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Abstract: The rearrangement of allyl -bromoacetates with Zn dust is known as the 

Reformatsky-Claisen rearrangement. Whereas the Ireland-Claisen rearrangement has been 

widely used in the synthesis of a diverse range of natural products, the Zn-mediated 

Reformatsky-Claisen rearrangement has not been utilized so often. In this article, we will 

provide an overview of recent advances in the Reformatsky-Claisen rearrangement field, 

including the In-mediated Reformatsky-Claisen rearrangement we have recently developed. 
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1. Introduction 

The development of new methods for stereoselective carbon-carbon bond formation has been 

important in the creation of useful molecules such as drugs and other chemical entities.  

[3,3]-Sigmatropic rearrangements are reliable reactions for selective carbon-carbon bond formation, in 

particular, the Claisen rearrangement is one of the most competent methods to provide useful building 

blocks for the synthesis of natural products [1–4]. The synthetic utility of this reaction has prompted 

the development of a considerable number of variants of the classical Claisen rearrangement [5–9]. For 

instance, zinc-mediated [3,3]-sigmatropic rearrangement of -haloesters, proceeding through Zn 

enolates, are referred to as the Reformatsky-Claisen rearrangement. Compared to the Ireland-Claisen 

rearrangement which was widely used in the synthesis of a diverse range of natural products [10–14], 

the Reformatsky-Claisen rearrangement has the advantage of being performed under non-basic 
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conditions. This review article focuses on the chemistry of the Reformatsky-Claisen rearrangement and 

its applications, as well as the recent development of the In-mediated Reformatsky-Claisen rearrangement. 

2. Pioneering Works of the Reformatsky-Claisen Rearrangement 

In 1973, Baldwin and Walker reported a synthetically useful sigmatropic rearrangement of  

-halogenated allyl esters [15]. Zinc enolates, generated by Reformatsky-type reactions of -halogenated 

allyl esters with zinc dust, provided the corresponding rearranged products. For instance, when allyl  

-bromoisobutyrate 1a was added to a refluxing suspension of an excess amount of Zn dust it afforded 

acid 2a in excellent yield (Table 1). It should be noted that the rearrangement of 1a can readily install a 

quaternary center into the product. The reaction of -bromopropionate 1b also proceeded smoothly to 

give a rearranged product 2b. In contrast, the rearrangement of simple allyl ester 1c and secondary 

ester 1d were found to be fruitless. Baldwin stated that one of the reasons for the low yield would be 

the generation of 1,3-dicarbonyl products by intermolecular Claisen condensation, which had been 

known as byproducts of classical Reformatsky reactions. Another reason would arise from the 

decomposion of Zn enolate 4 to afford 5 and allyl bromide (Scheme 1). The resulting allyl bromide 

would undergo Friedel-Crafts reaction with the aromatic solvent catalyzed by the zinc bromide 

generated in the reaction.  

Table 1. Baldwin and Walker’s pioneering work of the Reformatsky-Claisen rearrangement. 

 

Substrate R1 R2 R3 R4 Solvent Temp (°C) Yield of 2a–d 

1a Me Me H H PhH 80 100% 
1b Me H H Me PhMe 110 96% 
1c H H H H Xylene 140 <15% 
1d Me H Ph H PhMe 110 16% 

Scheme 1. Possible pathway to generate byproduct. 

 

2.1. Reformatsky-Claisen Rearrangement in the Presence of Zinc and a Silylating Reagent 

The Reformatsky-Claisen rearrangement also proceeds in the presence of a silylating agent, in 

which a silyl ketene acetal is the most likely intermediate. Ireland and co-workers demonstrated that 

upon heating a mixture of -bromo ester 6, Zn dust, and TBSCl in THF and HMPA under reflux, the 
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carboxylic acid 7 was obtained in 73% yield (Scheme 2) [11]. This reaction would be evaluated as a base-

free reaction complementary to the ester enolate Claisen rearrangement. 

Scheme 2. Reformatsky-Claisen rearrangement with zinc and a silylating reagent. 

