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Abstract: In this paper we report the design, synthesis, antinociceptive and anti-inflammatory 

activities of a series of benzothiazine N-acylhydrazones 14a–h, planned by structural 

modification of piroxicam (1), a non steroidal anti-inflammatory drug. Among the 

synthesized analogues, compounds 14f (LASSBio-1637) and 14g (LASSBio-1639) were 

identified as novel antinociceptive and anti-inflammatory prototypes, active by oral 

administration, acting by a mechanism of action that seems to be different from that of 

piroxicam, since they were inactive as an inhibitor of cyclooxygenase (COX-1 and COX-2) 

at concentrations of 10 M. 
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1. Introduction 

Inflammation is an adaptive response triggered by trauma, tissue injury or infection, characterized 

by symptoms such as pain, redness, heat and swelling. Acute inflammation is mediated mainly by the 

release of prostaglandins and other pro-inflammatory mediators, like leukotrienes, bradykinin and 

histamine, which promote local vascular alterations and leukocyte recruitment and activation. This 

process is normally self limited and resolution occurs with elimination of the noxious stimuli, removal 

of inflammatory cells and tissue repair. However, under certain conditions the inflammatory process 

persists, leading to a chronic inflammatory process, which additionally involves interleukins, tumor 

necrosis α, interferons, among other mediators, and underlines a variety of chronic diseases, such as 

cancer, atherosclerosis and reumathoid arthiritis [1–3]. Currently drug management of inflammation 

includes non steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, slow-acting disease-modifying 

anti-rheumatic drugs (DMARDs), immunosuppressants and biologics that specifically target 

inflammatory cytokines [3].  

Piroxicam (4-hydroxy-2-methyl-2H-1,2-benzothiazine-1-(N-(2-pyridinyl)carboxamide)-1,1-dioxide), 

(1) [4] is a NSAID discovered in 1972 and introduced in the market by Pfizer in 1982, being the first 

drug of the “oxicam” class [5], to which meloxicam (2) [6], tenoxicam (3) [7] and lornoxicam (4) [8] 

(Figure 1) also belong. Piroxicam is a long half-life drug (45 h in humans) [9] which also possess 

analgesic and antipyretic properties and has been used in the management of chronic inflammatory 

diseases [10], such as rheumatoid arthritis and osteoarthritis, for almost 30 years. Like other NSAIDs, 

the therapeutic effects of piroxicam have been attributed to its ability to inhibit cyclooxygenase  

(COX), [11,12] a key enzyme in the biosynthesis of pro-inflammatory prostanoids, such as prostaglandins.  

Figure 1. Oxicam class drugs. 
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The N-acylhydrazone (NAH; 5) framework has recently been recognized as a privileged  

structure [13–15] and several NAH derivatives (Figure 2) have been reported with different 

pharmacological activities, such as PDE inhibitors 6 [16] COX inhibitors 7 [17], TRPV1 antagonists  

8 [18], HIV-1 capsid protein assembly inhibitors 9 [19], and CB2 inverse agonists 10 [20], among others. 

Moreover, many N-acylhydrazones were described by our research group as potent anti-inflammatory and 

antinociceptive compounds [21], which have been attributed to the NAH framework’s ability to mimic 

amide group and the bis-allylic moiety of unsaturated fatty acids, such as arachidonic acid [22,23]. 
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Figure 2. N-acylhydrazones derivatives with different activities. 
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Very recently, some antioxidant and antimicrobial N-acylhydrazones bearing a 4-hydroxy-1,2-

benzothiazine-1,1-dioxide scaffold were reported [24–26] (Figure 3). Nevertheless, to the best of our 

knowledge, the antinociceptive and anti-inflammatory potential of this molecular pattern has not been 

investigated. Besides, some structural features that seems to be related to the oxicams’ anti-inflammatory 

activity, such as heteroaromatic amide subunit [4,27], have not been fully explored in these previous works. 

Figure 3. Antioxidant and antimicrobial N-acylhydrazones bearing a 4-hydroxy-1,2-

benzothiazine-1,1-dioxide scaffold. 
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In this paper, we report the design, synthesis and pharmacological evaluation of a novel series of 

antinociceptive and anti-inflammatory N-acylhydrazones derivatives (all compounds are original, with 

the exception of 14a, which was first published by Zia-ur-Rehman et al. [24]). Target compounds 14a–h 
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were designed (Figure 4) to include a 4-hydroxy-1,2-benzothiazine-1,1-dioxide scaffold, a 

pharmacophore present in oxicam drugs, such as pioxicam, and the NAH framework, a privileged 

structure which is also encountered in many anti-inflammatory compounds [21]. The nature of the aryl 

and heteroaryl groups attached to the imine subunit was varied based on ring isosteric replacement to 

give 14a–f. In addition, we have synthesized compound 14g, which bears a biphenyl group, a 

pharmacophore found in some recently reported mPGES-1 inhibitors [28] and also considered a 

privileged structure [13,14]. In order to confer antioxidant and radical scavenging properties we 

designed compound 14h, featuring a 3,5-di-tert-butyl-4-hydroxyphenyl group, a subunit found in 

many dual cyclooxygenase/5-lipoxygenase (COX/5-LOX) inhibitors [29].  

Figure 4. Design of a novel series of analgesic and anti-inflammatory benzothiazine  

N-acylhydrazones.  

 

2. Results and Discussion 

2.1. Chemistry 

N-acylhydrazones 14a–h were synthesized from commercial available ethyl 4-hydroxy-2H-1,2-

benzothiazine-3-carboxylate 1,1-dioxide [30] (15) in two steps, as depicted in Scheme 1. The key 

intermediate 16 was obtained in 68% yield by treating an ethanolic solution of 15 with 98% hydrazine 

monohydrate for 2 h under reflux [31]. Finally, condensation of 15 with appropriate aromatic and 

heteroaromatic aldehydes at room temperature, under acid catalysis [31], provided the target 

compounds 14a–h in 48–63% overall yield. 
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Scheme 1. Synthesis of compounds 14a–h. 

