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Abstract: The mechanism of the N-heterocyclic carbene (NHC)-catalyzed intramolecular 

Stetter reaction of salicylaldehyde 1 to yield chromanone 3 has been theoretically studied 

at the B3LYP/6-31G** level. This NHC-catalyzed reaction takes place through six 

elementary steps, which involve: (i) formation of the Breslow intermediate IN2; (ii) an 

intramolecular Michael-Type addition in IN2 to form the new C-C  bond; and (iii) 

extrusion of the NHC catalyst from the Michael adduct to yield chromanone 3. Analysis of 

the relative free energies in toluene indicates that while formation of Breslow intermediate 

IN2 involves the rate-determining step of the catalytic process, the intramolecular Michael-

type addition is the stereoselectivity determining step responsible for the configuration of 

the stereogenic carbon  to the carbonyl of chromanone 3. An ELF analysis at TSs and 

intermediates involved in the Michael-type addition allows for the characterization of the 

electronic changes along the C-C bond-formation. 

Keywords: organocatalysis; N-heterocyclic carbenes; umpolung reactivity; intramolecular 

Stetter reaction; intramolecular Michael addition; mechanisms; DFT calculations 

 

1. Introduction 

The umpolung reactivity of aldehydes promoted by N-heterocyclic carbenes (NHCs) constitutes an 

important class of organocatalysis and has found a broad range of applications in synthetic organic 

chemistry [1–6]. The corresponding acyl anions or equivalent homoenolate intermediates are able to 
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attack nucleophilically various electrophiles, such as aldehydes [7–9], ketones [10–18], imines [19–22], 

and even activated polarized C=C double bonds [23,24]. 

The latter class of reaction is especially interesting, since it permits the umpolung C–C coupling 

between aldehydes and an appropriate Michael acceptor. In the Stetter reaction, originally conceived in 

the 1970’s, a homoenolate or Breslow intermediate, which inverts the normal reactivity mode of  

an aldehyde, provokes a Michael-type addition to electrophilically activated C=C double bonds  

(see Scheme 1) [25–27]. 

Scheme 1. NHC-catalyzed intermolecular Stetter reaction. 

Enders and co-workers were the first to report an asymmetric intramolecular Stetter reaction in 

1996 [28]. Using chiral triazolium salt 2, chromanone 3 was obtained in moderate yield (73%) and 

enantioselectivity (60% ee) (see Scheme 2). Despite the moderate selectivity, the implementation of 

chiral triazolinylidene carbenes in the asymmetric Stetter reaction laid the foundation for future works. 

Hence, Rovis performed an extensive study to improve yield and enantioselectivity in asymmetric 

intramolecular Stetter reactions using more efficient chiral triazolium salts, different salicylaldehyde 

derivatives and various reaction conditions [29–33]. 

Scheme 2. NHC-catalyzed intramolecular Stetter reaction of salicylaldehyde 1. 
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Scheme 3. NHC-catalyzed intramolecular Stetter reaction of salicylaldehyde 4. 

Substitution effects on the aromatic ring of the salicylaldehyde structure and the nature of the tether 

have been analyzed. Thus, substrates bearing electron-donating groups in the salicylaldehyde structure 

are well tolerated and lead to their corresponding chromanone derivatives in good to excellent yields 

(87%–98%) and generally high ees (88%–97%). However, the presence of electron-withdrawing groups 

provide the corresponding chromanone derivatives with good yields but with relatively low ees [34]. 

Moreover, the use of oxygen, sulfur, nitrogen and carbon linkers, and the incorporation of various 

tethered Michael acceptors including amides, esters, thioesters, ketones, aldehydes and nitriles do not 

modify substantially yields and/or enantioselectivities [32]. The proposed catalytic cycle for the 

intermolecular Stetter reaction is shown in Scheme 4.  

Scheme 4. Proposed catalytic cycle for the intermolecular Stetter reaction. 
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C-C  bond to generate intermediate IV, which by a hydrogen transfer process provides V. Finally, 

extrusion of the NHC catalyst I from the tetrahedral intermediate V affords the Stetter product VI. 