 

An example of a reactions performed under these conditions was illustrated by Akiba, which 

involves preparation of a carboxylic acid bearing a silyl group [16]. A thermal reaction of  

-bromoacetate 8a with Zn and TBSCl in THF and HMPA provided carboxylic acid 9, LiAlH4 

reduction of which afforded alcohol 10 in 68% overall yield. On the other hand, application of the 

Ireland-Claisen protocol to acetate 8b resulted in the production of the same carboxylic acid 9 in lower 

yield (Scheme 3). 

Scheme 3. Reformatsky-Claisen rearrangement of 8a. 

 

Narasaka and co-workers employed the Reformatsky-Claisen rearrangement for the preparation of 

highly functionalized carboxylic acid 12. Exposure of -bromoisobutyrate 11 to Zn and TMSCl 

furnished branched acid 12, having a quaternary carbon. The product 12 was transformed to a dienyl 

oxime 13, which was a precursor in a palladium-catalyzed domino cyclization (Scheme 4) [17]. 

Scheme 4. Preparation of functionalized carboxylic acid 12. 
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2.2. Application of Reformatsky-Claisen Rearrangement with Zinc and a Silylating Reagent 

The most frequently reported Reformatsky-Claisen protocol involves heating a substrate with Zn dust 

and a silylating reagent in an aprotic polar solvent. Several additional applications are described below.  

2.2.1. Preparation of -Fluorocarboxylic Acid by Reformatsky-Claisen Rearrangement 

Fluorinated ketones have been successfully employed as enzyme inhibitors in modern bioorganic 

chemistry. Therefore, the synthesis of selectively fluorinated molecules which have fluorine 

substituents adjacent to a carbonyl group became a major target in fluoroorganic chemistry. One of the 

earliest applications of Reformatsky-Claisen rearrangement of fluorinated substrates, reported by Lang 

and co-workers, was the conversion of allyl chlorodifluoroacetate 14 to difluoroacid 15 (Scheme 5). 

Various allyl chlorodifluoroacetates can undergo a Reformatsky-Claisen protocol to give 2,2-difluoro-

4-pentenoic acid derivatives [18]. 

Scheme 5. Reformatsky-Claisen reaction of fluorinated substrate 14. 

 

2.2.2. Application of -Fluorocarboxylic Acid Induced by Reformatsky-Claisen Rearrangement to 

Biological Active Compounds 

An intriguing extension of this methodology would be found in the synthesis of a key building 

block for a number of second-generation HIV protease inhibitors reported by Chen’s group at Pfizer. 

They performed the reaction of chlorodifluoro derivative 16 with Zn and TMSCl in 1,3-dimethyl-

imidazolidin-2-one (DMI) for the preparation of difluorocarboxylic acid 17. The product 17 was then 

converted to amide 18, from which 4,4-difluoro-3,3-dimethylproline derivative 19, a core part of HIV 

protease inhibitors such as 20 and 21 was synthesized (Scheme 6) [19]. 

Scheme 6. Synthesis of 2,2-Difluoroproline Derivative by Reformatsky-Claisen Rearrangement. 
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Qing and co-workers employed a Reformatsky-Claisen rearrangement to synthesize fluorinated 

thionucleosides. The replacement of a carbohydrate moiety of naturally occurring nucleosides with 

other five membered rings is one of the promising approaches for exerting a significant effect on the 

biologic activity. In the course of the studies of nucleoside analogues, they targeted difluoromethylene 

containing thionucleosides, such as 22 and 23, which were the modified analogs of highly bioactive 

(−)-2'-deoxy-3'-thiacytidine (3TC) and (+)-2'-deoxy-3'-oxacytidine (L-OddC) (Scheme 7) [20]. When 

Reformatsky-Claisen rearrangement of 24 was carried out under conventional conditions (Zn, and 

TMSCl), none of desired product was obtained. On the other hand, the addition of pyridine promoted 

this rearrangement effectively. Thus, treatment of 24 with Zn and TMSCl in the presence of pyridine at 

120 °C in a sealed tube afforded the desired product 25 in 43% yield. Compound 25 was then 

transformed to thiofuranose 26 in 4 steps, which was condensed with pyrimidine bases by 

regioselective Pummerer reaction to afford nucleosides 27a and 27b (Scheme 7). 

