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Abstract: Cyclin-dependent kinase 10 (CDK10) is a cell cycle regulating protein kinase, 

which has just been discriminated in recent years. In this paper, mRNA and protein 

expression of CDK10 were first investigated by a comparative study between 23 human 

keloid tissue samples and their adjacent normal skin. To further address its potential as a 

therapeutic target in the treatment of keloid, a plasmid expressing the CDK10 gene was 

transfected into keloid fibroblast. The effects on tamoxifen-induced apoptosis were then 

investigated using Western blot assay and flow cytometry. Results showed that there is a 

generally down-regulated expression of CDK10 in keloid compared to normal skin 

samples. Transfection with the recombinant CDK10 plasmid significantly decreased the 

viability of cells and increased the apoptosis rates. Tamoxifen sensitivity in keloid 

fibroblasts was observed after treatment with the recombinant CDK10 plasmid. The results 

suggested that CDK10 may play an important role in enhancement of tamoxifen efficiency, 

and its expression may have a synergistic effect on keloid treatments. 
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1. Introduction 

Keloid can extend beyond the boundaries of the original wound and invade the normal surrounding 

skin. The clinical appearance of keloid is a raised growth, usually accompanied by pruritus and pain. 

Since the pathogenesis of keloid is still unknown, keloid healing remains impaired [1]. Development 

of keloid contains atypical fibroblasts and consists of overabundant extracellular matrix components 

including collagen, fibronectin and certain proteoglycans [2]. Treatment for keloid is problematic, with 

no single modality producing uniformly satisfactory results [3]. 

Tamoxifen [1-(p-dimethylaminoethoxyphenyl)-1,2-diphenyl-1-butene], a selective estrogen receptor 

(ER) modulator, has been widely used for the treatment and prevention of recurrence for patients with 

hormone receptor (ER or progesterone receptor)-positive breast cancers in more than 120 countries 

throughout the worldwide [4]. Many studies have shown that the mode of action of tamoxifen is 

connected with apoptosis. It was found that in vitro administration of tamoxifen induced a Bcl-2  

up-regulation in breast cancer cells [5–7]. The same thing happened in human cholangiocarcinoma cell 

line QBC939, where an up-regulation of Bcl-2 and a down-regulation of Bax has been found after 

tamoxifen treatment [8]. Tamoxifen is one of the most successful agents used in the management of 

hormone receptor positive breast cancer. Recently, it has been suggested that tamoxifen might be a 

novel option for the clinical modulation of wound healing [9–11]. Tamoxifen was originally thought to 

inhibit cell growth by competitive binding to the estrogen receptor, but it has been shown to inhibit the 

growth of some estrogen-negative breast cancer cell lines [12]. The benign mesenchymal tumors 

desmoids, which show low expression in estrogen receptors, have been treated successfully with 

tamoxifen [13]. It has also been indicated that tamoxifen decreases fibroblast function in Dupuytren’s 

affected palmar fascia [14] and in retroperitoneal fibrosis [9]. Furthermore, tamoxifen has been 

approved to reduce proliferation of both keloid and normal dermal fibroblasts [15,16]. Payne [17] 

stated that down-regulating causes of fibrosis with tamoxifen are a possible molecular approach to 

treat rhinophyma. Evidence [18] suggests that there was a significant inhibition of keloid fibroblasts by 

tamoxifen, and tamoxifen concentrations greater than 20 µM had a deadly effect on keloid cells, while 

concentrations between 8 and 12 µM demonstrated significant inhibition of fibroblast cells (p < 0.01). 

The mechanism of tamoxifen-decreased fibrosis is not entirely understood.  

Cyclin-dependent kinases (CDKs), which belong to a large protein family, have 13 members that 

have been found so far in human cells, including CDK10 [19]. The function of CDKs10 was proven as 

an important determinant of resistance to endocrine therapies (tamoxifen) for breast cancer [19]. 

CDK10 silences increases ETS2-driven transcription of c-RAF, resulting in MAPK pathway activation 

and loss of tumor cell reliance upon estrogen signaling [18], but to the best of our knowledge, there are 

still no literature reports on the roles of CDK10 in keloid pathogenesis.  