Very recently, Rovis reported an experimental mechanistic investigation of the enantioselective 

intramolecular Stetter reaction, finding that the proton transfer from tetrahedral intermediate II, formed 

upon nucleophilic attack of the carbene on the aldehyde to yield Breslow intermediate III, is the first 

irreversible step [35]. 

The intermolecular Stetter reaction has been theoretically studied [36–38]. Very recently, Houk et al. 

studied the effect of catalyst fluorination in asymmetric Stetter reactions (see Scheme 5) [38]. They 

found that the more favorable transition state strucutures (TSs) associated with the Michael-type 

addition of the corresponding Breslow intermediate to the -conjugated position of nitroalkene 8 

exhibited a stabilizing interaction between the Breslow hydroxyl hydrogen and the carbon in the  

-position to the nitro group of 8. Note that the hydrogen-bond (HB) does not only catalyze the 

addition by an increase of the electrophilic character of nitroalkene 8, but also favors the 

stereoselective addition in a single step. 

Scheme 5. NHC-catalyzed intermolecular Stetter reaction of nitroalkene 8. 
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Our interest in organocatalysis, more specifically in the participation of NHCs as catalysts in the 

umpolung reactivity of aldehydes, prompted us to perform some theoretical studies on the molecular 

mechanisms of these reactions [39–41]. In the present manuscript, we report a DFT study of the molecular 

mechanism of the intramolecular Stetter reaction of salicylaldehyde 1 to yield (R)-chromanone 3 (see 

Scheme 6). An ELF analysis of the electron reorganization along the intramolecular Michael-type 

addition is performed in order to understand the C-C bond-formation step. 

Scheme 6. Reaction model of the NHC-catalyzed intramolecular Stetter reaction of 

salicylaldehyde 1. 
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2. Computational Methods 

DFT calculations were carried out using B3LYP [42,43] exchange-correlation functionals, together 

with the standard 6-31G** basis set [44]. Optimizations were performed using the Berny analytical 

gradient optimization method [45,46]. The stationary points were characterized by frequency 

calculations in order to verify that TSs had one and only one imaginary frequency. The intrinsic 

reaction coordinate (IRC) [47] paths were traced in order to check the energy profiles connecting each 

TS to the two associated minima of the proposed mechanism using the second order González-Schlegel 

integration method [48,49]. Values of free energies in toluene were calculated with the standard 

statistical thermodynamics at 298.15 K and 1 atm over the optimized gas phase structures [44]. Toluene 

solvent effects were considered by single point energy calculations using a self-consistent reaction field 

(SCRF) [50,51] based on the polarizable continuum model (PCM) of Tomasi’s group [52–54]. The 

UFF radii model was used to generate the molecular cavity in PCM calculations. The electronic 

structures of stationary points were analyzed by the natural bond orbital (NBO) method [55,56] and by 

the topological analysis of the ELF, (r) [57–59]. The ELF study was performed with the TopMod 

program [60] using the corresponding monodeterminantal wavefunctions of the selected structures of 

the IRC. All calculations were carried out with the Gaussian 03 suite of programs [61]. 
The global electrophilicity index [62], , is given by the following simple expression,  = (2/2), in 

terms of the electronic chemical potential  and the chemical hardness . Both quantities may be 

approached in terms of the one electron energies of the frontier molecular orbital HOMO and LUMO, 

H and L, as   (H + L)/2 and   (L − H), respectively [63]. Recently, we have introduced an 

empirical (relative) nucleophilicity index, N [64,65], based on the HOMO energies obtained within the 

Kohn-Sham scheme [66], and defined as N = EHOMO(Nu) − EHOMO(TCE). The nucleophilicity is referred to 

tetracyanoethylene (TCE), because it presents the lowest HOMO energy in a large series of 

investigated molecules. This choice allows for the convenient handling of a nucleophilicity scale of 

positive values [64]. Local electrophilicity [67] and nucleophilicity [68] indices, k and Nk, were 

evaluated using the following expressions: k kf    and k kN Nf   where kf
and kf


 are the Fukui 

functions [69] for nucleophilic and electrophilic attacks, respectively [70]. 

