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Abstract: Clofazimine, a member of the riminophenazine class of drugs, is the cornerstone 

agent for the treatment of leprosy. This agent is currently being studied in clinical trials for 

the treatment of multidrug-resistant tuberculosis to address the urgent need for new drugs 

that can overcome existing and emerging drug resistance. However, the use of clofazimine 

in tuberculosis treatment is hampered by its high lipophilicity and skin pigmentation side 

effects. To identify a new generation of riminophenazines that is less lipophilic and skin 

staining, while maintaining efficacy, we have performed a systematic structure-activity 

relationship (SAR) investigation by synthesizing a variety of analogs of clofazimine and 

evaluating their anti-tuberculosis activity. The study reveals that the central tricyclic 

phenazine system and the pendant aromatic rings are important for anti-tuberculosis 

activity. However, the phenyl groups attached to the C2 and N5 position of clofazimine 

can be replaced by a pyridyl group to provide analogs with improved physicochemical 

properties and pharmacokinetic characteristics. Replacement of the phenyl group attached 
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to the C2 position by a pyridyl group has led to a promising new series of compounds with 

improved physicochemical properties, improved anti-tuberculosis potency, and reduced 

pigmentation potential. 
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1. Introduction 

Tuberculosis (TB) infects about some 9.2 million and kills approximately 1.8 million people 

globally every year [1]. Despite the best treatment and control efforts using available vaccines and 

drugs, the prevalence of TB throughout the World remains high, due in part to the emergence of 

multidrug resistant Mycobacterium tuberculosis (MDR-TB) [2] and the global HIV epidemic. The 

treatment of MDR-TB and TB/HIV co-infection using the currently available drug regimens is 

extremely challenging [3]. New and more effective drugs are needed to address these challenges.  

In an effort to identify new anti-tuberculosis agents that can be effective against MDR-TB, we 

decided to revisit the riminophenazine class of drugs. Clofazimine (CFZ, Figure 1), a member of the 

riminophenazine class, is the cornerstone agent for the treatment of leprosy. This agent was first 

synthesized by Barry’s group [4] and has demonstrated potent in vitro activity against M. tuberculosis [5]. 

Recent studies indicate that clofazimine is equally potent against drug-susceptible and drug-resistant 

(including MDR) M. tuberculosis strains, which suggests that it operates via a novel mechanism of 

action. In addition, the frequency of resistance development for this compound is extremely low as 

compared with other anti-tuberculosis drugs [6]. Clofazimine is currently in clinical trials for the 

treatment of MDR-TB to address the urgent need for new drugs that can overcome existing and 

emerging drug resistance in tuberculosis. However, the widespread use of clofazimine in tuberculosis 

treatment is hampered by its extremely high lipophilicity and strong skin pigmentation side effects. 

Although a large number of analogues of clofazimine have been prepared, they are limited in scope. 

The modifications are limited to the substituents on two pendant phenyls and the imino group [7].  

To identify a new generation of riminophenazines that is both less lipophilic and skin staining, while 

maintaining its efficacy against tuberculosis, a systematic structure-activity and structure-liability 

relationship (SLR) study is needed. 

Figure 1. Structure of clofazimine. 
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Clofazimine is a lipophilic molecule as indicated by its high Clog P value of approximately 7.48 [8]. 

Its undesirable physicochemical and pharmacokinetic properties contribute to its side effects and limit 

its clinical use. In particular, its extremely long half-life and propensity for tissue accumulation and 

precipitation together with the dye property lead to unwelcome skin pigmentation. Herein we report 

our SAR and SLR studies on the riminophenazine class with a goal of identifying a new generation of 

compounds with improved physicochemical properties that are highly efficacious against both  

drug-susceptible and MDR-TB and at the same time incur reduced skin pigmentation potential. 

2. Results and Discussion 

To improve its physicochemical properties and circumvent the skin pigmentation problem of 

clofazimine, we first explored the possibility of decreasing the intrinsic colour of the molecules by 

reducing the conjugation system of the riminophenazine core structure. Thus, we systematically 

removed one of the phenyl rings (A, D or E) from the molecule while keeping rings B, C, and the 

imino moiety intact. The syntheses of these analogs are illustrated in Schemes 1 and 2, respectively.  

Scheme 1. Synthesis of A-ring deletion compound, riminoquinoxaline. a 

 
a Reagents and conditions: (1a) ClC6H4NH2, anhydrous K2CO3, anhydrous KF, 170 °C; (1b) 
anhydrous CH3OH, 10% Pd/C, H2, r.t.; (1c) ethyl oxalylchloride, toluene, reflux; (1d) KNO3, con. 
H2SO4, −5 °C ~ r.t.; (1e) ClC6H4NH2, anhydrous KF, DMSO, 140 °C; (1f) anhydrous CH3OH, Zn, 
AcOH; (1g) AcOH, anhydrous CH3OH, acetone, NaBH4, r.t.; (1h) THF, LiAlH4, heated on silica plate. 

The synthesis of the A-ring deletion analogs (riminoquinoxalines) was started from  

2,5-difluoronitrobenzene (Scheme 1). After replacement of the ortho-fluoro group with 4-chloroaniline, 

compound 1 was reduced to give diamine 2. Compound 2 was then treated with ethyl oxalyl chloride 
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to form the B ring. After nitration of 3, the activated fluoro at the ortho position of the nitro adduct of 4 

was replaced by 4-chloroaniline. Reduction of the nitro group in 5 produced compound 6, followed by 

reductive alkylation to provide compound 7. Reduction of the carbonyl groups in 7 with LiAlH4 

followed by an air auto-oxidization provided the target compound 8. 