In this study, first a comparative study of CDK10 mRNA and protein expression in 23 human 

keloid and adjacent normal skin tissue samples by quantitative real-time PCR and Western blot assay 

was undertaken. Then, whether CDK10 expression was relevant to tamoxifen sensitivity in keloid was 

investigated by MTT, flow cytometry and Western blot assay. As far as we know, this is the first report 

demonstrating the effects of CDK10 on keloid tamoxifen sensitivity. 
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2. Results and Discussion 

2.1. Expression of CDK10 in Keloid and Normal Skin Samples by Quantitative Real-time PCR and 

Western Blot Assay 

CDK10 mRNA expression of 23 keloid and normal skin samples was detected by real-time PCR 

analysis. The mRNA level of CDK10 was noted to be differentially expressed in the keloid and normal 

skin samples. As shown in Figure 1, CDK10 mRNA levels were significantly higher in the normal skin 

samples (median 1.72, range 0.57 to 3.56) than in keloid (median 0.47, range 0.10 to 0.85). 

Figure 1. CDK10 expression in keloid and normal skin samples (* means p-value of <0.01 

compared with normal skin samples). 

 

Then CDK10 protein expression of keloid and normal skin samples were checked by Western blot 

assay (Figure 2). CDK10 protein was greatly decreased in keloid compared with normal skin samples. 

This result confirmed the lower expression level of CDK10 in keloid samples. 

Figure 2. The protein level of CDK10 in keliod and normal skin samples detected by 

Western blot assay (1–4, normal skin samples; 5–8, keliod samples). The blots were 

stripped and reprobed with anti-β-actin antibody to normalize the protein loading. Bands 

were quantitated by densitometric analysis. Fold change represents the protein level of 

keliod and samples to the first normal skin sample and the resulting protein levels were 

then normalized to the β-actin protein. 
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2.2. Results of Transfection 

After 72 h transfection of CDK10 with the pCMV6-plasmid and control plasmids, the expression of 

CDK10 can be detected by Western blot analysis. Western blot analysis for CDK10 revealed that there 

was a remarkable increase in CDK10 protein expression in CDK10 transfected fibroblasts compared 

with cells transfected with control plasmid and untransfected controls (Figure 3). 

Figure 3. CDK10 protein expression increased notably after pCMV6-CDK10 transfection. 

Cells were harvested 72 h after transfection; the relative density of bands was quantified by 

densitometry. The transfected group of CDK10 protein (lane1) demonstrated a visible 

increase relatively to the empty plasmid transfected (lane 2) or untreated (lane 3) keloid 

fibroblast cells.  

 

2.3. Cytotoxicity Assays 

The MTT method was used to measure the cell optical density of pCMV6-CDK10-transfected 

fibroblast after treated with various concentrations of tamoxifen (4–50 µM) for 24 h, 48 h and 72 h, 

respectively. Results showed that tamoxifen inhibited the growth of pCMV6-CDK10-transfected cells 

in a time- and dose-dependent manner (Figure 4). The IC50 values of normal keloid fibroblast cells and 

transfected keloid fibroblast cells were then compared in the following experiment. The IC50 values 

significantly decreased in the pCMV6-CDK10-transfected cells compared to that of control  

(p < 0.01) (Table 1). All these results showed that CDK10 transfected keloid cells were more sensitive 

to tamoxifen treatment. 

Figure 4. Effect of tamoxifen towards keloid fibroblast as determined by MTT assay. 
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Table 1. Inhibition concentrations 50% (IC50) values for tamoxifen towards keloid 

fibroblast cells and pCMV6-CDK10-transfected cells determined by MTT assay.  

The symbols * indicate significant differences (p < 0.01) with respect to control (keloid 

fibroblast). 

