Supplementary Materials

Tissue	Tracers	5 min	15 min	30 min	45 min	60 min
IM/NM	[¹⁸ F]-FDG	1.39 ± 0.23	1.74 ± 0.42	2.14 ± 0.59	2.75 ±0.67	2.81 ± 0.65
	¹⁸ F	1.11 ± 0.13	1.44 ± 0.32	3.48 ± 0.88	8.74 ± 1.09	10.98 ± 1.21
	[¹⁸ F]-FCH	1.21 ± 0.25	1.46 ± 0.27	1.58 ± 0.33	1.74 ± 0.38	1.83 ± 0.43
	[¹¹ C]-PIB	0.93 ± 0.07	0.97 ± 0.09	0.98 ± 0.05	1.02 ± 0.07	1.07 ± 0.11
	$[^{11}C]$ -DPA-Zn ²⁺	1.02 ± 0.08	1.13 ± 0.12	1.24 ± 0.15	1.44 ± 0.20	1.73 ± 0.13
	[¹¹ C]-DMCYS	1.13 ± 0.20	1.33 ± 0.13	1.45 ± 0.21	1.78 ± 0.13	1.27 ± 0.09
	[¹⁸ F]-FDG	0.98 ± 0.21	1.69 ± 0.32	2.31 ± 0.43	2.87 ± 0.26	3.63 ± 0.51
	$^{18}F^{-}$	0.14 ± 0.01	0.31 ± 0.04	2.80 ± 0.31	4.92 ± 0.51	8.17 ± 0.69
	[¹⁸ F]-FCH	5.29 ± 0.61	3.28 ± 0.43	1.73 ± 0.14	1.52 ± 0.09	1.45 ± 0.12
IM/BL	[¹¹ C]-PIB	0.86 ± 0.09	0.97 ± 0.06	1.19 ± 0.10	1.38 ± 0.14	1.57 ± 0.25
	$[^{11}C]$ -DPA-Zn ²⁺	2.01 ± 0.36	1.32 ± 0.23	1.19 ± 0.12	1.05 ± 0.11	1.24 ± 0.27
	[¹¹ C]-DMCYS	3.68 ± 0.33	2.6 ± 0.32	2.05 ± 0.24	1.58 ± 0.18	0.96 ± 0.09
	[¹⁸ F]-FDG	0.32 ± 0.01	$0.45\ \pm 0.04$	0.56 ± 0.07	$0.69\ \pm 0.08$	0.78 ± 0.11
	$^{18}F^{-}$	14.23 ± 1.42	12.22 ± 1.09	8.32 ± 0.95	7.92 ± 0.54	25.64 ± 2.58
IM/BR	[¹⁸ F]-FCH	$8.32\ \pm 0.96$	$7.04\ \pm 0.89$	5.33 ± 0.64	5.30 ± 0.54	5.27 ± 0.48
IM/BK	[¹¹ C]-PIB	0.88 ± 0.11	$1.00\ \pm 0.14$	$1.07\ \pm 0.12$	1.21 ± 0.23	1.32 ± 0.22
	$[^{11}C]$ -DPA-Zn ²⁺	1.43 ± 0.28	$1.32\ \pm 0.20$	1.27 ± 0.17	$1.09\ \pm 0.15$	$0.9\ \pm 0.06$
	[¹¹ C]-DMCYS	3.51 ± 0.38	2.33 ± 0.19	1.72 ± 0.12	1.32 ± 0.11	1.11 ± 0.07
	[¹⁸ F]-FDG	0.12 ± 0.01	$0.97\ \pm 0.10$	1.28 ± 0.13	1.96 ± 0.21	2.12 ± 0.27
	$^{18}F^{-}$	$0.89\ \pm 0.04$	1.40 ± 0.21	2.77 ± 0.28	7.62 ± 0.62	12.76 ± 1.10
пил т	[¹⁸ F]-FCH	0.12 ± 0.02	$0.07\ \pm 0.01$	0.08 ± 0.01	0.08 ± 0.01	0.08 ± 0.01
IM/LI	[¹¹ C]-PIB	0.70 ± 0.10	$0.72\ \pm 0.08$	$0.80\ \pm 0.11$	0.87 ± 0.13	0.91 ± 0.09
	$[^{11}C]$ -DPA-Zn ²⁺	0.86 ± 0.11	$0.73\ \pm 0.08$	0.54 ± 0.06	0.38 ± 0.02	0.26 ± 0.03
	[¹¹ C]-DMCYS	0.13 ± 0.01	0.56 ± 0.13	$1.24\ \pm 0.22$	1.65 ± 0.27	1.42 ± 0.28