Very recently, we proposed a local reactivity difference index Rk [71] able to predict the local 

electrophilic and/or nucleophilic activation within an organic molecule, which is defined as [71]: 

if (1 < k / Nk < 2) or (1 < Nk / k < 2) 

then Rk  (k + Nk)/ 2  ambiphilic (Rk = ±n.nn) 

else Rk   (k − Nk) 

where Rk 0     electrophilic (Rk = +n.nn) 

and Rk 0     nucleophilic (Rk = -n.nn) 

if │Rk │ < 0.10,  then  Rk 0 .00 

In the Rk index, the sign (+, −, ±) indicates the electrophilic or/and nucleophilic character of the center 

k, while the magnitude n.nn provides a measure of the local activation [71]. 
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3. Results and Discussion 

The study of the NHC-catalyzed intramolecular Stetter reaction of salicylaldehyde 1 to yield  

(R)-chromanone 3 has been divided into three parts: (i) energy and geometrical analysis of stationary 

points involved in the intramolecular Stetter reaction; (ii) analysis of the reaction based on DFT 

reactivity indices; and (iii) ELF topology analysis of the bonding along the intramolecular  

Michael-type addition of Breslow intermediate IN2. 

3.1. Energy and Geometrical Analysis of Stationary Points Involved in the Intramolecular Stetter 

Reaction of Salicylaldehyde 1 

The NHC-catalyzed intramolecular Stetter reaction of salicylaldehyde 1 to yield chromanone 3 

comprises several elementary steps (see Scheme 7). The first one is the nucleophilic attack of NHC 11 

on the carbonyl C3 carbon of salicylaldehyde 1 to yield the zwitterionic intermediate IN1, which by a 

proton transfer affords Breslow intermediate IN2. The subsequent intramolecular Michael-type 

addition to the conjugated C4 carbon of intermediate IN2 yields ol-enolate IN3r, which experiences a 

hydrogen transfer to afford alcohoxy intermediate IN4r. Finally, extrusion of NHC catalyst 11 from 

IN4r provides chromanone 3. The relative enthalpies and free energies in toluene associated with this 

NHC-catalyzed reaction are given in Table 1, while a schematic representation of the energy profile is 

shown in Figure 1. The energy discussion will be made on the basis of solvent free energies in toluene. 

Scheme 7. Reaction mechanism of the intramolecular Stetter reaction. 
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Table 1. Total (H and G, in au) and relative (H and G, in kcal/mol) enthalpies and free 

energies, computed at 25 °C and 1 atm in toluene, of the stationary points involved in the 

intramolecular Stetter reaction of salicylaldehyde 1. 

 H H G G 
1 −765.154909  −765.216688  
11 −320.722503  −320.761367  
TS1 −1085.864102 8.4 −1085.943426 21.7 
IN1 −1085.875090 1.5 −1085.953173 15.6 
TS2 −1085.807807 43.7 −1085.885314 58.2 
IN2 −1085.879507 −1.3 −1085.957544 12.9 
TS3r −1085.873415 2.5 −1085.944874 20.8 
IN3r −1085.884019 −4.1 −1085.955978 13.9 
TS3s −1085.870106 4.6 −085.941886 22.7 
IN3s −1085.884133 −4.2 −1085.954410 14.8 
TS4r −1085.885839 −5.3 −1085.956900 13.3 
IN4r −1085.900792 −14.7 −1085.973665 2.8 
IN4s −1085.878805 −0.9 −1085.949454 17.9 
TS5 −1085.896768 −12.1 −1085.970371 4.8 
3 −765.194373 −24.8 −765.251292 −21.7 

Figure 1. Free energy profile, in kcal/mol, of the stationary points involved in the  

NHC-catalyzed intramolecular Stetter reaction of salicylaldehyde 1. Relative free energies 

of TS21 and IN12 are respect IN11. 