Cell lines IC50 (µM) 

keloid fibroblast 17.61 

pCMV6-CDK10-transfected cells 9.41 * 

2.4. Keloid Fibroblast Cell Apoptosis as Detected by Annexin V-FITC/PI 

Apoptosis plays an important role in keloid treatment. It is a highly regulated death process by 

which cells undergo inducible non-necrotic cellular suicide [20]. The Annexin V-FITC apoptosis 

detection kit was employed to examine the influence of tamoxifen on keloid fibroblast apoptosis by 

flow cytometry. As shown in Figure 5, only a small percentage of untreated keloid fibroblast (2.64%) 

cells bound to annexin V-FITC. After treated with tamoxifen, the percentage of annexin V-FITC binding 

keloid fibroblast cells increased to 12.76%. In contrast, when pCMV6-CDK10-transfected cells treated 

with tamoxifen, the percentage of annexin V-FITC binding cells increased significantly to 80.18%  

(p < 0.01). To sum up, dots were dispersed and shifted to the Q2 side when pCMV6-CDK10-keloid 

fibroblast was treated with tamoxifen, indicating that the cells moved to the late apoptotic stage.  

Figure 5. Tamoxifen-induced apoptosis in pCMV6-CDK10-keloid fibroblast using 

annexinV-FITC/PI. (a) Keloid fibroblast treatment with 0 µM tamoxifen; (b) Keloid 

fibroblast treatment with 8 µM tamoxifen; (c) pCMV6-CDK10-keloid fibroblast treatment 

with 0 µM tamoxifen; (d) pCMV6-CDK10-keloid fibroblast treatment with 8 µM tamoxifen. 
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2.5. Bax and Bcl-2 Expression of Keloid Fibroblast as Detected by Western Blot  

A high Bax/Bcl-2 ratio was clearly correlated with increased apoptotic sensitivity to test reagents [21]. 

As shown in Figure 6, Western blot analysis revealed a significant increase in the expression of Bax in 

tamoxifen treated pCMV6-CDK10-keloid fibroblast cells, while there was a significant decrease in 

Bcl-2 expression, indicating that the Bax/Bcl-2 ratio increased significantly. 

Figure 6. Tamoxifen-mediated up-regulation of Bax and down regulation of Bcl-2 by 

Western blot assay. Keloid fibroblast cells or pCMV6-CDK10-keloid were treated with 8 µM 

tamoxifen for 48 h, respectively. The blots were stripped and reprobed with anti-β-actin 

antibody to normalize protein loading. Fold change was calculated as described in Figure 3. 

 

3. Discussion 

Keloid scarring is a disease arising from dermal injury due to a number of aetiologic factors; 

however, its pathogenesis and optimal clinical treatment remain poorly understood. Many treatments 

have been used, including surgery, radiation, interferon, laser ablation, steroid injection, and pressure 

therapy among many others, but few obtain good results and recurrence of keloid remains common [2,3].  

Cdk10 is a Cdc2-related kinase, previously referred to as PISSLRE, that may play a role in 

regulating the G2/M phase of the cell cycle [22]. The CDK10 gene was located to chromosome 16q24 

in humans. It was first mentioned in 1994 [23] and was noticed to have a close relationship to many 

cancers. Research showed that the expression of CDK10 was over-expression in lung adenocarcinoma [24] 

follicular lymphoma [25] and seminomas [26], and low-expression in breast cancer patients who have 

poorer prognosis after surgical procedure. Iorns et al. [27] have shown that CDK10 gene knockdown 

reproducibly caused resistance to tamoxifen treatment, and these authors also showed that CDK10 

could make tamoxifen more effective in treating breast cancer through C-RAF/MAPK kinase pathway 

activity [27]. Activation of the pathway components ERK1/2 and MEK1/2 was observed following 

CDK10 silencing, while suppression of ERK pathway signaling at the same time as CDK10 inhibition 

restored sensitivity to tamoxifen. So far, there is no research showing the expression of CDK10 in 

keloid tissues. In this study, real-time PCR and Western blot were used to detect the level of CDK10 

mRNA and protein level in 23 patients with keloid and adjacent normal skin samples. Results showed 

us that the relative expressions of CDK10 mRNA and protein level are lower compared with normal 

skin. Kasten and Giordano [28] noticed CDK10 has been shown to inhibit the transactivation capacity 
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of ETS2, so CDK10 loss would be predicted to potentiate ETS2-mediated gene transcription.  