Scheme 7. Synthesis of thionucleosides through Reformatsky-Claisen Rearrangement by Qing. 

 

 

Qing’s group further targeted fluorinated carbocyclic nucleosides based on the similar strategy. 

Upon treatment of 28 with Zn and TMSCl at 105 °C in MeCN, the rearrangement took place to deliver 

difluorinated acids, esterification of which afforded ethyl ester 29 as a mixture (syn:anti = 3:1) in 72% 

yield [21]. On the other hand, the reaction of monofluoro ester 31 provided four isomers  

(dr = 8.7:3.4:1.8:1), major component of which was syn-anti-product 32. The resulting esters 29 and 

32 were convertible to cyclopentenes 30a,b, and 33a–c after installation of nucleobases, respectively 

(Scheme 8) [22].  
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Scheme 8. Synthesis of carbocyclic nucleosides by Qing.  
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3. Indium-Mediated Reformatsky-Claisen Rearrangement 

Recently Ishihara and Hatakeyama reported the In-mediated Reformatsky-Claisen rearrangement, 

which is feasible for various -bromoisobutyrate derivatives [23,24]. Initially, -bromo-

cyclohexanecarboxylate 34 was subjected to the conventional rearrangement conditions. However, 

when 34 was treated with Zn and TMSCl-Et3N in boiling THF, the protonated product 35 was  

obtained exclusively (Scheme 9). The scope of the Reformatsky reaction has been considerably 

extended by the use of metals other than Zn. For instance, in is known to react readily with  

-halo esters to induce the Reformatsky-type reaction [25]. Recently Baba and co-workers 

demonstrated that In(I)X is effective for the Reformatsky-type reactions of ketones and esters to afford 

-hydroxyketones and -hydroxyesters diastereoselectively [26–28]. Gratifyingly, we found that 

treatment of 34 with In-InCl3 in the presence of TMSCl and Et3N in MeCN under ultrasonication 

conditions at 10–30 °C furnished 36 in 88% yield. 

Scheme 9. Reformatsky-Claisen rearrangement of 34. 

 

3.1. Indium-Mediated Reformatsky-Claisen Rearrangement of -Bromopropionates 

To probe the generality of the In-mediated reaction, -bromoesters 37a–c were subjected to the 

optimized reaction conditions (Scheme 10). The benzyl and TBS ethers were also not affected at all 

under the conditions; however the THP group was susceptible owing to the Lewis acidity of InCl3. 
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Scheme 10. Indium-mediated Reformatsky-Claisen rearrangement. 

 

3.2. Indium-Mediated Reformatsky-Claisen Rearrangement of Various Substrates 

We next turned our attention to the reactions of various -bromopropionate derivatives, which are 

readily prepared by acylation of the corresponding allylic alcohols with 2-bromoisobutyryl bromide or 

2-bromopropionyl bromide (Table 2). Most reactions afforded the rearranged products along with the 

protonated compounds.  

Table 2. Indium-mediated Reformatsky-Claisen Rearrangement of Various Substrates. 

Substrates R Method Products  Yield 

 

39a: Me a 

 

40a 96% 

39b: H b 40b 84% (1.5:1) 

 

41a: Me a 

 

42a 94% 

41b: H b 42b 61% (1.6:1) 

 

43a: Me a 

 

44a 71% 

43b: H b 44b 54% (1.4:1) 

 

45a: Me a 

 

46a 63% 

45b: H b 46b 62% 

47a: Me a 

 

48a 91% 

47b: H b 48b 34% 

Method a: In (2 eq.), InCl3 (2 eq.), TMSCl (8 eq.), Et3N (8 eq.), MeCN, 10–30 °C; Method b: In (2 eq.),  

InCl3 (2 eq.), TMSCl (4 eq.), Et3N (4 eq.), THF-DMPU (1:1), 10–30 °C. 

