.-L.; Feng, H.-J.; Li, Y.-C. Stereoselective total synthesis of natural (S)-bakuchiol and its enantiomer. Helv. Chim. Acta 2008, 91, 371-378.
11. Esumi, T.; Shimizu, H.; Kashiyama, A.; Sasaki, C.; Toyota, M.; Fukuyama, Y. Efficient construction of a chiral all-carbon quaternary center by asymmetric 1,4-addition and its application to total synthesis of (+)-bakuchiol. Tetrahedron Lett. 2008, 49, 6846-6849.
12. Bequette, J.P.; Jungong, C.S.; Novikov, A.V. Enantioselective synthesis of bakuchiol using diazosulfonate C-H insertion to install the quaternary center. Tetrahedron Lett. 2009, 50, 6963-6964.
13. Gao, F.; McGrath, K.P.; Lee, Y.; Hoveyda, A.H. Synthesis of quaternary carbon stereogenic centers through enantioselective Cu -catalyzed allylic substitutions with vinylaluminum reagents. J. Am. Chem. Soc. 2010, 132, 14315-14320.
14. Ito, H.; Taguchi, T. Asymmetric Claisen rearrangement. Chem. Soc. Rev. 1999, 28, 43-50.
15. Martín Castro, A.M. Claisen rearrangement over the past nine decades. Chem. Rev. 2004, 104, 2939-3002.
16. Takao, K.; Hayakawa, N.; Yamada, R.; Yamaguchi, T.; Morita, U.; Kawasaki, S.; Tadano, K. Total synthesis of (-)-pestalotiopsin A. Angew. Chem. Int. Ed. 2008, 47, 3426-3429.
17. Takao, K.; Hayakawa, N.; Yamada, R.; Yamaguchi T.; Saegusa, H.; Uchida, M.; Samejima, S.; Tadano, K. Total syntheses of (+)- and (-)-pestalotiopsin A. J. Org. Chem. 2009, 74, 6452-6461.
18. Fonquerna, S.; Moyano, A.; Pericàs, M.A.; Riera, A. A convenient preparation of N-(2-alkynoyl) derivatives of chiral oxazolidin-2-ones and bornane-10,2-sultam. Tetrahedron: Asymmetry 1997, 8, 1685-1691.
19. Inanaga, J.; Baba, Y.; Hanamoto, T. Organic synthesis with trialkylphosphine catalysts. Conjugate addition of alcohols to α, β-unsaturated alkynic acid esters. Chem. Lett. 1993, 22, 241-244.
20. In contrast, the use of Evans' oxazolidinone (4-benzyl-2-oxazolidinone) as the chiral auxiliary for the Claisen rearrangement gave no stereoselectivity ($\mathrm{dr}=1.2: 1$).
21. Chen, H.; Du, X.; Tang, W.; Zhou, Y.; Zuo, J.; Feng, H.; Li, Y. Synthesis and structure-immunosuppressive activity relationships of bakuchiol and its derivatives. Bioorg. Med. Chem. 2008, 16, 2403-2411.
22. Carnduff, J.; Miller, J.A. The synthesis of (\pm)-bakuchiol. J. Chem. Soc. C 1968, 2671-2673.
23. Kim, G.T.; Wenz, M.; Park, J.I.; Hasserodt, J.; Janda, K.D. Polyene substrates with unusual methylation patterns to probe the active sites of three catalytic antibodies. Bioorg. Med. Chem. 2002, 10, 1249-1262.
24. Oppolzer, W.; Poli, G.; Starkemann, C.; Bernardinelli, G. Stable and reactive conformations of N-enoyl-bornane-10,2-sultams in the absence of Lewis acids: Asymmetric 1,4-hydride additions. Tetrahedron Lett. 1988, 29, 3559-3562.

Sample Availability: Not available.

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