 
Reagents and conditions: (a) NH2NH2.H2O 98%, ethanol, reflux, 2h, 68%; (b) ArCHO, ethanol, 
HCl cat., r.t., 30–50 min, 48–63% (overall yield). 

The novel N-acylhydrazone derivatives 14a–h were fully characterized by spectroscopic methods, 

such as IR, 1H and 13C-NMR, their purities were established by HPLC and determined by elemental 

analysis (CHN). Their molecular formulae were confirmed by mass spectroscopy (ESI-MS). All 

compounds were obtained as a single tautomer, which was found to be the enolic form, as indicated by 

signals at δ 8.52–8.85 (N=C-H), 11.65–12.23 (CONH) and δ 13.93–14.42 ppm (O-H) in the 1H-NMR 

spectra in DMSO-d6 and by signals at δ 110.56–111.23 (C=C-OH), 144.70–152.42 (C=N), 157.56–163.76 

(C-OH) and 164.51–165.98 ppm (C=O) in the 13C-NMR spectra recorded in the same solvent. The 

predominance of enolic tautomer is in agreement with recently published data [24–26]. Besides, the 

presence of only one peak in HPLC chromatogram and a single imine-hydrogen signal in the 1H-NMR 

spectra suggest that condensation reaction was diastereoselective. Carefully comparison of amide  

and imine hydrogens chemical shift of compounds 14a–h with previous published NMR data for  

N-acylhydrazones whose stereochemistry had been established by crystallography [17,32,33] 

suggested the presence of the E-diastereoisomer, which was confirmed by performing a NOE 

experiment on compound 14b. Thus, on irradiating at the frequency of the amide hydrogen (CONH) in 

14b, a positive NOE was observed for the signal at δ 8.71 ppm, assigned to imine hydrogen (C=N-H), 

and a positive NOE was also observed for the signal at δ 2.89 ppm (CH3) on irradiating imine 

hydrogen (N=C-H), thus indicating the E-configuration for C=N double bond. The predominance of 

the E diastereoisomer of N-acylhydrazone derivatives is consistent with previous works [17,31–37] 

and has been ascribed to the greater thermodynamic stability of the E in respect to the Z 

diastereoisomer [36,38]. 

In addition, an intense NOE observed for amide hydrogen on irradiating the methyl hydrogens 

suggests that a close flat conformation, featuring an S-cis conformation for C8-C9 bond and amide 

hydrogen antiperiplanar to carbonyl oxygen (14b-I), predominates over an open or folded 

conformation, featuring an S-trans C8-C9 bond (14b-II) or an amide hydrogen antiperiplanar to carbonyl 

oxygen (14b-III) or both (14b-IV) (Figure 5). The predominance of conformer 14b-I is likely to be due 

to additional stability provided by hydrogen bonds between the enolic and carboxyl groups and amide 

hydrogen and benzothiazine nitrogen lone electron pair (Figure 5). These results are in agreement with 
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previous works [24,32] and are likely to reflect also the stereochemical and conformational features of 

the other compounds of the series.  

Figure 5. Possibles conformations of compound 14b (LASSBio-1617). 

 

In order to confirm the results mentioned above and to determine unambiguously the relative 

configuration of compounds 14a–h, the single crystal of compound 14a (LASSBio-1606) was obtained 

for X-ray diffraction. The ORTEP [39] view of compound 14a is shown in Figure 6. Crystallographic 

analysis confirmed the E configuration and revealed a flat conformation, described by the least squares 

plane through the atoms N2/C3/C4/O16/O15/C14/N17 with mean deviation from the plane of 0.07 Å, 

featuring the intra-molecular hydrogen bonds involving N17—H…N2 and O16—H…O15, with 

donor-acceptor distances 2.723(3) Å and 2.541(3) Å, respectively, corroborating the conclusions 

suggested by NOE experiment performed with 14b. 

Figure 6. ORTEP view of compound 14a (LASSBio-1606) with atom displacement 

ellipsoids drawn at 30% probability. 
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2.2. Pharmacology 

Compounds 14a–h were evaluated in vivo for their antinociceptive and anti-inflammatory activities 

at the screening dose of 100 µmol/kg. All compounds were administrated orally and piroxicam was 

used as standard drug, except in the hot plate test, for which morphine was used instead. The 

antinociceptive activity of compounds 14a–h was initially evaluated employing the acetic acid-induced 

abdominal writhing model in mice [40]. As shown in Table 1, all derivatives produced marked 

inhibition of the acetic acid-induced writhing response. Compound 14e (LASSBio-1604) (90.4%), 

which bears a 2-thiophenyl group, the biphenyl analogue 14g (LASSBio-1638) (84.0%) and 14h, 

featuring a 3,5-di-tert-butyl-4-hydroxyphenyl group (LASSBio-1639) (82.4%), were found to be the 

most active compounds and showed an antinociceptive effect similar to that of piroxicam (95.4%) at 

100 µmol/kg.  

Table 1. Effect of compounds 14a–h and piroxicam (100 µmol/kg, p. o.) on acetic  

acid-induced writhing test in mice. 

Compound Writhing Number a % of Inhibition 

Control 39.4 ± 4.9 - 
Piroxicam 1.8 ± 0.6 ** 95.4% 

14a (LASSBio-1606) 9.4 ± 1.6 * 76.1% 
14b (LASSBio-1617) 16.3 ± 2.5 * 58.6% 
14c (LASSBio-1605) 9.8 ± 5.1 * 75.1% 
14d (LASSBio-1607) 16.6 ± 2.9 ** 57.9% 
14e (LASSBio-1604) 3.8 ± 1.7 ** 90.4% 
14f (LASSBio-1637) 14.7 ± 2.6 ** 62.7% 
14g (LASSBio-1638) 6.3 ± 1.5 ** 84.0% 
14h (LASSBio-1639) 6.8 ± 2.3 ** 82.7% 

a The readings represent the mean ± S.E.M. The asterisks denote the significance levels in 
comparison with control groups (* p < 0.05, ** p < 0.01). 