By comparing our data with previously published work, we propose that CDK10 determines the 

response to tamoxifen and other endocrine therapies by modulates intracellular signaling. CDK10 

normally binds and represses the ETS2 transcription factor and has an ETS2-binding site in the c-RAF 

promoter and by using ChIP it was demonstrated that both CDK10 and ETS2 bind to this site [28].  

In the absence of CDK10 activity, c-RAF transcription is significantly unregulated due to relief of 

ETS2 repression. This increase in c-RAF expression leads to activation of downstream components of 

the MAPK pathway, including MEK1,2 and p42/p44 MAPK, which increase the expression of cyclin 

D1 [29], resulting in tamoxifen resistance by circumventing the reliance upon estrogen signaling [30]. 

This evidence may indicate that in keloid the CDK10 may play a role by the same principle. 

To investigate the effects of CDK10 on keloid fibroblast, we transfected keloid cells with pCMV-6 

CDK10 plasmid to study how CDK10 over-expression affects the sensitivity to tamoxifen treatment, 

or whether it can make the tamoxifen more effective in keloid cells. Our experimental results 

demonstrate that pCMV6-CDK10-transfected cells treated with tamoxifen showed a significantly 

increased apoptosis rate at both the early and late periods (p < 0.01) compared with the control group 

treated with tamoxifen. This result revealed that expression of the CDK10 protein had a synergistic 

effect on apoptosis in combination with tamoxifen treatment. Data obtained from flow cytometric 

annexin V-FITC/PI staining showed that tamoxifen induced apoptosis in pCMV6-CDK10-keloid 

fibroblast. Thus, we further evaluated the expression of the pro-apoptotic protein Bax and the  

anti-apoptotic protein Bcl-2. These two proteins were crucial determinants of the apoptotic response 

mediated by many agents. Bcl-2 family proteins play important roles in apoptosis regulation.  

Anti-apoptotic (Bcl-2 and Bcl-xL, etc.) and pro-apoptotic (e.g., Bad, Bax and Bak) are two of the 

major members in Bcl-2 family [31–33]. Anti-apoptotic Bcl-2 and Bcl-xL inhibit apoptosis by 

sequestering proforms of capsases or by preventing the release of mitochondrial apoptogenic  

factors [34,35], whereas Bad, Bax and Bak inhibit Bcl-2 activity and promote apoptosis [36]. In this 

study, tamoxifen treatments altered the expression of anti-apoptotic (Bcl-2) and pro-apoptotic (Bax) 

proteins, resulting in pCMV6-CDK10-keloid fibroblast cell apoptosis. This result could explain the 

lower IC50 values of tamoxifen-treated pCMV6-CDK10-keloid fibroblast. As such, these data 

confirmed the synergistic affect of CDK10 expression in combination with tamoxifen treatment on 

keloid apoptosis rates. Although the mechanism of CDK10 action is unclear, CDK10 can be taken as a 

potential marker for sensitivity in prospective clinical trials of keloid patients treated with tamoxifen 

therapies. Further studies are demanded to further discuss the mechanism of CDK10 and the 

relationship with tamoxifen in keloid cells. 

4. Experimental Section 

4.1. Patients and Treatment  

Keloid and normal skin tissue samples were obtained from 23 patients who underwent surgeries 

from 2009 to 2011 at the Second Affiliated Hospital of Harbin Medical University. Informed consent 

was obtained from each patient recruited, and the study was approved by the Hospital Ethics 

Committee. Keloid cells were obtained at surgical release from six patients aged 18–37 years who had 



Molecules 2012, 17 1314 

 

 

a non-peduncle keloid on the manitrunk, ear lobe and upper arm of at least 1-year evolution, with 

clinical activity such as growth, hyperaemia, pruritus and pain. Primary cultures of fibroblasts from the 

surgical specimens were then established. Cells from passages 3 to 8 were used for experiments.  