Scheme 2. Synthesis of D-ring deletion riminophenazines. a 
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a Reagents and conditions: (2a) R1NH2, anhydrous EtOH, reflux; (2b) anhydrous CH3OH, 10% 
Pd/C, H2, r.t.; (2c) anhydrous CH3OH, DFDNB, Et3N; (2d) ClC6H4NH2, anhydrous KF, anhydrous 
EtOH, reflux; (2e) Zn, AcOH; (2f) air, AcOH; (2g) isopropylamine, dioxane, 110 °C. 

Both D-ring and E-ring deletion compounds 15a and 15b were synthesized starting from  

1,5-difluoro-2,4-dinitrobenzene (DFDNB) (Scheme 2).  

Thus compound 9a–b was reduced to diamine 10a–b which was then coupled with 1,5-difluoro-

2,4-dinitrobenzene to give 11a–b. The second fluorine atom was replaced by 4-chloroaniline to afford 

12a–b. Reduction of both nitro groups gave 13a–b which underwent spontaneous cyclization to afford 

riminophenazines 14a–b. Replacement of the imine with isopropylamine gave the target compounds 

15a–b. 

The A-ring deletion compound 8 exhibited considerably reduced in vitro activity against  

M. tuberculosis (MIC90 = 18.89 μM, Table 1). When the appendant phenyl group D or E was replaced 

by a methyl group (compounds 15a and 15b), the antimycobacterial activity was also abolished  

(MIC90 ≥ 42.45 μM and MIC90 = 21.23 μM respectively, Table 1).  
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Table 1. In vitro anti-tuberculosis activity of the riminophenazine analogues with 

systematic deletion of one of the phenyl rings against M. tuberculosis H37Rv. 

Comp. Structure 
MIC90 
(μM) 

Comp. Structure 
MIC90 
(μM) 

CFZ 

 

0.25 15a 

 

>42.45 

8 

 

18.89 15b 

 

21.23 

Failing to identify analogues that retained antimycobacterial activity through dissecting their core 

structures, we turned our attention to the modification of the D- and E-rings of the molecule to 

improve its physicochemical properties and thereby change tissue distribution and tissue accumulation. 

It was anticipated that the Clog P of the molecule would decrease if one or both of the phenyl groups 

were replaced by a pyridyl group. Thus compounds 21a–b and 25 were synthesized following a 

modified synthetic procedure (Schemes 3 and 4).  

Scheme 3. Synthesis of compound 21a–b. a 

 
a Reagents and conditions: (a) anhydrous KF, anhydrous K2CO3, 170 °C; (b) CH2Cl2, Zn, AcOH;  
(c) anhydrous THF; (d) anhydrous EtOH, reflux; (e) Zn, AcOH; (f) isopropylamine, dioxane, 110 °C. 
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Scheme 4. Synthesis of compound 25. a 

 
a Reagents and conditions: (5a) 3-aminopyridine, DIPEA, THF, reflux; (5b) Zn, AcOH, anhydrous 
CH3OH, r.t.; (5c) air, anhydrous CH3OH, r.t., overnight; (5d) isopropylamine, dioxane, 110 °C. 

The Clog P of the molecule decreases by 2 if one of the phenyl groups is replaced by a pyridyl 

group and by 4 if both phenyl groups are replaced by pyridine. In the in vitro assay, the N5 pyridyl 

analogues 21a and 21b showed reduced potency (MIC90 0.57 and 1.23 M respectively). To our 

surprise, the C2 pyridylamino analogue 25 demonstrated improved potency against M tuberculosis 

H37Rv (MIC90 0.07 M) as compared to clofazimine (MIC90 0.25 M) (Table 2).  

Table 2. Riminophenazines with R1 and R3 variation and their anti-tuberculosis activity 

against M. tuberculosis H37Rv, physicochemical property (log P).  

 

Comp. R1 R2 ClogP logP MIC90 (M) 

CFZ  7.137 5.43 0.25 

21a  5.322 - 0.57 

21b  3.507 2.76 1.23 

25  5.322 3.43 0.07 

In addition, compound 25 demonstrated excellent in vivo efficacy in a mouse tuberculosis model as 

measured by a significant drop in bacterial colony-forming units (CFU) in the lung as compared  

to a no-treatment control group [9]. The mean log CFU count in the lung dropped by about 5 units  
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(3.83 ± 0.27 CFU/lung ) for the group treated with compound 25 as compared to the untreated group  

(8.53 ± 0.32 CFU/lung), and by about 3 units as compared to rifampin (RIF)-treated positive control 

groups (RIF 6.71 ± 0.13 CFU/lung, CFZ 6.33 ± 0.07 CFU/lung). Compound 25 also demonstrated a 

shorter half-life (t1/2) as compared to clofazimine and reduced abdominal tissue pigmentation, which is 

strikingly different from the effect on those animals treated by clofazimine (data not shown). This SAR 

and SLR study illustrates that all five aromatic rings of clofazimine are important for maintaining 

potent anti-tuberculosis activity. The two pendant phenyl rings attached to the C2 and N5 positions, 

especially the C2 position, can be replaced by a pyridyl group, and such analogues have demonstrated 

potent in vitro anti-tubercular activity, excellent in vivo efficacy, and reduced skin pigmentation potential.  

3. Experimental  

3.1. Reagents and Instrumentation 

Unless otherwise indicated, all reagents and solvents were used as received from the suppliers. 

