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Abstract: A series of 4-aryl-6-methyl-3,4-dihydro-2H-pyrano[3,2-c]quinolin-2,5(6H)-diones 

were synthesized via the three-component reactions of aromatic aldehydes, 4-hydroxy-1-

methylquinolin-2(1H)-one, and Meldrum’s acid catalyzed by L-proline. The structures of 

the products were identified by spectroscopic analysis. A mechanism for this three-component 

reaction catalyzed by L-proline was proposed. 
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1. Introduction 

Multicomponent reactions (MCRs) play an increasingly important role in organic and medical 

chemistry for their high degree of atom economy, convergence, productivity, easy execution, generally 

excellent yields and broad applications in combinatorial chemistry [1]. MCRs are highly efficient strategies 

to achieve the rapid assembly of complex products, especially sequential carbon-carbon and carbon-

heteroatom bond-forming reactions in the area of heterocycles and natural products [2–4]. 

Pyranoquinolines and their derivatives have been reported to possess antidiabetic activities [5] and 

pure calcium channel blocking activities [6]. A few methods have been reported for the synthesis  
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of pyranoquinoline derivatives from 3-oxopropanoic acid [7], or by a MCRs of malononitrile  

(or cyanoacetate) with aldehydes and 4-hydroxyl-1,2-dihydroquinolin-2-one (or 8-hydroxyquinoline) 

in the presence of KF-Al2O3 [8–10], TEA [11] and NEt3 [12] as catalysts under reflux or microwave 

irradiation conditions. 

In recent years, the use of L-proline in different organic reactions has drawn much interest because 

of its experimental simplicity, ease of handing, cost effectiveness, and excellent solubility in water and 

organic solvents [13–17]. L-proline is a very efficient catalyst in transformations such as enamine-based 

direct catalytic asymmetric aldol condensations [18,19], Mannich reactions [20,21], Diels-Alder 

reactions [22] and Michael additions [23]. Proline has also been used as a catalyst for two-carbon 

homologation and in various one-pot multicomponent reactions [24–26]. As continuation of our 

interest in developing new methodologies for the preparation of heterocyclic compounds, herein we 

report a mild and highly efficient protocol for the synthesis of 3,4-dihydro-2H-pyrano[3,2-c]quinolin-

2,5(6H)-diones catalyzed by L-proline. 

2. Results and Discussion 

Initially, the three-component reaction of 4-methoxybenzaldehyde (1a), 4-hydroxy-1-methylquinolin- 

2(1H)-one (2), and Meldrum’s acid (3) was investigated as a model reaction to establish the feasibility 

of the strategy and to optimize the reaction conditions (Scheme 1). The effects of solvents and catalyst 

loading were evaluated for this model reaction, and the results are summarized in Table 1. 

Scheme 1. The model reaction. 

 

 

Table 1. Optimization of reaction conditions. 

Entry Solvents Catalyst (mol%) Temperature (°C) Time (h) Yield (%) 

1 EtOH No reflux 5 45 
2 EtOH L-proline (10%) reflux 1 91 
3 CH3CN L-proline (10%) reflux 2 70 
4 CHCl3 L-proline (10%) reflux 2 63 
5 HOAc L-proline (10%) 100 2 80 
6 DMF L-proline (10%) 100 2 52 
7 H2O L-proline (10%) reflux 4 45 
8 EtOH L-proline (5%) reflux 2 75 
9 EtOH L-proline (15%) reflux 1 90 

10 EtOH L-proline (20%) reflux 1 91 

It was found that when the reaction was carried out without any catalyst, only a modest amount of 

product was obtained, even after 5 h (Table 1, entry 1). When the reaction was conducted in the 
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presence of L-proline (10 mol%) in ethanol, the target compound 4a was obtained in 91% yield (Table 1, 

entry 2). Other solvents were also used in this reaction. The results indicated that ethanol provided 

much better results than acetonitrile, chloroform, acetic acid, N,N-dimethylformamide (DMF), and 

water (Table 1, entries 2–7). 