TS1, associated with the nucleophilic attack of the C8 carbon of NHC 11 on the C3 carbon of 

salicylaldehyde 1, presents a free activation energy of 21.7 kcal/mol; formation of the zwitterionic 
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IN2 have a very high free activation energy as a consequence of the strain associated with the three-

membered TSs [39,41]; accordingly, the free activation energy associated with the proton transfer via 

TS2 is very high, 42.6 kcal/mol. Several acid/base species can catalyzed the conversion of zwitterionic 

intermediate IN1 into Breslow intermediate IN2 [39,41], including the NEt3/NEt3H
+ pair resulting 

from the deprotonation of the triazolium salts [34]. We tested this possibility in order to estimate the 

free activation energy associated with the proton transfer. Since the unsaturated ester appendage 

present in salicylaldehyde 1 does not participate in this process, we used a reduced model in which the 

unsaturated ester present in IN1 was replaced by a methyl group (see Scheme 8, relative free energies 

in toluene are given in parentheses). The intermolecular hydrogen transfer process takes place in two 

steps: (i) protonation of the alcohoxy O2 oxygen by triethyl ammonium cation; and (ii) abstraction of 

the H1 hydrogen by triethylamine. The first step is barrierless and strongly exothermic due to the more 

basic character of the alcohoxy O2 oxygen than triethylamine. However, the subsequent H1 hydrogen 

abstraction has an appreciable activation free energy; 21.4 kcal/mol from IN11 plus NEt3. Therefore, 

this energy barrier, which is similar to those found in formation of Breslow intermediates catalyzed by 

methanol [39,41], indicates that the proton transfer is the rate-determining step in formation of 

Breslow intermediate IN2. From 1 plus 11, formation of Breslow intermediate IN2 is endergonic by 

12.9 kcal/mol. 

Scheme 8. Intermolecular hydrogen abstraction associated with the formation of  

Breslow intermediates. 
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carbon  to the carbonyl carbon of chromanone 3, were studied (see Scheme 9). From Breslow 

intermediate IN2, the free activation energies associated with TS3r and TS3s are 7.9 and 9.8 kcal/mol, 

respectively. Formation of Michael intermediates IN3r and IN3s is endergonic by 1.0 and 1.9 kcal/mol. 

The free energy difference between TS3r and TS3s, 1.9 kcal/mol, may be attributed to the preferential 

HB formation to the C5 carbon of the enolate at TS3r rather than to the O7 oxygen atom at TS3s. 

Further study using a more complex NHC model would be needed to disclose the stereoselectivity 

origin. IN3r, with negative free activation energy, −0.5 kcal/mol, experiences a fast hydrogen transfer 

process via TS4r to yield the Michael adduct IN4r. From Breslow intermediate IN2, formation of 

IN4r is strongly exergonic, −10.1 kcal/mol. This behavior makes the C3-C4 bond-formation step 

irreversible. All attempts to obtain enolester IN4s as a stationary point were unsuccessful as it reverts 

to IN3s. Restricted optimization of IN4s fixing the O7-H1 distance yields a species which is 3.1 kcal 

above IN3s. Finally, intermediate IN4r experiences an easy extrusion of NHC catalyst 11 to yield 

chromanone 3, through a low free activation energy process, 2.0 kcal/mol, via TS5. From the separated 

reagents, 1 plus 11, formation of chromanone 3 is strongly exergonic, −21.7 kcal/mol. 

Scheme 9. Competitive channels associated with the intramolecular Michael addition in IN2. 
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breaking and O2-H1 forming-bond are 1.184 Å and 1.326 Å, respectively. At the stereoisomeric TSs 

associated with the intramolecular Michael-type addition of the Breslow framework to the -conjugated 

position of the unsaturated ester framework of IN2, the lengths of the C3–C4 forming bonds are 2.126 Å 

(TS3r) and 2.044 Å (TS3s). While at TS3r the distance between the hydroxyl H1 hydrogen and the 

C5 carbon of the unsaturated ester is 1.874 Å, at TS3s the distance between the hydroxyl H1 hydrogen 

and the carboxyl O7 oxygen is 1.790 Å. These short distances point to strong HB interactions as a 

consequence of the negative charge that is being transferred towards the unsaturated ester framework. 

At TS4r, associated with the intramolecular hydrogen transfer process, the lengths of the O2-H1 

breaking and C5–H1 forming bonds are 1.133 Å and 1.524 Å, respectively. These values indicate that 

the TS has an early character. At TS5 associated with the extrusion of NHC catalyst 11, the length of 

the C3–C8 breaking bond is 1.922 Å. Finally, at TS21 associated with the hydrogen elimination in 

intermediate IN11, the lengths of the C3-H1 breaking- and N1-H forming-bonds are 1.544 Å and 

1.255 Å, respectively. 