A dose-response curve was obtained for derivatives 14e, 14g and 14h (Table 2). Considering that 

compounds 14b (LASSBio-1617) and 14f (LASSBio-1637) present the major structural similarity to 

the standard drug piroxicam, they were also selected for the dose-response study. Compounds 14b and 

14e–h produced dose-related inhibition of acetic acid-induced abdominal constrictions in mice and 

their ID50 and maximum efficacy are summarized in Table 2. 

Table 2. Maximum efficacy and ID50 values of compound 14b, 14e–h and piroxicam on 

acetic acid-induced writhing test in mice. 

Compound ID50 (µmol/kg) Maximum efficacy 

piroxicam 0.40 (0.0013–115.6) 95.4% 
14b (LASSBio-1617) 115.6 (0.17–808.30) 86.00% 
14e (LASSBio-1604) 28.57 (6.29–49.61) 90.30% 
14f (LASSBio-1637) 17.19 (0.189–156.1) 84.77% 
14g (LASSBio-1638) 14.07 (1.06–187.3) 80.20% 
14h (LASSBio-1639) 2.87 (0.06–130.5) 88.83% 
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None of the NAH derivatives were found to be more potent than piroxicam (ID50 = 0.40 µmol/kg) 

in the acetic acid-induced writhing test, since the most potent antinociceptive in this series was 14h 

(LASSBio-1639, ID50 of 2.87 µmol/kg). Nevertheless, all compounds showed maximum efficacy in 

the 80–90% range, like the standard drug piroxicam (95.4%). In order to better understand the 

antinociceptive effect showed by NAH derivatives, the formalin-induced pain test in mice [41] was 

carried out (Table 3). Formalin is known to produce a biphasic pain behavior. The first transient phase, 

or neurogenic phase, is ascribed to the direct effect of formalin on sensory C fibers, and the second 

prolonged phase, also called inflammatory phase, is associated to the development of an inflammatory 

response and the release of analgesic mediators [41–43]. With the exception of compound 14b (58%), 

none of NAH derivatives were shown to be active in the neurogenic phase of the formalin test (data 

not shown). On the other hand, at 100 µmol/kg, compounds 14b, 14e–h were able to inhibit the pain 

response in the inflammatory phase, with compounds 14f (LASSBio-1637; 60.1%) and 14g 

(LASSBio-1638; 54.2%), which presented similar antinociceptive effect than piroxicam (53.9%) 

standing out. Their lack of effect in the neurogenic phase and expressive inhibition of the 

inflammatory phase of the formalin test, comparable with the response of piroxicam and NSAIDs in 

general, suggest that these new NAH derivatives are likely to produce their antinociceptive effect by 

acting on the inflammatory process. 

Table 3. Effect of piroxicam NAH analogues (14a–h) and piroxicam (100 µmol/kg, p.o.) 

on formalin-induced pain test in mice. 

Compound Phase 1 Phase 2 
% of inhibition 

Phase 2 

Control 50.9 ± 5.8 194.0 ± 10.5 - 
Piroxicam 50.0 ± 5.8 89.3 ± 22.8 ** 53.9% 

14a (LASSBio-1606) 49.6 ± 11.2 172.5 ± 25.9 11.1% 
14b (LASSBio-1617) 21.3 ± 5.2 * 119.6 ± 23.9 * 38.4% 
14c (LASSBio-1605) 36.1 ± 6.2 176.3 ± 21.9 9.1% 
14d (LASSBio-1607) 38.8 ± 8.8 161.4 ± 27.9 16.8% 
14e (LASSBio-1604) 49.6 ± 10.7 131.0 ± 13.1 ** 32.5% 
14f (LASSBio-1637) 50.3 ± 10.6 77.5 ± 16.7 * 60.1% 
14g (LASSBio-1638) 56.6 ± 10.5 88.8 ± 18.5 ** 54.2% 
14h (LASSBio-1639) 54.8 ± 5.7 140.7 ± 13.9 * 27.5% 

The readings represent the mean ± S.E.M. The asterisks denote the significance levels in 
comparison with control groups (* p < 0.05, ** p < 0.01). 

In order to determine any eventual central antinociceptive activity for compounds 14a–h, the hot 

plate test [31] was carried out in mice. This test is used to evaluate antinociceptive activity mediated 

by a central mechanism and it is selective for opioid drugs, although sensitive to some sedatives, 

hypnotics and muscle relaxants [44–47]. None of NAH derivatives were found to be active in this test 

(data not shown), even 14b (LASSBio-1617), which produced a weak inhibition of pain response in 

the neurogenic phase of formaline test. Piroxicam was also inactive, as expected. These results 

reinforce that compounds 14a–h do not have any central effect and that their antinociceptive effect is 

mediated peripherically, thus confirming the results found in the formalin-induced pain test. To 
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confirm the anti-inflammatory profile of NAH derivatives, as suggested by the results obtained in the 

formalin test, zymosan A [48,49] and carrageenan-induced peritonitis test in mice [50] were performed.  

As shown in Table 4, all NAH derivatives significantly inhibited cell recruitment in the  

zymosan-induced peritonitis test and, with exception of 14e (37.1%) and 14a (43.7%), all compounds 

were found to be similar or more active than piroxicam (57.4%) at the dose of 100 µmol/kg, 

highlighting compounds 14g (LASSBio-1638) and 14h (LASSBio-1639), which inhibited 81.3% and 

82.6% of cell migration, respectively. 

Table 4. Effect of piroxicam NAH analogues and piroxicam (100 µmol/kg, p.o.) on 

zymosan-induced peritonitis in mice. 