To optimize the catalyst loading, 5 mol%, 10 mol%, 15 mol%, and 20 mol% of L-proline were 

tested in the reactions, respectively (Table 1, entries 2, and 8–10). A 10 mol% loading of L-proline was 

sufficient to efficiently push the reaction forward, while 5 mol% of L-proline was not enough. Higher 

amounts of L-proline did not lead to significant changes in the reaction yields. With these optimum 

conditions in hand, a series of 4-aryl-6-methyl-3,4-dihydro-2H-pyrano[3,2-c]quinolin-2,5(6H)-dione 

derivatives were synthesized via three-component reactions of aromatic aldehydes 1, 4-hydroxy-1-

methylquinolin-2(1H)-one (2), and Meldrum’s acid (3) in ethanol in the presence of L-proline (Scheme 2). 

The results sare summarized in Table 2. 

Scheme 2. Synthesis of 4-aryl-6-methyl-3,4-dihydro-2H-pyrano[3,2-c]quinolin-2,5(6H)-diones 4. 
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Table 2. Synthesis of pyrano[3,2-c]quinoline-2,5-diones 4 catalyzed by L-proline 

Entry Ar Product Time (h) Yield (%) 

1 4-CH3OC6H4 4a 2 91 
2 4-BrC6H4 4b 1 94 
3 4-HOC6H4 4c 1 95 
4 4-(CH3)2NC6H4 4d 1.5 93 
5 Thiophen-2-yl 4e 2 92 
6 3-ClC6H4 4f 1.5 95 
7 4-ClC6H4 4g 1 92 
8 4-FC6H4 4h 2 90 
9 3,4-(CH3)2C6H3 4i 2.5 91 

As shown in Table 2, this protocol could be applied not only to the aromatic aldehydes with 

electron-withdrawing groups (such as halides), but also to the aromatic aldehydes with electron-donating 

groups (such as alkyl and hydroxy groups) therefore, we concluded that the electronic nature of the 

substituents of aromatic aldehydes has no significant effect on this reaction. 

The structures of the compound 4 were identified by their spectroscopic analysis. Thus, the infrared 

(IR) spectra of compound 4 measured in potassium bromide pellets showed two bands for the stretching 

vibrations of the C=O groups at 1,653–1,658 and 1,773–1,783 cm−1, respectively. In the 1H-NMR 

spectra of compounds 4 measured in dimethyl sulfoxide-d6, the quinoline N-CH3 proton signals at 

3.64–3.69 ppm, the CH2 proton signals at 2.89–3.11 and 3.42–3.55 ppm, the CH proton signals at 

4.44–4.81 ppm, and the aromatic proton signals at 6.64–7.95 ppm were observed. 
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Although the detailed mechanism of above reaction remains to be fully clarified, the formation of 

compounds 4 could be explained by a reaction sequence presented in Scheme 3. We propose that the 

reaction procees via a reaction sequence of condensation, addition, cyclization, and elimination. We 

suggest that L-proline may catalyze the formation of iminium ion 5 in a reversible reaction with 

aldehydes 1. The higher reactivity of the iminium ion compared with the carbonyl species could 

facilitate Knovenagel condensation between aldehyde 1 and Meldrum’s acid (3) via intermediate 6, 

and after elimination of L-proline, compound 7 might be produced as an intermediate. Then, 

intermediate 7 is attacked via Michael addition of 4-hydroxy-1-methylquinolin-2(1H)-one (2) to give 

the intermediate 8, which is followed by the cycloaddition and loss of acetone and carbon dioxide to 

form the desired products 4. 

Scheme 3. Proposed mechanism for the formation of pyrano[3,2-c]quinoline-2,5-diones 4. 
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3. Experimental 

General 

All reagents were purchased from commercial sources and used without further purification. 

Melting points were measured on an Electrothermal XT-5 apparatus. IR spectra were recorded on a Varian 

F-1000 spectrometer in KBr with absorptions given in cm−1. 1H-NMR spectra were determined on a 

Varian Invoa-400 MHz spectrometer in DMSO-d6 solutions. J values are in Hz. Chemical shifts are 

expressed in ppm downfield from internal standard TMS. HRMS data were obtained using a TOF-MS 

instrument (Micromass Inc., Manchester, UK). 