Figure 2. Transition structures associated with the NHC-catalyzed intramolecular Stetter 

reaction of salicylaldehyde 1. The distances are given in Å. 
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3.2. Analysis of the Reaction Based on DFT Reactivity Indices 

Analysis of the reactivity indices defined within the conceptual DFT allows for the understanding 

of polar reactions. The static global properties of the species involved in the nucleophilic/electrophilic 

interactions along the NHC-catalyzed intramolecular Stetter reaction of salicylaldehyde 1, namely 

electronic chemical potential (), chemical hardness (), global electrophilicity (), and global 

nucleophilicity (N), are given in Table 2. 

Table 2. Electronic chemical potential (, in a.u.), chemical hardness (, in a.u.), global 

electrophilicity (, in eV), and global nucleophilicity (N, in eV) of salicylaldehyde 1, NHC 

11 and Breslow intermediate IN2. 

    N 
Benzaldehyde −0.1590 0.1923 1.79 2.18 
1 −0.1503 0.1752 1.75 2.65 
Methyl acrylate −0.1586 0.2267 1.51 1.72 
IN2 −0.0975 0.0974 1.33 5.14 
11 −0.0964 0.2334 0.54 3.32 

Salicylaldehyde 1 has an electrophilicity power of 1.75 eV, which is closer to that of benzaldehyde, 

 = 1.79 eV, therefore, both are classified as strong electrophiles within the electrophilicity scale [72]. 

Salicylaldehyde 1 has a nucleophilicity index N of 2.67 eV, being classified as a moderate nucleophile [73]. 

On the other hand, NHC 11 has a low electrophilicity index,  = 0.54 eV, being classified as a 

marginal electrophile, while it is a strong nucleophile, N = 3.32 eV [39]. Consequently, it is expected 

that along the nucleophilic attack of NHC 11 on salicylaldehyde 1 there will be a strong 

nucleophile/electrophile interaction, favoring the formation of tetrahedral intermediate IN1. 

Recent studies devoted to intramolecular Diels-Alder reactions have shown that the analysis of the 

global electrophilicity and nucleophilicity indices at the ground state of reagents is able to predict the 

polar character of these intramolecular reactions [74,75]. The electrophilicity of Breslow intermediate 

IN2,  = 1.33 eV, allows for its classification as a moderate electrophile. Note that the electrophilicity 

of IN2 is closer to that of methyl acrylate  = 1.51 eV; On the other hand, IN2 has a high 

nucleophilicity index of 5.14 eV, thus being classified as a strong nucleophile. Consequently, it is 

expected that the intramolecular Michael-type addition in IN2 will take place through a strong 

nucleophile/electrophile electronic interaction, which will favor a polar process. Note that the 

electrophilicity of intermediate IN2 is increased through the formation of intramolecular HBs of the 

H1 hydrogen with the C5 carbon or O7 oxygen along the intramolecular Michael-type addition (see 

Scheme 8). 

Recently, we have proposed a local reactivity difference index Rk able to predict the local 

electrophilic and/or nucleophilic activation within an organic molecule [71].Together with the 

electrophilic and/or nucleophilic behavior of the k center, denominated by its sign, the magnitude of 

the Rk index accounts for the extent of the electronic activation. The representation of the significant 

Rk indices, |Rk| > 0.10 eV, in a molecule constitutes the Rk molecular map of reactivity (RMMR) [71]. 

The RMMRs of salicylaldehyde 1, NHC catalyst 11 and Breslow intermediate IN2 are given in 

Scheme 10. 
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Scheme 10. RMMRs of salicylaldehyde 1, NHC catalyst 11 and Breslow intermediate IN2. 
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Salicylaldehyde 1 has the most electrophilically activated sites at the carbonyl C3 carbon, RC3 = +0.20 eV, 

and at the conjugated C4 carbon, RC4 = +0.29 eV. Althrough the C4 carbon is more electrophilically 

activated than the C3 one, the reversible nucleophilic attack of 11 at the C4 carbon and the irreversible 

nucleophilic attack at C3 can shift the reaction towards IN2. 