Compound Cell Number X 106/mL % of inhibition 

Control 38.0 ± 1.0 - 
Piroxicam 16.2 ± 1.1 ** 57.4% 

14a (LASSBio-1606) 21.4 ± 2.4 * 43.7% 
14b (LASSBio-1617) 9.9 ± 0.7 ** 73.9% 
14c (LASSBio-1605) 16.5 ± 3.7 ** 56.6% 
14d (LASSBio-1607) 10.6 ± 0.4 ** 72.1% 
14e (LASSBio-1604) 23.9 ± 1.7 ** 37.1% 
14f (LASSBio-1637) 8.1 ± 1.8 ** 78.7% 
14g (LASSBio-1638) 7.1 ± 0.6 ** 81.3% 
14h (LASSBio-1639) 6.6 ± 1.3 ** 82.6% 

The readings represent the mean ± S.E.M. The asterisks denote the significance levels in 
comparison with control groups (* p < 0.05, ** p < 0.01). 

In the carrageenan-induced peritonitis test (Table 5) all NAH derivatives were able to inhibit cell 

migration similarly or more effectively than piroxicam (25.8%), including 14c (LASSBio-1605; 

62.2%), 14a (LASSBio-1606; 57.4%) and 14d (LASSBio-1607; 42.3%), which were not active in the 

second phase of formalin-induced pain test.  

Table 5. Effect of piroxicam NAH analogues and piroxicam (100 μmol/kg, p.o.;  

mean ± S.E.M.) on carrageenan-induced peritonitis in mice.  

Compound Cell Number X 106/mL % of inhibition 

Control 20.9 ± 1.6 ** - 
Piroxicam 15.5 ± 0.3 ** 25.8% 

14a (LASSBio-1606) 8.9 ± 0.5 ** 57.4% 
14b (LASSBio-1617) 16.2 ± 0.7 ** 22.5% 
14c (LASSBio-1605) 7.9 ± 0.8 ** 62.2% 
14d (LASSBio-1607) 12.0 ± 1.5 ** 42.6% 
14e (LASSBio-1604) 5.4 ± 0.6 ** 74.2% 
14f (LASSBio-1637) 5.6 ± 0.5 ** 73.2% 
14g (LASSBio-1638) 4.7 ± 0.7 ** 77.5% 
14h (LASSBio-1639) 3.8 ± 0.6 ** 81.8% 

The asterisks denote the significance levels in comparison with control groups (* p < 0.05,  
** p < 0.01). 
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LASSBio-1639 (14h) and LASSBio-1638 (14g) were the most active compounds, inhibiting 81.8% 

and 77.5% of cell migration, respectively, followed by LASSBio-1604 (14e), which, despite being the 

least active compound in zymosan-induced peritonitis test, showed inhibition of 74.2% in carrageenan-

induced peritonitis test.  

In order to investigate if the anti-inflammatory effect of NAH derivatives were COX inhibition- 

dependent, like piroxicam, compounds 14b and 14f were selected for in vitro assay for their ability of 

inhibiting COX-1 and COX-2 isoforms [51]. Despite their antinociceptive and anti-inflammatory 

activities, in vivo, none of the compounds were able to inhibit COX at concentration of 10 μM, 

suggesting that they may act in a different way than NSAIDs (data not shown) or would be 

significantly less potent than the prototype piroxicam. 

3. Experimental 

3.1. General 

Reagents and solvents were obtained from commercial sources (Sigma-Aldrich, Alfa Aesar) and 

used as received. Reaction progress was monitored by thin-layer chromatography (TLC) on commercial 

silica gel plates (KieselGel 60 F245 on aluminum sheets, Merck) and visualized by UV-light (254 and 

365 nm). Column chromatography purifications were carried out using silica gel Merck 230–400 Mesh. 

Melting points were determined on a Quimis Q240.23 apparatus and are uncorrected. 1H- and  
13C- nuclear magnetic resonance spectra were recorded in DMSO-d6 solutions on a Bruker Avance 200 

MHz or on a Varian 400 MHz instrument. Chemical shift (δ) are given in parts per million (ppm) 

down field from tetramethylsilane (TMS) and couple constants (J) are given in Hertz (Hz); splitting 

patterns are reported as follows: s, singlet; d, doublet; dd, doublet of doublets; ddd, doublet of doublets 

of doublets; t, triplet; q, quartet; m, multiplet; br, broad. Electrospray ionization mass spectra (ESI-MS) 

were acquired using a Micromass quadrupole-time-of-flight (QTOF) spectrometer operating in a 

positive mode. Infrared (IR) spectra were performed in bromide potassium (KBr) disks on Nicoleta 

Magna IR 760 spectrometer. HPLC analysis were performed on a Shimadzu 20A using a C18 column 

(4,6 mm × 250 mm, 5 μM) eluted with MeCN/H2O (90:10;70:30 or 45:55) over 15 or 20 min at flow 

rate of 1 mL·min−1, with UV detection at 254 nm.  

4-Hydroxy-2-methyl-2H-1,2-benzothiazine-3-carbohydrazide 1,1-dioxide (16). A mixture of 

compound 15 (2.000 g, 7.06 mmol), and hydrazine hydrate 80% (6.8 mL, 137.4 mmol) in ethanol 

(40,0 mL) was stirred under reflux for 2h, when completion of reaction was indicated by TLC. The 

mixture was partially concentrated under vacuum, followed by addition of water and HCl 37% until 

precipitation. The solid was filtered and washed with water and cold ethanol to furnish compound 22 

(1.256 g, 68%), which had the following properites: Mp 198–199 °C; Rf = 0.40 (CH2Cl2/MeOH, 9:1). 