The aromatic compounds 39, 41, and 43 underwent rearrangement to carboxylic acids 40, 42, and 

44 in moderate to excellent yields, although the diastereoselectivities were poor. In the case of 39a, 

41a, and 43a, the rearrangement took place in MeCN rather smoothly, whereas the rearrangement of 

39b, 41b, and 43b proceeded in THF-DMPU (1:1) but not in MeCN. On the other hand, the reactions 

of aliphatic substrates 45 and 47 brought about the Reformatsky-Claisen rearrangement successfully to 

give highly functionalized carboxylic acids 46 and 48. In fact, when the In-mediated reaction of bulky 

2-methylbut-3-en-2-yl esters 45a and 45b were performed, compounds 46a and 46b were obtained in 
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63% and 62% yields, respectively. Notably, the rearrangement of 47a can install contiguous 

quaternary centers, giving compound 48a in 91% yield. 

3.3. The Reaction of Base-Sensitive Compounds 

The most intriguing feature of the Reformatsky-Claisen rearrangement is the feasibility of utilizing 

base-sensitive substrates. The reactions of -bromoisobutyrates E-49 and Z-49 under the optimized 

conditions proceeded smoothly to afford 50 in 80% and 53% yields, respectively (Scheme 11). In the 

case of -bromopropionate 51, a moderate diastereoselectivity was observed, although the yield was 

not satisfying. On the other hand, the reaction of 53 afforded carboxylic acid 54 having contiguous 

quaternary carbons in 66% yield. It should be noted that the acetoxy group could survive under the 

reaction conditions in stark contrast to the Ireland-Claisen rearrangement. 

Scheme 11. Investigation of the Reformatsky-Claisen rearrangement of acetoxy α-bromoesters. 

  
Reactions and conditions: (a) In (2 eq.), InCl3 (2 eq.), TMSCl (8 eq.), Et3N (8 eq.), MeCN, 
ultrasonication, 10–30 °C; (b) In (2 eq.), InCl3 (2 eq.), TMSCl (8 eq.), Et3N (8 eq.), THF-DMF 
(1:1) ultrasonication, 10–30 °C. 

The results shown in Scheme 12 reveals a marked advantage over the Ireland-Claisen rearrangement. 

Thus, when the reaction of 55 was performed under the above mentioned In-mediated rearrangement 

conditions, the rearranged product 56 was obtained in 64% yield. In contrast, the reaction of 57 with 

KHMDS in the presence of TMSCl and Et3N afforded isomer 58 in place of 56 [29–31]. 
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Scheme 12. Attempted rearrangements of 55and 57. 

 

3.4. Proposed Mechanism of the Indium-Mediated Reformatsky-Claisen Rearrangement 

As illustrated in Scheme 13, it has been reported that a mixture of In and InCl3 generates InCl (I) in situ, 

which readily reacts with -bromoacetate 59 to afford -In(III) intermediate 60 or -In(I) 61 [27]. Both  

-indium intermediates can be transformed to the In enolate 62, which is converted to silyl ketene 

acetal 63 by silylation. Since no rearrangement was observed without TMSCl and Et3N, the direct 

rearrangement of In enolates seems unlikely. Finally, the rearrangement of 63 proceeds to generate the 

corresponding carboxylic acid 64. The rearrangement of -bromoisobutyrate derivatives (R3, R4 = Me) 

smoothly proceeded in MeCN, whereas the reaction of -bromopropionates (R3 = Me, R4 = H) in 

MeCN afforded only the protonated products. These results can be rationalized as follows: compared 

to enolate 62 (R3, R4 = Me) derived from isobutyrate, the enolate 62 derived from the propionate 

derivative (R3 = Me, R4 = H) is more nucleophilic, so it easily undergoes protonation with MeCN to 

form a protonated product. The deuteration experiment in MeCN-d3 clearly supported that the 

rearrangement would proceed, provided that the protonation of an enolate is relatively slow. 

Scheme 13. Proposed mechanism of Reformatsky-Claisen rearrangement. 