Cell was maintained in Dulbecco’s modified Eagle’s medium (DMEM; Gibco BRL, Grand Island, NY, 

USA). All cell lines were supplemented with 10% fetal bovine serum (FBS) and 5 mmol/L L-glutamine 

in a 5% CO2 air incubator at 37 °C. Cells were transient transfected with pCMV6-CDK10 or a control 

plasmid using GeneJuice® Transfection Reagent (Novagen) according to the manufacturer’s protocol. 

4.2. RNA Extraction and Quantitative Real-time PCR 

Total RNA was extracted from the tissue samples with the RNApure Tissue Kit (CWBIO, CW0584). 

Quantitative real-time PCR (qPCR) was performed using the PrimeScript™ RT reagent Kit (Takara, 

DRR037A). The qPCR reactions were carried out by SYBR green PCR master mix (Takara, DRR083M) 

with an Multiplex Quantitative PCR System (Applied Bios stem), and β-actin was used as an internal 

standard. Primers were designed for qPCR from Primer Express software (Applied Bios stems).  

The primer sequences employed were: CDK10, forward: 5'-TGGACAAGGAGAAGGATG-3', reverse: 

5'-CTGCTCACAGTAACCCATC-3'; β-actin, forward: 5'-AGAAGGAGATCACTGCCCTGGCACC-3' 

reverse: 5'-CCTGCTTGCTGATCCACATCTGCTG-3'. The PCR cycling conditions were as follows: 

10 min at 95 °C, 40 cycles of 30 s at 95 °C, 30 s at 54 °C, and 30 s at 72 °C; and finally 5 min at 72 °C. 

Melting curve analysis was conducted to determine the specificity of the reaction. Probe experiments 

showed that the efficiencies of amplification of the primers for the target and reference genes were 

approximately equal. Each sample was tested in triplicate. A DNA dissociation curve was produced  

to confirm the specificity of the amplification after the thermal cycling. Relative expression level 
changes were calculated according to 2-⊿Ct(⊿Ct = Ct[CDK10] − Ct[β-actin]) method as described 

previously [37].  

4.3. Western Blot Analysis 

Total protein extracts of the keloid and normal skin samples and cells were prepared by 

homogenization in RIPA (Beyotime, P0013B). Briefly, for isolation of total protein fractions, cells or 

tissue samples were collected, washed twice with ice-cold PBS, and lysed using cell lysis buffer  

[20 mM Tris pH 7.5, 150 mM NaCl, 1% Triton X-100, 2.5 mM sodium pyrophosphate, 1 mM EDTA, 

1% Na2CO3, 0.5 µg/mL leupeptin, 1 mM phenylmethanesulfonyl fluoride (PMSF)]. The lysates were 

collected by scraping from the plates and then centrifuged at 12,000 rpm at 4 °C for 15 min.  

Total protein samples (20 µg) were loaded on a 12% of SDS polyacrylamide gel for electrophoresis, 

and transferred onto PVDF transfer membranes (Millipore, Billerica, MA, USA) at 0.8 mA/cm2 for  

70 min. Membranes were blocked at room temperature for 2 h with blocking solution (1% BSA in  

PBS plus 0.05% Tween-20). Membranes were incubated overnight at 4 °C with primary antibodies  

(anti-â-actin and anti-Bax were mouse polyclonal antibodies; anti-Bcl-2 and anti-CDK10 were rabbit 

polyclonal antibodies) at a 1:1,000 dilution (Biosynthesis Biotechnology Company, Beijing, China)  

in blocking solution. After thrice washings in TBST for each 5 min, membranes were incubated for 1 h 

at room temperature with an alkaline phosphatase peroxidase-conjugated anti-mouse secondary 

antibody at a dilution of 1:500 in blocking solution. Detection was performed by the BCIP/NBT 
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Alkaline Phosphatase Color Development Kit (Beyotime Institute of Biotechnology) according to the 

manufacturer’s instructions. Bands were recorded with a digital camera (Nikon, Tokyo, Japan).  

