
Supporting Information 

S1. Comparison of the Performance between the SVA and the CS2-cast Treated Devices 

The polymer solar cells were manufactured on patterned ITO-coated glass substrates. The ITO 

surface was modified by spin-coating PEDOT:PSS (Baytron P VP A1 4083) with a thickness of 40 nm, 

followed by baking in air at 150 C for 15 min. Photoactive layers were obtained by spin-coating the 

blend solution (1,000 rpm, 30 s). The SVA treatment was performed by keeping the substrate coated 

from the o-dichlorobenzene (o-DCB) solution of P3HT-PC61BM mixture in Petri dishes under the 

o-DCB atmosphere for 1 h. The films coated from the CS2 solutions were dried in open atmosphere to 

obtain the un-annealed photoactive layer (referred to as the CS2-casted film). The cathode consisted of 

20 nm of calcium and 100 nm of aluminum, which were thermally evaporated to the top of the 

photoactive layer with a shadow mask to define an active area of 0.04 cm2. The current-voltage curves 

were measured under 100 mW/cm2 standard AM 1.5 G spectrum using a solar simulator (XES-70S1, San-Ei 

Electric Co. Ltd., Osaka, Japan); AAA grade, 70 × 70 mm2 photo-beam size), for which a 2 × 2 cm2 

monocrystalline silicon cell (SRC-1000-TC-Q; VLSI Standards Inc., Milpitas, CA, USA) was used for 

reference. All the electrical measurements were performed in a nitrogen-filled glove box at  

room temperature. 

Figure S1. (a) I-V characteristics of SVA and CS2-casted P3HT/PC61BM devices under the 

illumination of AM 1.5G from a solar simulator (100 mW/cm−2). (b) EQE curves of the 

corresponding polymer solar cells. 
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Table S1. Photovoltaic properties of SVA and CS2-casted P3HT/PC61BM devices. 

Devices Voc(V) Jsc (mA/cm2) FF (%) PCE (%) 

P3HT/PCBM (CS2 casted) 0.64 1.31 31.9 0.27 
P3HT/PCBM (SVA annealed) 0.62 8.60 54.1 2.86 
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S2. Log-log Plots of Recombination Kinetics 

Figure S2. Log-log plots of the kinetics probed at 1,000 nm under the indicated excitation 

wavelengths (ex) and photon fluences (in photonscm−3pulse−1) for the SVA blend film of 

P3HT/PC61BM (1:1, w/w). Solid lines are the best fits to the power law, ΔOD(t) = At−. 

Vertical dashed lines indicate the occurrence of the delay time of t = 70 ps. (cf Figure 2a of 

the main text.) 

 

S3. Power-law Exponent Plot Against Hole Concentration (the -Plot) 

Figure S3. Plot of power-law exponent (ΔOD(t) = At−) against the hole concentration at  

t = 1 ns for the SVA and the CS2-casted blend P3HT/PC61BM films (1:1, w/w) under the 

excitation wavelengths of 620 nm or 460 nm. The hole concentration were calculated from 

the OD amplitudes at t = 1 ns, for which the extinction coefficients of hole at 1,000 nm 

and of exciton at 1,200 nm were assumed to be the same [S1]. The solid and the dashed lines 

are for guiding the eyes. 
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S4. Bimolecular Recombination Rate and Mobility of Hole 

The rate equation of bimolecular charge recombination (CR) reaction can be written as [S2]. 
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where bi stands for the bimolecular CR rate, and n(t) represents the hole concentration that follows the 

Beer-Lambert relation 
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where NA is Avogadro’s constant, and d and h denote the film thickness (190 nm) and the extinction 

coefficient of hole (h = 3 × 104 M1cm1) [S3], respectively. Combine Equations (1) and (2), we have 
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Since the hole dynamics in 70~1500 ps obey the power law, OD(t)= At, it follows that 
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Following the Langevin hole-limited bimolecular CR model [S4], the hole mobility (h) reads 

h 0 bi( ) ( ) /t t e      ,                       (S6) 

where 0 and , respectively, are the vacuum permittivity and the dielectric constant of the 

P3HT/PC61BM blend, and e is the elementary charge. 
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S5. Quantitative Analyses of Bimolecular CR Rate and Hole Mobility 

Figure S4. (a, b) Temporal evolution profiles of bimolecular CR rate (bi) for the SVA blend 

P3HT/PC61BM films (1:1, w/w) under photoexcitation at 620 nm or 460 nm. The initial hole 

concentration at t = 70 ps are indicated in each panel. (c, d) Change of bi upon varying the 

hole concentration at t = 70 ps or 1 ns. The excitation wavelengths (ex) are indicated in 

each panel. Solid lines are for guiding the eyes. 

 

Figure S5. Temporal evolution profiles of bimolecular CR rate (bi) and hole mobility (h) 

for the CS2-casted blend P3HT/PC61BM films (1:1, w/w) under photoexcitation at 620 nm or 

460 nm. The initial hole concentration at t = 70 ps are indicated in each panel.  
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S6. Comparison of Hole mobility to literature values determined with various methods 

Table S2 Hole mobility (h) in neat P3HT or blend P3HT/PC61BM films determined by the 

use of various experimental methods: FET, field effect transistor; TOF, time of flight; 

CELIV, carrier extraction by linear increase voltage; TRMC, time-resolved microwave 

conductivity; SCLC, space charge limited current; TA, transient absorption. 

MMeetthhoodd TTeemmppoorraall  rraannggee hh  ((ccmm22VV11ss11)) SSaammppllee RReeffeerreennccee 
FET steady state 1.7 × 106–9.4 × 103 (a) neat p3ht [S5] 

  5 × 102 (TiO2 based) neat p3ht [S6] 

  1.8 × 101 (SiO2 based) neat p3ht [S6] 

  1 × 102 neat p3ht [S7] 

TOF 1 s–1 ms 5.1 × 105 S-p3ht/PC61BM (b) [S8] 

 0.1 s–100 s 104 T-p3ht/PC61BM (b) [S9] 

 0.1 s–100 s 1 × 104 neat p3ht  [S10] 

CELIV 1 s–600 s 106–105 (0.1–10 ms) RRa-p3ht [S11] 

TRMC 10 ns–450 ns 1.4 × 102 p3ht/PC61BM [S12] 

 1 ns–10 s 5.6 × 103 (before) 
4.4 × 102 (after) 

p3ht/PC61BM 
T-p3ht/PC61BM (b) 

[S13] 
[S13] 

SCLC steady state 2 × 108 T-p3ht/PC61BM (b) [S14] 

s-TA 1 s–1 ms 107–106 p3ht/PC61BM [S2] 

fs-TA 70 ps–1.5 ns 8.7 × 10−4 (t = 70 ps) S-p3ht/PC61BM (b) [this work] 

  8.7 × 105 (t = 1 ns) S-p3ht/PC61BM (b) [this work] 
a Mobility increased from 1.7  106 to 9.4  104 cm2V1s1 on increasing the molecular weight 
from 3.2 KD to 36.5 kD; b “S” denotes “slow growing” or “solvent annealing” and “T” represents 
“thermal annealing”. 
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