Reactions were monitored for completion by thin layer chromatography (TLC) using silica gel GF-254 

plates with detection under UV (254 nm) light. 1H-NMR spectra were recorded on a Varian 300 MHz 

or 400 MHz instrument in CDCl3, CD3OD, DMSO-d6 or acetone-d6 solutions. 13C-NMR spectra were 

recorded on a Varian instrument at 100 MHz or 150 MHz with CDCl3 or DMSO-d6 as solvents. 

Chemical shifts are reported in parts per million (δ) downfield from tetramethylsilane (TMS). 

Coupling constants (J) are reported in Hz. High-resolution mass spectra were acquired from an Agilent 

1100 series LC/MSD mass spectrometer. All MS experiments were performed using electrospray 

ionization (ESI-TOF+) in positive ion mode. Column chromatography was carried out with silica gel 

(200~300 mesh). 

3.2. Chemistry 

3.2.1. Synthesis of 2-(4-chloroanilino)-5-fluoronitrobenzene (1)  

4-Chloroaniline (12.76 g, 100 mmol), 2,5-difluoronitrobenzene (8.0 g, 50 mmol), anhydrous K2CO3 

(3.5 g, 25 mmol) and anhydrous KF (2.9 g, 50 mmol) were mixed and heated at 170 °C for 14 h. After 

cooling to room temperature, water was added and the solid formed was filtered and washed with 

water. The crude product was purified via recrystallization from 95% ethanol to give 1 as an orange 

solid (11.8 g, 89%). 1H-NMR (300 MHz, CDCl3) δ 9.25 (s, 1H), 7.94–7.90 (m, 1H), 7.39 (d, J = 8.7 Hz, 

2H), 7.21–7.17 (m, 4H). ESI/MS (m/z): 267 [M+H]+. 

3.2.2. Synthesis of 1-(4-chlorophenyl)-6-fluoroquinoxaline-2,3(1H,4H)-dione (3)  

Compound 1 above (6.45 g, 24 mmol) was suspended in anhydrous methanol (100 mL). The 

mixture was hydrogenated with 10% Pd/C (1.3 g) at room temperature at 1 atmosphere pressure of 

hydrogen for 8 h. After removal of catalyst, the solvent was concentrated under reduced pressure. The 

residue was dissolved in toluene (150 mL) and ethyl oxalyl chloride (10 mL, 89 mmol) was added. The 

mixture was refluxed for 1 h and then cooled to room temperature Approximately one half of the 

solvent was removed under reduced pressure and the resulting solid was filtered and recrystallized 
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from methanol to give 3 as a white solid (4.97 g, 71%). 1H-NMR (300 MHz, DMSO-d6) δ 12.18  

(s, 1H), 7.69 (d, J = 8.7 Hz, 2H), 7.43 (d, J = 8.7 Hz, 2H), 6.99 (dd, J = 9.0, 2.7 Hz, 1H), 6.87–9.80  

(m, 1H), 6.34 (dd, J = 9.3, 5.1 Hz, 1H). ESI/MS (m/z): 291 [M+H]+. 

3.2.3. Synthesis of 1-(4-chlorophenyl)-6-fluoro-7-nitroquinoxaline-2,3(1H,4H)-dione (4) 

Compound 3 above (2.9 g, 10 mmol) was dissolved in concentrated sulfuric acid (30 mL) and 

cooled to −5 °C. KNO3 (1.1 g, 8 mmol) was added into the solution portion-wise. After addition, the 

mixture was stirred at 0 °C for 1 h and then at room temperature for 1 h. The reaction mixture was 

slowly poured into ice water, and the solid formed was filtered and washed with water. The product 

was air-dried to give a light yellow solid 3.4 g (quantitative yield). 1H-NMR (300 MHz, DMSO-d6)  

δ 12.62 (s, 1H), 7.75 (d, J = 8.7 Hz, 2H), 7.45 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 11.7 Hz, 1H), 6.96  

(d, J = 6.9 Hz, 1H). ESI/MS (m/z): 336 [M+H]+. 

3.2.4. Synthesis of 1-(4-chlorophenyl)-6-(4-chloroanilino)-7-nitroquinoxaline-2,3(1H,4H)-dione (5)  

Compound 4 above (0.34 g, 1.0 mmol), DMSO (3 mL), anhydrous KF (0.12 g, 2.0 mmol), and  

4-chloroaniline (1.27 g, 10 mmol) were heated at 140 °C for 25 h. After cooling to room temperature, 

5 M HCl was added and the resulting solid was collected by filtration and washed with water. The 

crude product was purified by column chromatography to give 5 as an orange solid (0.22 g, 50%).  
1H-NMR (300 MHz, DMSO-d6) δ 12.09 (s, 1H), 9.35 (s, 1H), 7.76 (d, J = 8.4 Hz, 2H), 7.52–7.46  

(m, 4H), 7.35 (d, J = 8.4 Hz, 2H), 7.01 (s, 1H), 6.99 (s, 1H). ESI/MS (m/z): 443 [M+H]+. 