IR (KBr): 3335, 3282, 1621, 1344, 1041 cm−1. 1H-NMR (DMSO-d6): δ = 2.74 (s, 3H, CH3), 7.85–7.91 (m, 

3H, ArH), 8.00–7.95 (m, 1H, ArH), 10.15 ppm (br, 1H, CONH). 13C-NMR (DMSO-d6): δ = 110.97, 

124.49, 126.44, 128.94, 132.92, 133.85, 134.59, 155.87, 166.44. ESI-HRMS m/z = 270.04543 

[M+H]+. Anal. calcd for C10H11N3O4S: C 44.60, H 4.12, N 15.60; found: C 44.62, H 4.11, N 15.44. 
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General Procedure for Preparation of Compounds 14a–h 

A mixture of compound 16 (0.37 mmol) and the corresponding aromatic or heteroaromatic 

aldehydes (0.37 mmol) in absolute ethanol (10 mL) containing one drop of 37% hydrochloric acid was 

stirred at room temperature for ca 30 min, until reaction completion (as indicated by TLC). Then the 

mixture was poured in cold water and filtered. The residue was washed with water and hot hexane and 

dried under vacuum to produce the desired N-acylhydrazone derivatives 14a–h. When necessary, 

further purification was performed by silica gel column chromatography to give compounds 14a–h 

with purity of over 98% by HPLC.  

4-Hydroxy-2-methyl-N’-[(E)-phenylmethylidene]-2H-1,2-benzothiazine-3-carbohydrazide 1,1-dioxide 

(14a). The title compound was obtained by condensation of 16 with benzaldehyde as a white powder 

(116 mg, 88%). Mp 223–224 °C; Rf = 0.71 (CH2Cl2/MeOH, 9:1). IR (KBr): 3281, 1638, 1618, 1341, 

1181, 956 cm−1. 1H-NMR (DMSO-d6): δ = 2.85 (s, 3H, CH3), 7.48-7.49 (m, 3H, ArH), 7.74 (d, J = 2 Hz, 

2H, ArH), 7.90–7.92 (m, 3H, ArH), 8.02-8.05 (m, 1H, ArH), 8.68 (s, 1H, N=CH), 11.95 (s, 1H, 

CONH), 14.23 (br, 1H, OH). 13C-NMR (DMSO-d6): δ = 111.14, 124.75, 126.79, 127.96, 128.32, 

129.48, 131.18, 133.62, 134.10, 134.45, 134.76, 151.47, 158.10, 165.63. ESI-HRMS m/z = 358.0856 

[M+H]+. Anal. calcd. For C17H15N3O4S: C 57.13, H 4.23, N 11.76; found: C 57.25, H 4.24, N 11.44. 

HPLC (C18, acetonitrile-water, 7:3, 254 nm): ret. time: 5.868 min; peak area = 98,299%. 

4-Hydroxy-2-methyl-N'-[(E)-pyridinyl-2-methylidene]-2H-1,2-benzothiazine-3-carbohydrazide 1,1-

dioxide (14b). The title compound was obtained by condensation of 16 with 2-pyridinecarboxaldehyde 

as a light yellow powder (90 mg, 71%). Mp 253–254 °C; Rf = 0.33 (CH2Cl2/MeOH, 9:1). IR (KBr): 

3344, 1666, 1597, 1342, 1177, 962 cm−1. 1H-NMR (DMSO-d6): δ = 2.85 (s, 3H, CH3), 7.44 (m,1H, 

ArH), 7.85–7.88 (m, 1H, ArH), 7.89–7.90 (t, J = 4, 1H, ArH), 7.90–7.94 (m, 1H, ArH), 7.97 (d, J = 8, 

1H, ArH), 8.02–8.05 (m, 1H, ArH), 8.64 (ddd, J = 8 Hz, J = 4 Hz, J = 2 Hz, 1H, ArH), 8.69 (s, 1H, 

N=CH), 12.14 (s, 1H, CONH), 14.09 (br, 1H, OH). 13C-NMR (DMSO-d6): δ = 111.13, 120.81, 124.78, 

125.35, 126.86, 128.23, 133.75, 134.14, 134.78, 137.53, 150.22, 151.40, 153.44, 158.47, 165.98;  

ESI-HRMS m/z = 359.0809 [M+H]+. Anal. calcd for C16H14N4O4S: C 53.62, H 3.94, N 15.63; found: 

C 53.48, H 3.92, N 15.59. HPLC (C18, acetonitrile-water, 45:55, 254 nm): ret. time: 3.916 min; peak 

area = 98,484%. 

4-Hydroxy-2-methyl-N'-{(E)-[4-(2-propanyl)phenyl]phenylmethylidene}-2H-1,2-benzothiazine-3-

carbohydrazide 1,1-dioxide (14c). The title compound was obtained by condensation of 16 with  

4-isopropylbenzaldehyde as a white powder (131 mg, 89%). Mp 228–229 °C; Rf = 0.82 

(CH2Cl2/MeOH, 9:1). IR (KBr): 3283, 1638, 1615, 1348, 1182, 958 cm−1. 1H-NMR (DMSO-d6): δ = 1.23 

(d, J = 6 Hz, 6H, CH(CH3)2), 2.84 (s, 3H, CH3), 2.96 (h, 1H, CH(CH3)2 ), 7.36 (d, J = 8 Hz, 2H, ArH), 

7.67 (d, J = 8 Hz, 2H, ArH), 7.91 (m, 3H, ArH), 8.02–8.06 (m, 1H, ArH), 8.64 (s, 1H, N=CH), 11.89 

(s, 1H, CONH), 14.24 (br, 1H, OH). 13C-NMR (DMSO-d6): δ = 24.17, 33.97, 111.14, 124.75, 126.77, 

127.47, 128.09, 128.34, 132.14, 133.61, 134.12, 134.74, 151.51, 151.89, 158.01, 165.51. ESI-HRMS 

m/z = 400.1309 [M+H]+. Anal. calcd for C20H21N3O4S: C 60.13, H 5.30, N 10.52; found: C 60.30, H 

5.27, N 10.39. HPLC (C18, acetonitrile-water, 7:3, 254 nm): ret. time: 10.977 min; peak area = 98,127%. 
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4-Hydroxy-2-methyl-N'-{(E)-[4-(dimethylamino) phenyl] phenylmethylidene}-2H-1,2-benzothiazine-3-

carbohydrazide 1,1-dioxide (14d). The title compound was obtained by condensation of 16 with  

4-dimethylaminobenzaldehyde as an orange powder (137 mg, 89%). Mp 217–218 °C; Rf = 0.70 