General Procedure for the Synthesis of 4-Aryl-6-methyl-3,4-dihydro-2H-pyrano[3,2-c]quinolin-2,5(6H)- 

diones 4 

A mixture of aromatic aldehyde 1 (1 mmol), 4-hydroxy-1-methylquinolin-2(1H)-one (2, 0.175 g,  

1 mmol), Meldrum’s acid (3, 1 mmol), L-proline (0.0115 g, 0.1 mmol) and ethanol (2 mL) in a 50 mL 
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round bottom flask was stirred at 80 °C for 1–2.5 h. At the end of the reaction, the mixture was cooled 

to room temperature. The precipitate was collected by filtration and purified by recrystallization from 

EtOH and DMF to give products 4. 

4-(4-Methoxyphenyl)-6-methyl-3,4-dihydro-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione (4a). White 

solid; m.p. 192–194 °C. IR: 3041 (C-H Ar), 2924 (C-H aliph), 1782 (C=O), 1654 (C=O), 1600 (C=C), 

1514 (ArC=C), 1380 (C-H CH3), 1252 (C-O); 1H-NMR: δ (ppm) 2.92 (d, J = 16.0 Hz, 1H, CH2), 3.46 

(dd, J1 = 7.6 Hz, J2 = 16.0 Hz, 1H, CH2), 3.64 (s, 3H, CH3), 3.69 (s, 3H, OCH3), 4.51 (d, J = 7.2 Hz, 

1H, CH), 6.86 (d, J = 8.4 Hz, 2H, ArH), 7.09 (d, J = 8.8 Hz, 2H, ArH), 7.40 (t, J1 = 8.0 Hz, J2 = 7.2 

Hz, 1H, ArH), 7.64 (d, J = 8.8 Hz, 1H, ArH), 7.75 (t, J1 = 7.6 Hz, J2 = 7.2 Hz, 1H, ArH), 7.93 (d,  

J = 8.0 Hz, 1H, ArH); HRMS calculated for C20H17NO4 [M]+: 335.1158, Found 335.1158. 

4-(4-Bromophenyl)-6-methyl-3,4-dihydro-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione (4b). White solid; 

m.p. 239–241 °C. IR: 3024 (C-H Ar), 2928 (C-H aliph), 1778 (C=O), 1655 (C=O), 1596 (C=C), 1503 

(ArC=C), 1384 (C-H CH3), 1209 (C-O); 1H-NMR: δ (ppm) 2.96 (d, J = 16.0 Hz, 1H, CH2), 3.52  

(dd, J1 = 7.6 Hz, J2 = 16.0 Hz, 1H, CH2), 3.65 (s, 3H, CH3), 4.56 (d, J = 7.2 Hz, 1H, CH), 7.16 (d,  

J = 8.4 Hz, 2H, ArH), 7.41 (t, J1 = 7.6 Hz, J2 = 7.2 Hz, 1H, ArH), 7.51 (d, J = 8.4 Hz, 2H, ArH), 7.66 

(d, J = 8.8 Hz, 1H, ArH), 7.76 (t, J1 = 7.6 Hz, J2 = 8.4 Hz, 1H, ArH), 7.95 (d, J = 8.0 Hz, 1H, ArH); 

HRMS calculated for C19H14NO3
79Br [M]+: 383.0157, Found 383.0148. 

4-(4-Hydroxyphenyl)-6-methyl-3,4-dihydro-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione (4c). White solid; 

m.p. > 300 °C. IR: 3282 (O-H), 3013 (C-H Ar), 1781 (C=O), 1653 (C=O), 1600 (C=C), 1517 

(ArC=C), 1385 (C-H CH3), 1202 (C-O); 1H-NMR: δ (ppm) 2.90 (d, J = 16.0 Hz, 1H, CH2), 3.43 (dd, 

J1 = 7.2 Hz, J2 = 15.6 Hz, 1H, CH2), 3.65 (s, 3H, CH3), 4.56 (d, J = 6.8 Hz, 1H, CH), 6.69 (d, J = 8.4 

Hz, 2H, ArH), 6.97 (d, J = 8.4 Hz, 2H, ArH), 7.40 (t, J1 = 7.6 Hz, J2 = 7.6 Hz, 1H, ArH), 7.64 (d,  

J = 8.8 Hz, 1H, ArH), 7.75 (t, J1 = 8.4 Hz, J2 = 7.6 Hz, 1H, ArH), 7.93 (d, J = 8.0 Hz, 1H, ArH), 9.37 

(s, 1H, OH); HRMS calculated for C19H15NO4 [M]+: 321.1001, Found 321.1001. 