3.2.5. Synthesis of 1-(4-chlorophenyl)-6-(4-chloroanilino)-7-(isopropylamino)-quinoxaline-2,3-

(1H,4H)-dione (7) 

Zinc powder (0.13 g) was added portionwise to a vigorously stirred mixture of 5 (0.08 g,  

0.18 mmol) in glacial acetic acid (2 mL) and anhydrous methanol (5 mL). After the reaction was 

complete, as confirmed by TLC, the reaction mixture was filtered. The filtrate was concentrated under 

reduced pressure. Water was then added to the residue. After filtration, the yellow solid was dissolved 

in a mixture of glacial acetic acid (4 mL) and acetone (0.3 mL) in anhydrous methanol (2 mL). The 

resulting mixture was stirred at room temperature for 30 min., and then sodium borohydride (76 mg, 

2.0 mmol) was added and stirred for 30 min. The reaction mixture was concentrated under reduced 

pressure and water was added to the residue. The resulting solid was collected by filtration, washed 

with water, and dried. The crude product was purified by column chromatography to give 7 as a solid 

(30 mg, 37%). 1H-NMR (300 MHz, acetone-d6) δ 7.70 (d, J = 8.7 Hz, 2H), 7.51 (d, J = 8.7 Hz, 2H), 

7.15 (d, J = 8.7 Hz, 2H), 7.12 (s, 1H), 6.75 (d, J = 8.7 Hz, 2H), 5.76 (s, 1H), 3.18 (m, 1H), 0.99  

(d, J = 6.3 Hz, 6H). ESI/MS (m/z): 445 [M+H]+.  

3.2.6. Synthesis of 1-(4-chlorophenyl)-6-(4-chloroanilino)-7-isopropylimino-1,7-dihydroquinoxaline (8) 

Lithium aluminum hydride (8 mg, 0.21 mmol) was added into a mixture of 7 (30 mg, 0.07 mmol) in 

THF (5 mL). The mixture was heated at 50 °C for 1 h under nitrogen atmosphere. After cooling to 

room temperature, 3 drops of ethyl acetate were added. The mixture was filtered and washed with 
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ethyl acetate. The filtrate was washed with brine. The organic layer was separated and applied to 

preparative TLC. The TLC plate was heated in an oven (100 °C) for 30 min. before being developed 

with CHCl3/MeOH (20:1). The red band (Rf: 0.34) was collected and washed with anhydrous methanol. 

The washing was concentrated, and the residue was further purified by column chromatography (HL20, 

eluted with MeOH) to give 6 mg of 8 as a red solid (21%). 1H-NMR (300 MHz, CD3OD) δ 8.62 (d,  

J = 3.6 Hz, 1H) 8.28 (d, J = 3.6 Hz, 1H) 7.78 (d, J = 8.7 Hz, 2H), 7.70 (d, J = 9.0 Hz, 2H), 7.49 (s, 1H), 

7.42 (d, J = 8.7 Hz, 2H), 7.31 (d, J = 9.0 Hz, 2H), 6.22 (s, 1H), 3.65–3.61 (m, 1H), 1.23 (d, J = 6.3 Hz, 

6H). 13C-NMR (150 MHz, CD3OD) δ 149.3, 146.9, 142.6, 140.1, 139.5, 138.9, 134.3, 132.1, 131.2, 

131.0, 129.0, 125.1, 108.6, 92.1, 46.9, 21.4. HRMS (ESI-TOF+): m/z [M+H]+ calcd. for C23H21Cl2N4: 

423.1137; found: 423.1141. 

3.2.7. Synthesis of 2-methylamino-nitrobenzene (9a)  

2-Fluoronitrobenzene (2.82 g, 20 mmol) was dissolved in anhydrous ethanol (20 mL), and 33% 

aqueous methylamine solution (4.6 mL) was added. The mixture was heated to reflux until complete 

consumption of 2-fluoronitrobenzene. After cooling to room temperature, the solid formed was filtered 

and washed with 95% ethanol and dried to give the title compound as a red oil (quantitative yield).  
1H-NMR (400 MHz, acetone-d6) δ 8.10 (d, J = 8.0 Hz, 1H), 7.54 (t, J = 7.2, 8.4 Hz, 1H), 7.01 (d,  

J = 8.4 Hz, 1H), 6.68 (t, J = 7.2, 8.0 Hz, 1H), 3.07 (d, J = 5.2 Hz, 3H). ESI/MS (m/z): 153 [M+H]+. 

3.2.8. Synthesis of N-(4-chlorophenyl)-2-nitroaniline (9b)  

2-Fluoronitrobenzene (14.1 g, 100 mmol), 4-chloroaniline (19.1 g, 150 mmol), anhydrous KF (5.8 g, 

100 mmol) and anhydrous K2CO3 (13.8 g, 100 mmol) were heated at 160 °C for 10 h. The reaction 

mixture was cooled and water and ethyl acetate were added. The aqueous layer was extracted with 

ethyl acetate. The organic layer was combined and washed with 2 N HCl and dried over anhydrous 

Na2SO4. The solvent was concentrated under reduced pressure and the residue was recrystallized with 

anhydrous ethanol to give the title compound as red solid (20 g, 80%). 1H-NMR (300 MHz, CDCl3) δ 9.40 

(s, 1H), 8.23–8.19 (d, J = 8.7 Hz, 1H), 7.41–7.37 (m, 3H), 7.23–7.16 (m, 3H), 6.78 (t, J = 8.4, 8.1 Hz, 1H). 