(CH2Cl2/MeOH, 9:1). IR (KBr): 3287, 1598, 1344, 1181, 956 cm−1. 1H-NMR (DMSO-d6): δ = 2.83 (s, 

3H, CH3), 2.99 (s, 6H, N(CH3)2), 6.78 (d, J = 8 Hz, 2H, ArH), 7.56 (d, J = 8 Hz, 2H, ArH),  

7.89–7.93 (m, 3H, ArH), 8.00–8.05 (m, 1H, ArH), 8.52 (s, 1H, N=CH), 11.65 (s, 1H, CONH), 14.42 

(br, 1H, OH); 13C-NMR (DMSO-d6): δ = 111.22, 112.43, 121.67, 124.72, 126.65, 128.47, 129.42, 

132.14, 133.42, 134.06, 134.68, 152.27, 152.37, 157.56, 164.90. ESI-HRMS m/z = 401.1276 [M+H]+. 

Anal. calcd. for C19H20N4O4S: C 56.99, H 5.03, N 13.99; found: C 56.69, H 5.03, N 13.99. HPLC 

(C18, acetonitrile-water, 7:3, 254 nm): ret. time: 4.420 min; peak area = 98,349%. 

4-Hydroxy-2-methyl-N'-[(E)-thiophenyl-2-methylidene]-2H-1,2-benzothiazine-3-carbohydrazide 1,1-

dioxide (14e). The title compound was obtained by condensation of 16 with thiophenecarboxaldehyde 

as a white powder (124 mg, 92%). Mp 236–237 °C; Rf = 0.63 (CH2Cl2/MeOH, 9:1). IR (KBr): 3267, 

1636, 1614, 1338, 1181, 957 cm−1. 1H-NMR (DMSO-d6): δ = 2.83 (s, 3H, CH3), 7.17 (t, J = 4 Hz, 1H, 

ArH), 7.52 (d, J = 2 Hz, 1H, ArH), 7.73 (d, J = 4, 1H, ArH), 7.90–7.97 (m, 3H, ArH), 8.01–8.06 (m, 

1H, ArH), 8.84 (s, 1H, N=CH), 11.91 (s, 1H, CONH), 14.16 ppm (br, 1H, OH); 13C-NMR (DMSO-d6): 

δ = 111.12, 124.74, 126.77, 128.31, 128.59, 130.41, 132.53, 133.61, 134.12, 134.70, 139.11, 146.30, 

157.98, 165.31; ESI-HRMS m/z = 364.0417 [M+H]+. Anal. calcd. for C15H13N3O4S2: C 49.57, H 3.61, 

N 11.56; found: C 49.58, H 3.61, 11.27. HPLC (C18, acetonitrile-water, 7:3, 254 nm): ret. time: 5.378 

min; peak area = 98,866%. 

4-Hydroxy-2-methyl-N'-[(E)-1,3-thiazolyl-2-methylidene]-2H-1,2-benzothiazine-3-carbohydrazide  

1,1-dioxide (14f). The title compound was obtained by condensation of 16 with  

2-thiazolecarboxaldehyde (0.04 mL, 0.37 mmol) as a white powder (93 mg, 63%). Mp 224–225 °C;  

Rf = 0.36 (CH2Cl2/-MeOH, 9:1). IR (KBr) 3223, 1624, 1355, 1182, 948 cm−1.1H-NMR (DMSO-d6): δ 

= 2.85 (s, 3H, CH3), 7.89 (dd, J = 4 Hz, J = 2 Hz, 1H, ArH), 7.90–1.95 (m, 3H, ArH), 7.99 (d, J = 4, 

1H, ArH), 8.03-8.05 (m, 1H, ArH), 8.85 (s, 1H, N=CH), 12.23 (s, 1H, CONH), 13.93 (br, 1H, OH). 
13C-NMR (DMSO-d6): δ = 110.55, 122.63, 124.25, 125.35, 127.58, 133.28, 133.62, 134.18, 144.28, 

144.70, 158.01, 163.76, 165.23. ESI-HRMS m/z = 365.0378 [M+H]+. Anal. calcd. for C14H12N4O4S2: 

C 46.14, H 3.32, N 15.38; found C 46.03, H 3.39, N 15.42. HPLC (C18, acetonitrile-water, 45:55,  

254 nm): ret. time: 11.831 min; peak area = 99,751%. 

4-Hydroxy-2-methyl-N'-[(E)-4-biphenylphenylmethylidene]-2H-1,2-benzothiazine-3-carbohydrazide 

1,1-dioxide (14g). The title compound was obtained by condensation of 16 with  

4-biphenylcarboxaldehyde as a light green powder (146 mg, 91%). Mp 215–216 °C; Rf = 0.72 

(CH2Cl2/MeOH, 9:1). IR (KBr): 3271, 1613, 1343, 1182, 959 cm−1. 1H-NMR (DMSO-d6): δ = 2.86 (s, 

3H, CH3), 7.36–7.53 (m, 3H, ArH), 7.74 (d, J = 8 Hz, 2H, ArH), 7.81–7.82 (m, 3H, ArH), 7.87–7.93 (m, 

4H, ArH), 8.03–8.06 (m, 1H, ArH), 8.72 (s, 1H, N=CH), 12.01 (s, 1H, CONH), 14.24 (br, 1H, OH). 
13C-NMR (DMSO-d6): δ = 111.15, 124.76, 126.80, 127.28, 128.33, 128.59, 129.60, 133.54, 133.65, 

134.13, 134.74, 139.79, 142.66, 150.99, 158.13, 165.62.; ESI-HRMS m/z = 434.1165 [M+H]+. Anal. 



Molecules 2012, 17 14138 

 

calcd. for C23H19N3O4S: C 63.73, H 4.42, N 9.69; found: C 63.87, H 4.39, N 9.65. HPLC (C18, 

acetonitrile-water, 9:1, 254 nm): ret. time: 4.653 min; peak area = 99,145%. 