 

4. Conclusions  

The recent studies show that Zn- and In-mediated Reformatsky-Claisen rearrangements of  

-haloacetate derivatives are regarded as a useful variant of the classical Ireland-Claisen 
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rearranegements. The feasibility of these methods for base-sensitive substrates makes it complementary to 

the Ireland-Claisen rearrangement, and allows simple access to valuable building blocks for the 

synthesis of complex natural products.  

Acknowledgments 

This work was financially supported by Grants-in-Aid for Scientific Research from the Ministry of 

Education, Culture, Sports, Science and Technology, Japan (24590011). 

References 

1. Ziegler, F.E. Stereo- and regiochemistry of the Claisen rearrangement: Applications to natural 

products synthesis. Acc. Chem. Res. 1977, 10, 227–232. 

2. Tadano, K.-I. Natural products synthesis starting with carbohydrates based on the Claisen 

rearrangement protocol. In Studies in Natural Products Chemistry: Stereoselective Synthesis (Part F); 

Atta-Ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 1992; Volume 10, pp. 405–455. 

3. Ilardi, E.A.; Stivala, C.E.; Zakarian, A. [3,3]-Sigmatropic rearrangements: Recent applications in 

the total synthesis of natural products. Chem. Soc. Rev. 2009, 38, 3133–3148. 

4. Kotha, S.; Krishna, N.G.; Halder, S.; Misra, S. A synergistic approach to polycyclics via a strategic 

utilization of Claisen rearrangement and olefin metathesis. Org. Biomol. Chem. 2011, 9, 5597–5624. 

5. Hiersemann, M., Nubbemeyer, U., Eds. The Claisen Rearrangement: Methods and Applications; 

Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007. 

6. Bennett, G.B. The Claisen rearrangement in organic synthesis: 1967 to January 1977. Synthesis 

1977, 589–606. 

7. Blechert, S. The hetero-Cope rearrangement in organic synthesis. Synthesis 1989, 71–82. 

8. Wipf, P. Claisen rearrangements. In Comprehensive Organic synthesis; Trost, B.M., Ed.; 

Pergamon Press: Oxford, UK, 1991; Volume 5, pp. 827–873. 

9. Martin Castro, A.M. Claisen rearrangement over the past nine decades. Chem. Rev. 2004, 104, 2939. 

10. Ireland, R.E.; Mueller, R.H. Claisen rearrangement of allyl esters. J. Am. Chem. Soc. 1972, 94, 

5897–5898.  

11. Ireland, R.E.; Mueller, R.H.; Willard, A.K. The ester enolate Claisen rearrangement. 

Stereochemical control through stereoselective enolate formation. J. Am. Chem. Soc. 1976, 98, 

2868–2877. 

12. Ireland, R.E.; Wipf, P.; Armstrong, J.D. Stereochemical control in the ester enolate Claisen 

rearrangement. 1. Stereoselectivity in silyl ketene acetal formation. J. Org. Chem. 1991, 56, 650–657. 

13. Ireland, R.E.; Wipf, P.; Xiang, J.-N. Stereochemical control in the ester enolate Claisen 

rearrangement. 2. Chairlike vs boatlike transition-state selection. J. Org. Chem. 1991, 56, 3572–3582.  

14. Pereira, S.; Srebnik, M. The Ireland-Claisen rearrangement. Aldrichim. Acta 1993, 26, 17–29. 

15. Baldwin, J.E.; Walker, J.A. The Reformatsky-Claisen reaction, A new synthetically useful 

sigmatropic process. J. Chem. Soc. Chem. Commun. 1973, 117–118. 

16. Wada, M.; Shigehisa, T.; Akiba, K. A new synthesis of medium-membered lactones via 

intramolecular condensation of α-chlorosulfides containing an ester group and allylsilanyl 

moiety. Tetrahedron Lett. 1985, 26, 5191–5194. 



Molecules 2012, 17 14259 

 

 

17. Zaman, S.; Kitamura, M.; Narasaka, K. Synthesis of polycyclic imines by palladium-catalyzed 

domino cyclization of di- and trienyl ketone O-pentafluorobenzoyloximes. Bull. Chem. Soc. Jpn. 