The C8 carbon of NHC catalyst 11 is the only nucleophilically activated center of this molecule, 

RC8 = −2.77 eV, therefore concentrating most of the nucleophilicity of the NHC, N = 3.32 eV. This 

behavior is due to the fact that most of the electron-density associated with the HOMO of NHC 11 is 

located at the sp2 hybridized C8 carbon. 

Breslow intermediate IN2 presents nucleophilic activation at the atoms belonging to NHC and the 

aldehyde frameworks, while the unsaturated ester framework shows electrophilic activation (see 

Scheme 10). Whereas the C3 carbon belonging to the Breslow framework is the most nucleophilic 

center of IN2, RC3 = −1.63 eV, the conjugated C4 carbon is the most electrophilically activated center, 

RC4 = +0.45 eV. Consequently, the most favorable nucleophilic/electrophilic interaction along  

the intramolecular process will take place between the C3 and C4 carbons, allowing for the C3-C4  

bond-formation. 
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3.3. ELF Bonding Analysis along the Intramolecular Michael Addition in Breslow Intermediate IN2 

Recent theoretical studies have shown that the topological analysis of the ELF along the reaction 

path associated with an organic reaction is a valuable tool for understanding the bonding changes 

along the reaction path, and therefore, to characterize the molecular mechanism [76–82]. 

Consequently, a topology analysis of the ELF of the stationary points involved in the intramolecular 

Michael-type addition in Breslow intermediate IN2 was carried out in order to characterize the bond 

formation. The N populations of the more relevant ELF valence basins of the stationary points 

involved in the intramolecular Michael-type addition in Breslow intermediate IN2 are listed in Table 3, 

while the positions of the more relevant attractors for TS2r and TS3r are shown in Figure 3. 

Table 3. Valence basin populations N of the most relevant valence basins calculated from 

the ELF of the intramolecular Michael addition in Breslow intermediate IN2. 

 IN2 TS3r IN3r TS4r IN4r 
V(C3,C8) 2.01 2.85 2.45 2.44 2.44 
V’(C3,C8) 2.20     
V(O2) 2.39 2.44 2.34 2.44 2.17 
V’(O2) 2.43 2.47 2.52 2.57 3.87 
V’’(O2)    0.94  
V(O2,C3) 1.24 1.35 1.36 1.35 1.58 
V(C4,C5) 1.76 2.79 2.02 1.99 1.85 
V’(C4,C5) 1.72     
V(C3,C4)  1.04 1.85 1.86 1.96 
V(C4)  0.34    
V(C5)  0.54 1.17 1.26  
V(H1,O2) 1.71 1.65 1.61   
V(H1)    0.57  
V(H1,C5)     2.01 

Figure 3. Most relevant ELF attractors at TS3r and TS4r associated with the 

intramolecular Michael addition in Breslow intermediate IN2. 

ELF analysis of Breslow intermediate IN2 shows one disynaptic basin V(H1,O2) and another 

disynaptic basin V(O2,C3), each one integrating 1.71e and 1.24e, respectively, associated with the  

O2-H1 and O2-C3  bonds, and two monosynaptic basins, V(O2) and V’(O2), integrating a total of 

4.82e, which are associated with the two lone pairs of the O2 oxygen. The populations of these four 

valence basins show a strong polarization of the electron-density of the single O2-H1 and O2-C3  
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bonds towards the electronegative O2 oxygen. Breslow intermediate IN2 also presents two pairs of 

disynaptic basins, V(C3,C8) and V’(C3,C8) and V(C4,C5) and V’(C4,C5), which integrate a total of 

4.21e and 3.48e, respectively, corresponding to the C3-C8 and C4-C5 double bonds present in the 

Lewis structure of intermediate IN2. 