4-(4-Dimethylaminophenyl)-6-methyl-3,4-dihydro-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione (4d). White 

solid; m.p. 220–222 °C. IR: 2981 (C-H aliph), 2798 (C-H aliph), 1773 (C=O), 1654 (C=O), 1598 

(C=C), 1519 (ArC=C), 1382 (C-H CH3), 1208 (C-O); 1H-NMR: δ (ppm) 2.83 (s, 6H, 2 × CH3), 2.90 

(d, J = 16.0 Hz, 1H, CH2), 3.42 (dd, J1 = 7.6 Hz, J2 = 16.0 Hz, 1H, CH2), 3.65 (s, 3H, CH3), 4.44 (d,  

J = 6.8 Hz, 1H, CH), 6.64 (d, J = 8.0 Hz, 2H, ArH), 6.98 (d, J = 8.4 Hz, 2H, ArH), 7.40 (t, J1 = 8.0 Hz, 

J2 = 7.2 Hz, 1H, ArH), 7.64 (d, J = 8.8 Hz, 1H, ArH), 7.73 (t, J1 = 7.6 Hz, J2 = 8.0 Hz, 1H, ArH), 7.93 

(d, J = 8.0 Hz, 1H, ArH); HRMS calculated for C21H20N2O3 [M]+: 348.1474, Found 348.1478. 

6-Methyl-4-(thiophen-2-yl)-3,4-dihydro-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione (4e). White solid; 

m.p. 243–244 °C. IR: 3040 (C-H Ar), 2947 (C-H aliph), 1774 (C=O), 1658 (C=O), 1596 (C=C), 1587 

(ArC=C), 1213 (C-O); 1H-NMR: δ (ppm) 3.11 (d, J = 15.2 Hz, 1H, CH2), 3.51–3.55 (m, 1H, CH2), 

3.69 (s, 3H, CH3), 4.81 (d, J = 1.2 Hz, 1H, CH), 6.93 (d, J = 18.0 Hz, 2H, ArH), 7.39 (d, J = 5.6 Hz, 

2H, ArH), 7.67 (s, 1H, ArH), 7.76 (s, 1H, ArH), 7.92 (s, 1H, ArH); HRMS calculated for C17H13NO3S 

[M]+: 311.0616, Found 311.0612. 
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4-(3-Chlorophenyl)-6-methyl-3,4-dihydro-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione (4f). White solid; 

m.p. 232–233 °C. IR: 3054 (C-H Ar), 2939 (C-H aliph), 1783 (C=O), 1654 (C=O), 1594 (C=C), 1387 

(C-H CH3), 1205 (C-O); 1H-NMR: δ (ppm) 2.99 (d, J = 16.0 Hz, 1H, CH2), 3.52 (dd, J1 = 7.6 Hz,  

J2 = 16.4 Hz, 1H, CH2), 3.65 (s, 3H, CH3), 4.59 (d, J = 6.8 Hz, 1H, CH), 7.11 (d, J = 5.6 Hz, 1H, ArH), 

7.30–7.36 (m, 3H, ArH), 7.41 (t, J1 = 7.6 Hz, J2 = 7.6 Hz, 1H, ArH), 7.65 (d, J = 8.4 Hz, 1H, ArH), 

7.76 (t, J1 = 7.2 Hz, J2 = 7.6 Hz, 1H, ArH), 7.94 (d, J = 8.0 Hz, 1H, ArH); HRMS calculated for 

C19H14NO3
35Cl [M]+: 339.0662, found 339.0648. 