2003, 76, 1055–1062. 

18. Greuter, H.; Lang, R.W.; Romann, A.J. Fluorine-containing organozinc reagents. V.1: The 

Reformatskii-claisen reaction of chlorodifluoroacetic acid derivatives. Tetrahedron Lett. 1988, 

29, 3291–3294. 

19. Chen, L.; Kim, Y.M.; Kucera, D.J.; Harrison, K.E.; Bahmanyar, S.; Scott, J.M.; Yazbeck, D. 

Fluorination-free synthesis of a 4,4-difluoro-3,3-dimethylproline derivative. J. Org. Chem. 2006, 

71, 5468–5473. 

20. Zheng, F.; Zhang, X.; Qing, F.-L. Stereoselective Reformatskii–Claisen rearrangement: Synthesis 

of 2’,3’-dideoxy-6’,6’-difluoro-2’-thionucleosides. Chem. Commun. 2009, 1505–1507.  

21. Yang, Y.-Y.; Xu, J.; You, Z.-W.; Xu, X.-H.; Qiu, X.-L.; Qing, F.-L. Synthesis of 3',3'-difluoro-

2'-hydroxymethyl-4',5'-unsaturated carbocyclic nucleosides. Org. Lett. 2007, 9, 5437–5440. 

22. Yang, Y.; Zheng, F.; Qing, F.-L. Synthesis of 2',3'-dideoxy-6'-fluorocarbocyclic nucleosides via 

Reformatskii–Claisen rearrangement. Tetrahedron 2011, 67, 3388–3394. 

23. Ishihara, J.; Koyama, N.; Nishino, Y.; Takahashi, K.; Hatakeyama, S. A new variant of 

Reformatsky-Claisen rearrangement mediated by indium chloride. Synlett 2009, 2351–2355. 

24. Ishihara, J.; Watanabe, Y.; Koyama, N.; Nishino, Y.; Takahashi, K.; Hatakeyama, S.  

Indium-mediated Reformatsky-Claisen rearrangement. Tetrahedron 2011, 67, 3659–3667. 

25. Chao, L.-C.; Rieke, R.D. Activated metals. IX. New reformatsky reagent involving activated 

indium for the preparation of β-hydroxy esters. J. Org. Chem. 1975, 40, 2253–2255. 

26. Babu, S.A.; Yasuda, M.; Shibata, I.; Baba, A. In- or In(I)-Employed diastereoselective 

Reformatsky-type reactions with ketones:1H-NMR investigations on the active species. Org. Lett. 

2004, 6, 4475–4478. 

27. Babu, S.A.; Yasuda, M.; Shibata, I.; Baba, A. In- or In(I)-employed tailoring of the stereogenic 

centers in the Reformatsky-type reactions of simple ketones, α-alkoxy ketones, and β-keto esters. 

J. Org. Chem. 2005, 70, 10408–10419. 

28. Babu, S.A.; Yasuda, M.; Okabe, Y.; Shibata, I.; Baba, A. High chelation control of three 

contiguous stereogenic centers in the Reformatsky reactions of indium enolates with α-hydroxy 

ketones: Unexpected stereochemistry of lactone formation. Org. Lett. 2006, 8, 3029–3032.  

29. Inomata, K.; Hirata, T.; Sasada, Y.; Asada, T.; Senda, H.; Kinoshita, H. Crystallographic 

approach to the origin of “syn-effect”. Chem. Lett. 1990, 2153–2156. 

30. Hirata, T.; Sasada, Y.; Ohtani, T.; Asada, T.; Kinoshita, H.; Senda, H.; Inomata, K. “Syn-effect” 

in the conversion of (E)-vinylic sulfones to the corresponding allylic sulfones. Bull. Chem. Soc. 

Jpn. 1992, 65, 75–96. 

31. Inomata, K. “Syn–effect” in the base–induced isomerization of vinylic sulfones to allylic sulfones 

and the related various reactions. J. Synth. Org. Chem. Jpn. 2009, 67, 1172–1182. 

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