At TS3r, some relevant changes take place relative to the electronic structure of Breslow 

intermediate IN2 (see Figure 3). The two disynaptic basins V(C4,C5) and V’(C4,C5) merge into one 

disynaptic basin V(C4,C5), which accounts for 2.79e. Consequently, a strong reduction of the  

electron-density at the C4-C5 double bond region has taken place. Concurrently, two monosynaptic 

basins V(C4) and V(C5), integrating 0.34e and 0.54e, respectively, emerge at the olefinic C4 and C5 

carbons. Interestingly, a new disynaptic basin V(C3,C4), integrating 1.04e, associated with the 

formation of the new C3-C4  bond, appears. Consequently, the C3-C4  bond is already formed at 

TS3r. On going from TS3r to IN4r, this disynaptic basin is fully populated. Finally, at TS3r, the two 

disynaptic basins V(C3,C8) and V’(C3,C8), associated with the C3-C8 double bond present at 

intermediate IN2, also merge into one disynaptic basin V(C3,C8) with a population of 2.85e. 

At IN3r, while the monosynaptic basin V(C4) has disappeared, and the population of the disynaptic 

basin V(C4,C5) has decreased to 2.02e, the population of the new disynaptic basin V(C3,C4) increases 

to 1.85e, indicating that the new C3-C4  bond is almost completed. On going from IN2 to IN3r, the 

population of the disynaptic basin V(H1,O2) decreases slightly to 1.61e. 

At TS4r while the disynaptic basin V(H1,O2) has disappeared, two new monosynaptic basins 

V’’(O2) and V(H1), associated with the hydrogen transfer process, with a population of 0.94e and 0.57e, 

respectively, are created (see Figure 3). Note that these two monosynaptic basins come from the O2-H1 

breaking bond. On the other hand, the population of the monosynaptic basin V(C5) amounts to 1.26e. 

Finally, at IN4r, the two monosynaptic basins V(H1) and V(C5) merge into the new disynaptic 

basin V(H1,C5) with a population of 2.01e, indicating that the H1-C5 σ bond has been completely formed. 

Taking a look at the results obtained through the ELF topology analysis at the stationary points of 

the NHC-catalyzed intramolecular Michael-type addition, we can see that the forming and breaking 

bond processes take place in two differentiated steps. Along the first step, the new C3-C4  bond is already 

created at TS3r, while the population of the corresponding disynaptic basin V(C3,C4) is practically 

completed at intermediate IN3r. At this step, the H1-O2  bond remains practically unchanged. Along the 

second step, the H1 hydrogen is transferred from the O2 oxygen to the C5 carbon. This second step 

starts at TS4r, where the H1-O2  bond is broken, yielding two new monosynaptic basins V(H1) and 

V’’(O2), which disappear at IN4r with the formation of the second C5-H1  bond. 

4. Conclusions 

The mechanism of the NHC-catalyzed intramolecular Stetter reaction of salicylaldehyde 1 to yield 

chromanone 3 has been theoretically studied at the B3LYP/6-31G** computational level. This  

NHC-catalyzed reaction takes place through six elementary steps. The reaction begins by the 

nucleophilic attack of the NHC catalyst on the aldehyde carbon of salicylaldehyde 1 to yield a 

tetrahedral intermediate, which in a two-step proton transfer process generates Breslow intermediate 

IN2. The subsequent intramolecular addition to the Michael acceptor moiety forms the new C-C  

bond to generate intermediate IN3r, which by a fast hydrogen transfer process provides alcohoxy 
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intermediate IN4r. Finally, extrusion of the NHC catalyst from this intermediate affords the Stetter 

product 3. Analysis of the free energy profile associated with this catalytic process indicates that  

while formation of Breslow intermediate IN2 involves the rate-determining step, the intramolecular  

Michael-type addition in Breslow intermediate IN2 is the stereoselectivity determining step 

responsible for the configuration of the stereogenic carbon  to the carbonyl carbon of chromanone 3. 

Analysis of the reactivity indices defined within the conceptual DFT verifies the high reactivity of 

Breslow intermediate IN2. Finally, an ELF bonding analysis at TSs and intermediates involved in the 

intramolecular Michael-type addition allows for the characterization of the bond-formation. While at 

TS3r the new C3-C4  bond is already formed, at TS4r the hydroxyl H1 hydrogen is transferred to the 

olefinic C5 carbon. 
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