3.2.9. Synthesis of 1-methylamino-2-(5-fluoro-2,4-dinitroanillino)-benzene (11a)  

A suspension of 9a (1.1 g, 5.0 mmol) in anhydrous methanol (20 mL) was hydrogenated with 10% 

Pd/C (0.06g) under atmospheric pressure until the reaction mixture turned colourless. After filtration, 

the filtrate was treated with DFDNB (1.03 g, 5.0 mmol) and Et3N (0.7 mL, 5.0 mmol) and stirred at 

room temperature for 1 h. The solid formed was filtered and washed with methanol to give yellow 

solid (78%). 1H-NMR (300 MHz, acetone-d6) δ 9.74 (s, 1H), 9.04–9.02 (d, J = 7.8 Hz, 1H), 7.34–7.29 

(t, J = 7.5 Hz, 1H), 7.20–7.17 (d, J = 7.5 Hz, 1H), 6.81–6.76 (d, J = 7.5 Hz, 1H), 6.74–6.71 (t, J = 7.8 Hz, 

1H), 6.09 (d, J = 14.1 Hz, 1H), 5.13 (d, J = 3.9 Hz, 1H), 2.80–2.78 (d, J = 5.1 Hz, 3H). ESI/MS (m/z): 

307 [M+H]+. 
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3.2.10. Synthesis of 1-(4-chloroanilino)-2-(5-fluoro-2,4-dinitroanilino)benzene (11b)  

Zinc powder (9 g) was added portionwise into a mixture of 9b (2.5 g, 10 mmol) in CH2Cl2 (50 mL) 

and glacial acetic acid (3 mL) and stirred at room temperature for 4 h. After filtration, the filtrate was 

concentrated, and the residue was treated with DFDNB (2.04 g, 10 mmol) and Et3N (1.01 g, 10 mmol) 

in anhydrous methanol (100 mL). The mixture was refluxed for 5 h. and then cooled to room 

temperature. The solid formed was filtered, washed with ethanol and dried to give the title compound 

as a red solid (2.60 g, 65%). M.p. 216–217 °C. 1H-NMR (300 MHz, DMSO-d6) δ 9.96 (s, 1H), 8.87  

(d, J = 8.1 Hz, 1H), 7.87 (s, 1H), 7.35–7.30 (m, 3H), 7.22–7.19 (d, J = 9.0 Hz, 2H), 7.07–7.02 (m, 1H), 

6.97–6.94 (d, J = 9.0 Hz, 2H), 6.46 (d, J = 14.4 Hz, 1H). ESI/MS (m/z): 403 [M+H]+. 

3.2.11. Synthesis of 1-[5-(4-chloroanilino)-2,4-dinitroanilino]-2-methylaminobenzene (12a) 

A stirred suspension of 11a (1.34 g, 3.6 mmol), 4-chloroanilline (0.92 g, 7.2 mmol), and anhydrous 

KF (0.21 g, 3.6 mmol) in anhydrous ethanol (30 mL) was refluxed for 4 h. After being cooled to room 

temperature, the solid formed was filtered and washed with anhydrous ethanol to give the title 

compound as an orange solid (1.52 g, 88%). 1H-NMR (300 MHz, DMSO-d6) δ 9.48 (brs, 2H), 9.00  

(s, 1H), 7.30 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 9.0 Hz, 2H), 7.08 (t, J = 7.2 Hz, 1H), 6.99 (dd, J = 7.5, 

1.5 Hz, 1H), 6.70 (d, J = 7.8 Hz, 1H), 6.56 (t, J = 7.5 Hz, 1H), 6.00 (s, 1H), 4.85 (d, J = 8.7 Hz, 1H), 

3.23–3.20 (m, 1H), 1.80–1.76 (m, 2H), 1.68–1.56 (m, 3H), 1.36–1.24 (m, 2H), 1.12–1.01 (m, 3H). 

3.2.12. Synthesis of 1-[5-methylamino-2,4-dinitroanilino]-2-(4-chlorophenyl)benzene (12b) 

A mixture of 11b (1.05 g, 2.6 mmol), 30% methylamine in ethanol (5 mL, 48.4 mmol) in anhydrous 

ethanol (100 mL) was refluxed for 4 h. The reaction mixture was cooled to room temperature and 

filtered. The solid obtained was washed with ethanol and dried to give the title compound as a red solid 

(1.0 g, 93%). It was used directly in the next step without further purification. M.p. 239–240 °C. 1H-NMR 

(300 MHz, DMSO-d6) δ 9.56 (s, 1H), 8.96 (s, 1H), 8.39 (d, J = 4.8 Hz, 1H), 7.87(s, 1H), 7.41 (d,  

J = 6.9 Hz, 1H), 7.34–7.24 (m, 2H), 7.19 (d, J = 9.0 Hz, 2H), 7.08–7.02 (m, 1H), 6.95 (d, J = 9.0 Hz, 

2H), 5.71 (s, 1H), 2.65 (d, J = 5.1 Hz, 3H). ESI/MS (m/z): 436 [M+Na]+. 

3.2.13. Synthesis of 2-(4-chloroanilino)-5-methyl-3-isopropylimino-3,5-dihydrophenazine (15a)  

Zinc powder (1.96 g) was added portionwise to a suspension of 12a (0.48 g, 1.0 mmol) in glacial 

acetic acid (10 mL) and heated at 50 °C for 30 min. After filtration, the filtrate was stirred in contact 

with air overnight. The reaction mixture was concentrated under reduced pressure and adjusted to 

alkaline with ammonia, and then the solid formed was filtered and washed with water to give a black 

solid 0.34 g. The black solid was taken up in dioxane (5 mL) and isopropylamine (2.2 mL, 25.7 mmol) 

was added. The mixture was heated in a sealed bomb at 110 °C for 7 h. After being cooled to room 

temperature, water was added to the mixture and the solid formed was filtered and purified by column 

chromatography (eluted with P.E./ethyl acetate: 4/1 to 2/1 to 100% ethyl acetate) to give 0.13 g of the 

title compound (29%). M.p. 98–102 °C. 1H-NMR (300 MHz, CDCl3) δ 7.65 (dd, J = 7.8, 1.5 Hz, 2H), 