4-Hydroxy-2-methyl-N'-{(E)-[3,5-di-terc-buthyl-4-hydroxy]phenylmethylidene}-2H-1,2-benzothiazine-

3-carbohydrazide 1,1-dioxide (14h). The title compound was obtained by condensation of 16 with  

3,5-di-tert-buthyl-4-hydroxyphenylcarboxaldehyde as a light green powder (161 mg, 90%). Mp  

249–251 °C; Rf = 0.61 (CH2Cl2/MeOH, 9:1). IR (KBr): 3287, 1645, 1617, 1348, 1183, 954 cm−1.  
1H-NMR (DMSO-d6): δ = 1.42 (s, 18H, C(CH3)3), 2.83 (s, 3H, CH3), 7.49 (s, 2H, ArH), 7.53 (s, 1H, 

OH), 7.91–8.02 (m, 4H, ArH), 8.59 (s, 1H, N=CH), 11.71 (s, 1H, CONH), 14.25 (br, 1H, OH);  
13C-NMR (DMSO-d6): δ = 30.11, 34.50, 110.64, 124.30, 125.11, 126.16, 134.16, 139.24, 152.42, 

156.66, 157.09, 164.51. ESI-HRMS m/z = 486.2056 [M+H]+. Anal. calcd for C25H31N3O5S: C 61.83, 

H 6.43, N 8.65; found: C 61.93, H 6.39, N 8.61. HPLC (C18, acetonitrile-water, 9:1, 254 nm): ret. 

time: 5.333 min; peak area = 99,697%. 

3.2. X-ray Crystallography 

A colorless prismatic single crystal of compound 14a (LASSBio-1606) suitable for x-ray study was 

obtained by slow evaporation of a solution of dichloromethane-dimethyl sulfoxide (1:15) at room 

temperature 295(2) K. Data collection was performed using the Enraf-Nonius CAD-4 diffractometer 

operating with Cu-Kα radiation at room temperature. 3718 data points were collected of what 3004 are 

symmetry independent (Rint = 0.0267). The molecule crystallizes in the C2/c space group, having Z = 8. 

Structure solution was obtained using Direct Methods implemented in SHELXS [52] and the model 

refinement was performed with full matrix least squares on F2 using SHELXL [52], with final residuals 

R1 = 0.056, wR2 = 0.148 for 2633 observed data with I > 2σ(I), and R1 = 0.071, wR2 = 0.299 for all data. 

The crystal packing is mediated by a pair of intermolecular hydrogen short contact of type 

N17−H17…O12i with donor-acceptor distance 3.156(3) Å and DHA angle 149.3°, forming dimmers 

about an inversion center, and further stabilization is due to weak interactions of types  

C10—H…O12ii, C13—H…O15iii and C22—H…O11iv. Hydrogen interactions geometry is given in 

Table 6. The programs ORTEP-3 [39], SHELXS/SHELXL [52] were used within WinGX [53] 

software package. 

Table 6. Intramolecular and intermolecular hydrogen bonds and weak interactions. 

D—H...A  D—H (Å)  H...A (Å) D...A (Å) D—H...A (°) Symmetry operation 

N17-H17...N2 0.86 2.33 2.723(3) 108.1   
O16-H16...O15 0.82 1.81 2.541(3) 147.4   
N17-H17...O12 i 0.86 2.39 3.156(3) 149.3 (i) 1/2-x, 1/2-y, -z 
C10-H10...O12 ii 0.93 2.69 3.268(4) 121.3 (ii) 1-x, -y, -z 

C13-H13B...O15 iii 0.96 2.55 3.466(4) 158.7 (iii) 1-x, 1-y, -z 
C22-H22...O11 iv 0.93 2.48 3.373(4) 162.3 (iv) x, 1-y, -1/2+z 
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3.3. Pharmacological Evaluation 

3.3.1. Animals 

Swiss mice weighing 20–30 g (from the BIOCEN-UFAL) were housed in group cages and 

maintained on a 12 h light/12 h dark cycle. Animals had free access to food and water at all times. 

Experiments were carried out according to a protocol approved by the Animal Welfare Committee of 

Federal University of Alagoas (UFAL) (Number: 026681/2009-23), and in according with the ethical 

guidelines for investigation of experimental pain in conscious animals 

3.3.2. Reagents 

Acetic acid (Merck), arabic gum (Sigma Aldrich), morphine sulphate (Dimorf-Cristalia-BR) and 

piroxicam (Merck) were obtained from commercial sources. A solution of formalin 2.5% was prepared 

with formaldehyde (Merck) in saline (NaCl 0.9%). Piroxicam and compounds 14a–h were used as 

suspension in arabic gum in all the experiments and oral administrations. 

3.3.3. Acetic Acid-induced Writhing Test 

This test was performed as described by Collier et al. [40]. Acetic acid (0.6%, v/v) was 

administered i.p. in a volume of 0.1 mL/10 g. The number of writhes, a response consisting of 

contraction of an abdominal wall, pelvic rotation followed by hind limb extension, was counted during 

continuous observation for 20 min beginning from 5 min after the acetic acid injection. Piroxicam and 

compounds 14a–h (all 100 µmol/kg, oral administration) were administered 60 min before the acetic 

acid injection. Antinociceptive activity was expressed as inhibition percent of the usual number of 

writhing observed in control animals. Dose–response curves were obtained for piroxicam and  

LASSBio-1604 (14e) (1, 10, 30, 100, 300 µmol/kg), LASSBio-1617 (14b) (1, 10, 30, 100,  

300 µmol/kg), LASSBio-1637 (14f) (1, 10, 30, 100, 300 µmol/kg), LASSBio-1638 (14g) (1, 10, 30, 

100, 300 µmol/kg), and LASSBio-1639 (14h) (1, 10, 30, 100, 300 µmol/kg) using groups of 8 animals. 