4.4. Transient Transfection 

The pCMV6-CDK10 expression plasmid was acquired from Doctor Zhong Xiangyu (Department of 

General Surgery, the Second Affiliated Hospital of Harbin Medical University, China). The plasmids 

were sequenced from OriGene Company (Rockville, MD, USA). Plasmid DNA from Escherichia coli 

cell lysates was extracted and purified using a PureLinkTM Hipure Plasmid DNA Purification Kit 

(Invitrogen, Carlsbad, CA, USA). Keloid fibroblast was transfected with pCMV6-CDK10 using 

GeneJuice® Transfection Reagent (Novagen) according to the manufacturer’s protocol. In brief, cells 

were trypsinized and plated onto six-well plates. Then, transfection reagent was added and incubated at 

room temperature for 5 min. The appropriate volume of plasmid DNA was then added and the cells 

were incubated for an additional 15 min. The common complete medium was replaced by the 

antibiotics and serum-free medium. Six hours after the transfection, the medium was replaced by the 

common complete medium again. After 24, 48 and 72 h the transfection, the cells were then prepared 

for Western blot analysis, MTT assays, or flow cytometry.  

4.5. Cytotoxicity Assay 

Inhibition of cell proliferation of tamoxifen (SIGMA) was measured by MTT assay [38]. Briefly, 

keloid fibroblast was plated in 96-well culture plates (1 × 105 cells/well) separately. After 24 h 

incubation, normal keloid fibroblast cells was treated with tamoxifen (4, 8, 12, 16, 20, 30 and 50 µM, 

eight wells per concentration) for 72 h. pCMV6-CDK10-keloid fibroblast cells was treated with 

tamoxifen (4, 8, 12, 16, 20, 30 and 50 µM, eight wells per concentration) for 24, 48 h or 72 h.  

MTT solution (5 mg/mL) was then added to each well. After 4 h incubation, the formazan precipitate 

was dissolved in dimethyl sulfoxide (100 µL), and then the absorbance was measured in an ELISA 

reader (Thermo Molecular Devices Co., Union City, NJ, USA) at 570 nm. The cell viability ratio was 

calculated by the following formula: Inhibitory ratio (%) = [(ODcontrol − ODtreated)/(ODcontrol)] × 100%.  

4.6. Flow Cytometric Analysis of Cell Apoptosis 

The extent of apoptosis was measured through annexinV-FITC apoptosis detection kit (Beyotime 

Institute of Biotechnology, Shanghai, China) as described by the manufacturer’s instructions. After 

exposure to tamoxifen for 24 h, cells were collected, washed twice with PBS, gently resuspended in 

annexin V binding buffer and incubated with annexin V-FITC/PI in dark for 15 min and analyzed by 

flow cytometry using FloMax software. The fraction of cell population in different quadrants was 

analyzed using quadrant statistics. The lower left quadrant contained intact cells; lower right quadrant 

apoptotic and in the upper right quadrant necrotic or post-apoptotic cells.  

4.7. Statistical Analysis 

The data were expressed as mean ± S.D. All statistics were calculated using the STATISTICA 

program (Stat Soft, Tulsa, OK, USA). A p-value of <0.01 was considered as significant. 
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4. Conclusions 

In the present study, a lower expression of CDK10 was found by a comparative study of mRNA and 

protein expression in 23 human keloid and adjacent normal skin tissue samples by quantitative  

real-time PCR and Western blot assay. To further determine the potential of CDK10 as a therapeutic 

target for tamoxifen, CDK10 was over expressed in keloid fibroblast cells and the presence of 

apoptosis was detected by flow cytometry and Western blot assay. 

The apoptosis rate of the combination treatment (tamoxifen combined with pCMV6-CDK10) 

increased when compared with pCMV6-CDK10 or tamoxifen alone. Further, the present study showed 

that the increased expression of CDK10 significantly enhanced the effects of tamoxifen treatments on 

Bax and Bcl2. The findings indicated that CDK10 is an attractive therapeutic target because of its 

ability to suppress keloid fibroblast growth and enhance tamoxifen sensitivity in keloid. 
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