Table S1. Time-uptake ratios of six PET tracers including IM/NM, IM/BL, IM/BR and IM/LI at different time (n = 3 per group, Mean \pm SD).

Note: IM refers to inflammatory thigh muscle; NM refers to normal uninflammatory thigh muscle; BL refers to blood; BR refers to brain; and LI refers to liver.

Because $[^{18}F]FCH$ and $[^{11}C]DMCYS$ showed lower accumulation in inflammatory tissue than $[^{18}F]FDG$, we compared the target-to-nontarget ratios of $[^{18}F]FDG$, $[^{18}F]FCH$, $[^{11}C]DMCYS$ in the S180 fibrofibrosarcoma-bearing and inflammatory mice (in the same animals) at 60 min after injection of the tracers (%ID/g, n = 3 per group), as shown in Supplemental Table 2.

Table S2. The target-to-nontarget ratios of $[^{18}F]FDG$, $[^{18}F]FCH$, $[^{11}C]DMCYS$ in S180 fibrosarcoma-bearing and inflammatory mice at 60 min after injection (%ID/g, n = 3 per group, Mean \pm SD).

Tissue	[¹⁸ F]FDG	[¹⁸ F]FCH	[¹¹ C]DMCYS
IM/NM ^a	2.93 ± 0.31	1.83 ± 0.51	1.32 ± 0.25
T/NM ^b	5.60 ± 2.82	4.52 ± 1.68	8.43 ± 1.23

Notes: ^a The uptake ratio of radioactivity for inflammation to normal muscle; ^b The uptake ratio of radioactivity for tumor to normal muscle.

In Vitro Stability

Two samples of [¹¹C]DPA-Zn²⁺ and [¹¹C]DMCYS (1.48 MBq, 20 μ L respectively) dissolved in normal saline were added to 200 μ L of mice serum and incubated at 37 °C. A respective aliquot of the serum sample (20 μ L) was injected into an HPLC column at 1 h to analyze their stability in mice serum. The experiment was performed using three separate samples for each tracer, respectively. According to the HPLC analysis, [¹¹C]DPA-Zn²⁺ and [¹¹C]DMCYS were proved to be stable *in vitro* and no degradation of the tracers was observed in mice serum at 37 °C for 1 h.

In Vivo Stability

Two female normal Kunming mice were anesthetized with 10% chloral hydrate solution (3 mL/kg) and injected with a dose of approximately 10.0 MBq (270 μ Ci) of [¹¹C]DPA-Zn²⁺ and [¹¹C]DMCYS, respectively, in 200 μ L of normal saline via the tail vein. The mice were sacrificed at 20 min (for ¹¹C labeled compounds) after injection, and then the respective urine was carefully collected and filtered through a 0.22 μ m Millipore filter into a tube. Respective aliquots of the urine sample (20 μ L) were injected into an HPLC column to analyze the *in vivo* stability in the mice. Blood was obtained through the eyeball and centrifuged (6,000 rpm, 4 min), then filtered through a 0.22 μ m Millipore filter to analyze by HPLC. In the *in vivo* stability, the radioactivities were approximately 20% of [¹¹C]DMCYS and 80% of its metabolic product in urine and most metabolites of [¹¹C]DMCYS existed in blood 20 min after injection. However, [¹¹C]DPA-Zn²⁺ was stable *in vivo* and no metabolites were found in urine or blood.