Control animals received the vehicle. The ID50 values (i.e., dose which reduces response by 50% 

relative to the control values) of piroxicam, of compounds 14e, 14a, 14f, 14g and 14h were determined 

by linear regression from individual experiments with the linear regression function of the Graph Pad 

Prisma software. 

3.3.4. Formalin-induced Nociception 

The procedure used was essentially the same as that described previously [41]. Animals received 20 mL 

of 2.5% formalin solution (0.92% formaldehyde in saline) in the ventral surface of the right hind paw. 

Animals were observed from 0 to 5 min (neurogenic phase) and from 15 to 30 min (inflammatory 

phase) and the time that they spent licking the injected paw was recorded and considered as indicative 

of nociception. Animals received piroxicam or compounds 14a–h (100 μmol/kg, oral administration) 

40 min beforehand. Control animals received vehicle (arabic gum). 
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3.3.5. Hot-plate Test 

Mice were treated according to the method described by Kuraishi et al. [46]. Animals (n = 6) were 

placed on a hot-plate set at 55 ± 1 °C. Reaction time was recorded when the animals licked their fore 

and hind-paws and jumped at 30, 60, 90 and 120 min after oral administration of 100 µmol/kg of 

piroxicam or compounds 14a–h or reference drug (morphine, 15 µmol/kg. i.p.). Baseline was 

considered as the mean of reaction time obtained at 30 and 60 min before administration of derivatives 

or piroxicam or morphine and was defined as normal reaction of animal to the temperature. 

3.3.6. Zymosan-induced Peritonitis 

Peritoneal inflammation was induced according to the method described by Leite et al. [49]. A 

solution of Zymosan A (Sigma–Aldrich) (2 mg/mL) was prepared in saline (NaCl 0.9%) and injected 

into the peritoneal cavity of mice (0.5 mL). Six hours after injection of Zymosan A, the animals were 

killed by cervical dislocation and the peritoneal cavity was washed with 3 mL of cold Hank’s. 

Compounds 14a–h or piroxicam were administered at the dose of 100 µmol/kg (p.o.), 40 min before 

Zymosan A injection. Control group received 10 mL/kg of vehicle (arabic gum, p.o.). The number of 

cells was quantified by optical microscope, using the 100 lens. 

3.3.7. Carrageenan-induced Peritonitis 

Peritoneal inflammation was induced according to the method described by Ferrandiz and Alcaraz [50]. 

A solution of carrageenan 1% (Sigma-Aldrich) was prepared in saline (NaCl 0.9%) and injected into 

the peritoneal cavity of mice (250 µL/animal). Four hours after injection of carrageenan, the animals 

were killed by cervical dislocation and the peritoneal cavity was washed with 3 mL of cold Hank’s. 

Compounds 14a–h and piroxicam were administered at the dose of 100 µmol/kg (p.o.), 30 min before 

carrageenan injection. Control group received 10 mL/kg of vehicle (arabic gum, p.o.). The number of 

cells was quantified by optical microscope, using 100 lens. 

3.3.8. Evaluation of Human COX-1/COX-2 Inhibition 

Evaluation of piroxicam and compounds 14b,e for COX-1 and COX-2 inhibition were performed 

by CEREP Laboratories (Celle L’Evescault, France) using, respectively, assay catalog reference no. 

0726 and 0727, and both were carried out as described by Glaser et al. [51]. In these assays, the 

inhibitory effect of compounds, at concentration of 10 μM, on activity of human recombinant COX-1 

or COX-2, isolated from Sf-9 cells, was quantified by measuring the formation of PGE2, detected by 

homogeneous time resolved fluorescence (HTRF), from arachidonic acid. The results are expressed as 

a percent inhibition of the control enzyme activity. 

3.3.9. Test Evaluation of the Inhibition of LOX 

Compounds 14b, 14e–h and piroxicam were evaluated for their ability to inhibit LOX, using the kit 

for determining the inhibition of LOX (Lipoxygenase Inhibitor Screening Assay Kit, Cayman 

Chemical Company, Ann Arbor, MI, USA) according to manufacturer's instructions. The test 
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compound solutions were prepared using DMSO as solvent and reaction buffer (supplied in kit) to a 

concentration of 10 µM. 

3.3.10. Statistical Analysis 

Data obtained from animal experiments are represented by mean ± standard error of the mean 

(Mean ± S.E.M.). Statistical differences between the treated and the control groups were evaluated by 

test t of Student or ANOVA in the tutorial Prisma®. Values were considered significant if * p < 0.05 

and ** p < 0.01. The ID50 values (i.e., the dose of derivatives N-acylhydrazone which reduced the pain 

response by 50% in relation to control group values) were determined by linear regression from 

individual experiments using the GraphPad software (GraphPad Software, San Diego, CA, USA) and 

are reported as geometric means accompanied by their respective 95% confidence limits. Maximal 

inhibition values were calculated at the more effective dose used. 

4. Conclusions 

In general, compounds 14a–h presented antinociceptive and anti-inflammatory activities in vivo, by 

oral administration, at the screening dose of 100 µmol/kg. Pharmacological evaluation suggest that the 

NAH derivatives reported herein present a better pharmacological profile than standard drug piroxicam, 

especially for their markedly activity in acute inflammation models. Moreover, we were able to identify 

LASSBio-1637 (14f) and LASSBio-1639 (14g) as new antinociceptive and anti-inflammatory prototypes, 

which are able to inhibit cell recruitment in carrageenan and zymosan-induced peritonitis in more than 

70% and 80% (dose = 100 μmol/kg, p.o), respectively, through a mechanism of action that seems to be 

distinct of piroxicam and remains to be elucidated. 

Supplementary Material 

The structural results for 14a were deposited with the Cambridge Crystallographic Data Centre as 

Supporting Information, CCDC number: 908020. Copies of the data can be obtained free of  

charge upon application to CCDC, 12 Union Road, Cambridge CB2 1EZ, United Kingdom  

(Fax: (44) 1223 336-033; E-mail: deposit@ccdc.cam.ac.uk). 

Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/17/12/14126/s1. 
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