7.44 (d, J = 8.4 Hz, 1H), 7.32–7.31 (m, 1H), 7.30 (s, 4 H), 7.19–7.14 (m, 1H), 6.78 (s, 1H), 6.17  

(s, 1H), 4.39 (m, 1H), 3.92–3.88 (m, 1H), 2.58–2.52 (m, 2H), 2.07–1.85 (m, 5 H), 1.56–1.51 (m, 2H), 
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1.35–1.34 (m, 1H), 1.31 (d, J = 6.3 Hz, 6H). 13C-NMR (100 MHz, CDCl3) δ 152.3, 150.6, 143.1, 138.8, 

137.0, 133.7, 131.2, 129.2, 128.6, 127.8, 126.9, 122.5, 122.4, 114.2, 99.7, 90.5, 61.2, 49.7, 28.6, 26.5, 

25.7, 23.9. HRMS (ESI-TOF+): m/z [M+H]+ calcd. for C27H30ClN4: 445.2159; found: 445.2161. 

3.2.14. Synthesis of 2-methylamino-5-(4-chlorophenyl)-3-imino-3,5-dihydrophenazine (14b)  

Zinc powder (4.0 g, 61.5 mmol) was added portionwise to a suspension of 12b (0.8 g, 1.9 mmol) in 

glacial acetic acid (80 Ml) and stirred for 4 h. The reaction mixture was filtered and washed with 

glacial acetic acid. The filtrate was stirred in contact with air overnight. The solvent was concentrated 

and the residue was treated with water and adjusted to alkaline with ammonia. The solid formed was 

filtered, washed with water and dried. The crude solid was purified by neutral aluminum oxide  

(100–200 mesh) column chromatography eluted with ethyl acetate/methanol (10:1 to 5:1) to give the 

title compound as a dark red solid (0.28 g, 43%). M.p. 218–220 °C. 1H-NMR (300 MHz, DMSO-d6)  

δ 9.20 (s, 1H), 7.83 (d, J = 8.7 Hz, 2H), 7.65 (d, J = 5.1 Hz, 1H), 7.55 (d, J = 8.4 Hz, 2H), 7.24–7.21 

(m, 2H), 6.95 (brs, 1H), 6.48 (d, J = 8.4 Hz, 1H), 6.10 (s, 1H), 5.31 (s, 1H), 2.88 (d, J = 2.7 Hz, 3H). 

ESI/MS (m/z): 335 [M+H]+. 

3.2.15. Synthesis of 2-methylamino-3-isopropylimino-5-(4-chlorophenyl)-3,5-dihydro-phenazine (15b)  

A mixture of 14b (0.15 g, 0.45 mmol), isopropylamine (1 mL, 12.0 mmol) and dioxane (20 mL) 

was heated in a sealed tube at 120 °C for 10 h. After being cooled to room temperature, the reaction 

mixture was concentrated under reduced pressure. The residue was purified by neutral aluminum oxide 

(100–200 mesh) column chromatography eluted with hexane/ethyl acetate (2:1) to give 150 mg of 15b 

as a red solid (88%). M.p. 235–237 °C. 1H-NMR (300MHz, acetone-d6) δ 7.85–7.82 (d, J = 8.7 Hz, 

2H), 7.61–7.58 (d, J = 9.3 Hz, 1H), 7.54–7.51 (d, J = 8.4 Hz, 2H), 7.18–7.10 (m, 2H), 6.95 (brs, 1H),  

6.48–6.45 (d, J = 9.0 Hz, 1H), 5.99 (s, 1H), 5.24 (s, 1H), 3.44–3.36 (m, 1H), 2.96 (d, J = 2.7 Hz, 3H), 

0.98 (d, J = 6.0 Hz, 6H). 13C-NMR (125 MHz, CDCl3) δ 151.1, 150.8, 149.2, 136.4, 135.7, 135.5, 

134.7, 131.5, 131.1, 130.5, 127.7, 126.5, 122.7, 113.7, 95.2, 88.9, 49.2, 29.2, 23.5. HRMS (ESI-TOF+): 

m/z [M+H]+ calcd. for C22H22ClN4: 377.1527; found: 377.1510. 

3.2.16. N1-(5-((4-chlorophenyl)amino)-2,4-dinitrophenyl)-N2-(pyridin-3-yl)benzene-1,2-diamine (19a) 

Compound 17 (0.215g, 1.0 mmol) was suspended in anhydrous methanol (10 mL). Pd/C (10%,  

40 mg) was added and the mixture was hydrogenated under atmospheric pressure until the reaction 

mixture turned colourless. The Pd/C was filtered off. The filtrate was concentrated in vacuo to give a 

light yellow oil. The oil was dissolved in THF (10 mL) and to this solution 16a (0.312 g 1.0 mmol) 

and diisopropylethylamine (0.17 mL, 1.0 mmol) were added. The mixture was refluxed for 20 h and 

then the reaction mixture was cooled to room temperature and concentrated in vacuo. The residue was 

added with water and filtered. The crude product was purified via chromatography (PE/EA: 2/1 to 1/1) 

to give the title compound as a yellow oil 0.243 g, yield 51%. 1H-NMR (300 MHz, DMSO-d6): 9.67 

(brs, 1H), 9.52 (brs, 1H), 8.98 (s, 1H), 8.14 (s, 1H), 8.03–8.01 (m, 1H), 7.88 (s, 1H), 7.38 (d, J = 8.7 Hz, 