4-(4-Chlorophenyl)-6-methyl-3,4-dihydro-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione (4g). White solid; 

m.p. 227–228 °C. IR: 3083 (C-H Ar), 2935 (C-H aliph), 1779 (C=O), 1657 (C=O), 1593 (C=C), 1385 

(C-H CH3), 1207 (C-O); 1H-NMR: δ (ppm) 2.97 (d, J = 16.0 Hz, 1H, CH2), 3.52 (dd, J1 = 7.6 Hz,  

J2 = 16.0 Hz, 1H, CH2), 3.65 (s, 3H, CH3), 4.58 (d, J = 7.2 Hz, 1H, CH), 7.22 (d, J = 8.4 Hz, 2H, ArH), 

7.37 (d, J = 8.4 Hz, 2H, ArH), 7.42 (d, J = 7.6 Hz, 1H, ArH), 7.66 (d, J = 8.8 Hz, 1H, ArH), 7.76  

(t, J1 = 7.2 Hz, J2 = 8.4 Hz, 1H, ArH), 7.95 (d, J = 8.0 Hz, 1H, ArH); HRMS calculated for 

C19H14NO3
35Cl [M]+: 339.0662, Found 339.0654. 

4-(4-Fluorophenyl)-6-methyl-3,4-dihydro-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione (4h). White solid; 

m.p. 230–231 °C. IR: 3076 (C-H Ar), 2923 (C-H aliph), 1777 (C=O), 1656 (C=O), 1598 (C=C), 1506 

(ArC=C), 1386 (C-H CH3), 1214 (C-O); 1H-NMR: δ (ppm) 2.96 (d, J = 16.0 Hz, 1H, CH2), 3.50 (dd, 

J1 = 7.6 Hz, J2 = 16.0 Hz, 1H, CH2), 3.64 (s, 3H, CH3), 4.58 (d, J = 7.2 Hz, 1H, CH), 7.13 (t, J1 = 8.4 Hz, 

J2 = 8.8 Hz, 2H, ArH), 7.23 (t, J1 = 7.6 Hz, J2 = 8.4 Hz, 2H, ArH), 7.40 (t, J1 = 7.6 Hz, J2 = 7.6 Hz, 

1H, ArH), 7.64 (d, J = 8.4 Hz, 1H, ArH), 7.75 (t, J1 = 7.2 Hz, J2 = 8.4 Hz, 1H, ArH), 7.93 (d, J = 8.0 Hz, 

1H, ArH); HRMS calculated for C19H14NO3F [M]+: 323.0958, Found 323.0961. 

4-(3,4-Dimethylphenyl)-6-methyl-3,4-dihydro-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione (4i). White solid; 

m.p. 170–171 °C. IR: 3010 (C-H Ar), 2939 (C-H aliph), 1777 (C=O), 1654 (C=O), 1596 (C=C), 1462 

(ArC=C), 1382 (C-H CH3), 1215 (C-O); 1H-NMR: δ (ppm) 2.15 (s, 6H, 2 × CH3 ), 2.89 (d, J = 16.0 Hz, 

1H, CH2), 3.46 (dd, J1 = 8.0 Hz, J2 = 15.6 Hz, 1H, CH2), 3.64 (s, 3H, CH3), 4.48 (d, J = 6.4 Hz, 1H, 

CH), 6.84 (d, J = 7.6 Hz, 1H, ArH), 6.96 (s, 1H, ArH), 7.04 (d, J = 7.6 Hz, 1H, ArH), 7.41 (t,  

J1 = 8.0 Hz, J2 = 7.2 Hz, 1H, ArH), 7.64 (d, J = 8.4 Hz, 1H, ArH), 7.75 (t, J1 = 7.2 Hz, J2 = 8.4 Hz, 1H, 

ArH), 7.94 (d, J = 8.0 Hz, 1H, ArH); HRMS calculated for C21H19NO3 [M]+: 333.1365, Found 333.1367. 

4. Conclusions 

In summary, we have developed an efficient synthesis of 4-aryl-6-methyl-3,4-dihydro-2H-pyrano 

[3,2-c]quinolin-2,5(6H)-diones via the three-component reactions of aromatic aldehydes, 4-hydroxy-1-

methylquinolin-2(1H)-one, and Meldrum’s acid catalyzed by L-proline. This protocol has the advantages 

of easy work up, mild reaction conditions, and high yields. In view of the potential biological activities 

of these molecules, further biomedical screening work is in progress in our laboratories. 
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