2H), 7.28–7.13 (m, 7H), 7.01–6.96 (m, 1H), 6.02 (s, 1H). 
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3.2.17. N1-(2,4-dinitro-5-(pyridin-3-ylamino)phenyl)-N2-(pyridin-3-yl)benzene-1,2-diamine (19b) 

Compound 17 (0.215 g, 1.0 mmol) was suspended in anhydrous methanol (10 mL). Pd/C (10%, 40 mg) 

was added to the suspension and the mixture was hydrogenated under atmospheric pressure until the 

reaction mixture turned colourless. Then the Pd/C was filtered off. The filtrate was concentrated  

in vacuo to give a light yellow oil. The oil obtained was dissolved in THF (10 mL), and the solution 

was added 16b (0.278 g, 1.0 mmol) and diisopropylethylamine (0.17 mL, 1.0 mmol). The reaction 

mixture was refluxed for another 20 h. and then cooled to room temperature The mixture was 

concentrated in vacuo and the residues were added with distilled water and filtered. The crude product 

was purified via chromatography (PE/EA: 2/1 to 1/2) to produce the title compound as a yellow solid 

0.3 g, yield 68%. 1H-NMR (300 MHz, DMSO-d6): 9.72 (brs, 1H), 9.52 (brs, 1H), 8.99 (s, 1H), 8.41–8.36 

(m, 1H), 8.15 (t, J = 1.5 Hz, 1H), 8.02 (t, J = 3.0 Hz, 1H), 7.85 (s, 1H), 7.64–7.60 (m, 1H), 7.35 (dd,  

J = 8.1 Hz, 4.8 Hz, 1H), 7.23 (d, J = 7.8 Hz, 1H), 7.17–7.14 (m, 4H), 6.94–6.88 (m, 1H), 5.92 (s, 1H). 

3.2.18. (E)-N-(4-chlorophenyl)-3-(isopropylimino)-5-(pyridin-3-yl)-3,5-dihydrophenazin-2-amine (21a) 

Compound 19a (0.243 g, 0.5 mmol) was suspended in glacial acetic acid (10 mL). The suspension 

was added with zinc powder (0.66 g) portionwise in an ice bath. After addition, the mixture was stirred 

at room temperature for 30 min. and then heated at 50 °C for 30 min. After being cooled to room 

temperature, the reaction mixture was filtered and washed with glacial acetic acid. The filtrate was 

concentrated in vacuo. The residues were added with concentrated aqueous ammonia until the mixture 

became basic and then the solid was filtered out, washed with water and dried to give black solid. The 

black solid was dissolved in anhydrous methanol and the solution was added with solution of ammonia 

in methanol to adjust the solution to basic. The mixture was stirred in contact with air overnight and 

then concentrated in vacuo. The residues were mixed with dioxane (5 mL) and isopropylamine (2 mL,  

24 mmol). The mixture was heated at 110 °C in a sealed tube for 10 h. After being cooled to room 

temperature, the reaction mixture was added with water and filtered to give crude product. The crude 

product was purified via chromatography (PE/EA: 2/1 to EA) to produce 21 mg of the title compound 

as a red solid, yield 9%. Mp: 237–239 °C. 1H-NMR (300 MHz, DMSO-d6): 8.93 (dd, J = 4.8 Hz, 1.5 Hz, 

1H), 8.77 (dd, J = 1.8 Hz, 1H), 8.62 (brs, 1H), 8.15–8.11 (m, 1H), 7.87–7.83 (m, 1H), 7.67–7.63  

(m, 1H), 7.48–7.41 (m, 4H), 7.24–7.21 (m, 2H), 6.73 (s, 1H), 6.44–6.41 (m, 1H), 5.12 (s, 1H), 3.39–3.30 

(m, 1H), 1.03 (d, J = 6.3 Hz, 6H). 13C-NMR (100 MHz, DMSO-d6): 151.0, 150.1, 143.0, 138.8, 137.5, 

135.2, 134.7, 133.9, 131.2, 129.3, 128.2, 127.9, 126.8, 126.0, 122.9, 113.9, 88.5, 48.9, 44.8, 23.3. 

HRMS (m/z) calcd. for C26H23N5Cl (M+H+): 440.1636, found 440.1635. 

3.2.19. (E)-3-(isopropylimino)-N,5-di(pyridin-3-yl)-3,5-dihydrophenazin-2-amine (21b) 

Compound 19b (0.3 g, 0.7 mmol) was suspended in glacial acetic acid (5 mL). Zinc powder  

(1.33 g) was added portionwise to the suspension in an ice bath. After addition, the mixture was heated 

at 50 °C for 1 h. After being cooled to room temperature, the reaction mixture was filtered and washed 

with glacial acetic acid. The filtrate was concentrated in vacuo. The residues were added with 

concentrated aqueous ammonia until the mixture became basic and then the solid was filtered out, 

washed with water and dried to give a dark brown solid. The solid was dissolved in anhydrous 
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methanol and the solution was added with ammonia in methanol to adjust the solution to basic. The 

mixture was stirred in contact with air for 7 h. and then concentrated in vacuo. The residues were 

mixed with dioxane (5 mL) and isopropylamine (0.036 mol, 3 mL). The mixture was heated at 110 °C 

in a sealed bomb for 10 h. After being cooled to room temperature, the reaction mixture was added 

with water and filtered to give crude product. The crude product was purified via chromatography 

(PE/EA: 2/1 to EA) to produce 40 mg of the title compound as a red solid, yield 15%. Mp: 174–175 °C. 
1H-NMR (400 MHz, DMSO-d6): 8.92 (dd, J = 4.8 Hz, 1.2 Hz, 1H), 8.76 (d, J = 2.4 Hz, 1H), 8.62 (brs, 

1H), 8.60 (d, J = 2.4 Hz, 1H), 8.32 (d, J = 4.0 Hz, 1H), 8.13–8.11 (m, 1H), 7.87–7.83 (m, 1H), 7.65–7.63 

(m, 1H), 7.44 (dd, J = 8.0 Hz, 4.8 Hz, 1H), 7.23–7.20 (m, 2H), 6.65 (s, 1H), 6.43–6.41 (m, 1H), 5.12 

(s, 1H), 3.36–3.33 (m, 1H), 1.03 (d, J = 6.0 Hz, 6H). 13C-NMR (100 MHz, DMSO-d6): 151.0, 150.1, 

150.0, 144.2, 143.9, 143.6, 137.4, 136.7, 135.2, 134.7, 133.9, 131.2, 128.5, 128.1, 127.9, 126.0, 123.9, 

123.0, 113.9, 98.8, 88.5, 48.9, 23.3. HRMS (m/z) calcd. for C25H23N6 (M+H+): 407.1978, found 

407.1980. 

3.2.20. Synthesis of 1-[5-(3-pyridylamino)-2, 4-dinitroanilino]-2-(4-chloroanilino)benzene (22)  

A mixture of compound 11b (40.3 g, 100 mmol), 3-aminopyridine (14.1 g, 150 mmol) and 

triethylamine (14 mL, 100 mmol) in THF (200 mL) was refluxed under nitrogen atmosphere for 28 h. 

About 150 mL of THF was evaporated at atmospheric pressure. CH2Cl2 was added and the solid 

formed was filtered and washed with CH2Cl2 to give the title compound 22 (31.2 g, 66%). 1H-NMR 

(300 MHz, DMSO-d6) δ 9.72 (s, 1H), 9.00 (s, 1H), 8.40–8.37 (m, 2H), 7.77 (s, 1H), 7.63–7.59 (m, 1H), 

7.37–7.33 (m, 1H), 7.21–7.09 (m, 5H), 6.92–6.83 (m, 1H), 6.82–6.78 (m, 2H), 5.92 (s, 1H). ESI/MS 

(m/z): 477 [M+H]+. 

3.2.21. Synthesis of 2-(3-pyridylamino)-5-(4-chlorophenyl)-3-imino-3,5-dihydrophenazine (24)  

Zinc powder (71 g, 1.1 mol) was added portionwise to a mixture of compound 22 (28.6 g,  

60 mmol) in glacial acetic acid (150 mL) cooled in an ice water bath. The mixture was stirred until the 

colour turned to light green, and then filtered, washed with glacial acetic acid and anhydrous methanol. 

The filtrate was concentrated and the residue was treated with water and adjusted to alkaline with 

ammonia. The solid formed was filtered, washed with water and then dissolved in anhydrous methanol. 

The methanol solution was stirred in contact with air overnight. The solid formed was filtered to 

produce 23.1 g of crude 24 which was used in the next step without further purification. 

3.2.22. Synthesis of 5-(4-chlorophenyl)-3-isopropylimino-2-(3-pyridylamino)-3,5-dihydrophenazine (25)  

A mixture of compound 24 (23.1 g), isopropylamine (100 mL, 1.2 mol) and dioxane (120 mL) was 

heated in a sealed tube at 110 °C for 7 h. After cooling, the reaction mixture was treated with water 

and the solid formed was filtered off and washed with water. The crude product was purified by 

column chromatography (eluted with hexane/ethyl acetate: 2:1) to produce the title compound 25 as a 

red solid (11.2 g, 44%). M.p. 194–196 °C. 1H-NMR (300 MHz, DMSO-d6) δ 8.63 (brs, 1H), 8.61 (d,  

J = 2.4 Hz, 1H), 8.32 (dd, J = 4.8, 1.2 Hz, 1H), 7.90–7.84 (m, 3H), 7.65–7.58 (m, 3H), 7.25–7.18 (m, 

2H), 6.66 (s, 1H), 6.47–6.44 (m, 1H), 5.76 (s, 1H), 3.43–3.35 (m, 1H), 1.06 (d, J = 6.3 Hz, 6H).  
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13C-NMR (100 MHz, DMSO-d6) δ 150.2, 149.9, 144.1, 143.8, 143.5, 136.8, 135.8, 135.3, 134.4, 131.6, 

131.1, 130.9, 128.3, 128.0, 127.8, 123.9, 122.9, 114.1, 98.8, 88.3, 48.9, 23.3. HRMS (ESI-TOF+): 

[M+H]+ calcd. for C26H23ClN5: 440.1641; found: 440.1643. 

3.3. Biological Evaluation 

In vitro and in vivo anti-tuberculosis activities were determined using our routine methods [9]. 

4. Conclusions  

In summary, we have performed a systematic SAR and SLR investigation by synthesizing and 

evaluating a variety of analogues of clofazimine with modifications at various positions. The study 

revealed that the central tricyclic ring system is the pharmacophore of the molecule and is important 

for anti-tuberculosis activity. Attempts to simplify this pharmacophore led to compounds with reduced 

antimycobacterial activity. The two phenyl rings appended to the C2 and N5 positions can be replaced 

by a pyridyl ring. Replacement of the phenyl group attached to the C2 position by a pyridyl group 

leads to compounds with not only improved in vitro and in vivo anti-tuberculosis activity, but also 

favourable pharmacokinetic profiles with reduced skin pigmentation potential.  
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