Supporting Information

Figure S1. ¹H-NMR spectra of (a) 7 in CDCl₃; (b) 9 in DMSO- d_6 ; (c) 1 in DMSO- d_6 -toluene- d_8 ; (d) 8 in CDCl₃; (e) 10 in DMSO- d_6 ; and (f) 2 in DMSO- d_6 -toluene- d_8 .

Al proton peaks of compounds 7, 9, 1 (Figure S1) were assigned with the corresponding proton numbers indicated on the compound structures shown in Scheme 1. Clear chemical shift assignment of all protons in the structure methoxyethyleneglycol-[N,N',N,N,N,N-hexapropyl-hexa(aminoethyl)amino]-malonamide ester, ME₁N₆C₃ (7) was used to correlate the chemical shift changes of ME₁N₆⁺C₃ (9) and C₆₀>(ME₁N₆⁺C₃) (1) upon CH₃–I quaternization and C₆₀ reaction. Accordingly, we assigned the peak at δ 0.89 (H_a), 1.44 (H_b), 2.38–2.53 (H_c and H_{c'}) of 7 to the chemical shift of methyl protons CH₃-CH₂-CH₂-N–, methylene protons CH₃-CH₂-CH₂-N–, and *N*-attached ethyleneamino –CH₂– protons; two peaks at δ 3.32 (H_d) and 4.29 (H_e) to the chemical shift of methylene protons of –CH₂-NH-C=O and

-CH₂-O-C=O, respectively; and two peaks at δ 3.61 (H_f) and 3.39 (H_g) to the methylene and methyl protons of -CH₂-O- and CH₃-O-, respectively. The chemical shift of malonate α -proton was found to be δ 3.33 as a singlet. Quaternization reaction of ME₁N₆C₃ (7) with iodomethane to ME₁N₆⁺C₃ (9) resulted in the introduction of methylated quaternary amine arm in the structure that caused a large down-fielded shift of chemical shifts (more than 1.0 ppm) of all *N*-attached ethyleneamino -CH₂- protons at δ 2.38–2.53 to δ 3.22–4.25 (H_c, H_{c'}, and H_h) for quaternary ammonium methylene (-N⁺-CH₂-), and additional methyl protons (-N⁺-CH₃), with the overlap of H_d, H_e, H_f, H_g, and H_α, as a broad band. Chemical shifts of all methyl or methylene proton peaks of CH₃-CH₂-CH₂-N⁺- and CH₃-CH₂-CH₂-N⁺- were also down-field shifted to δ 0.95 (H_a) and δ 1.50–1.85 (H_b), respectively.

Similar chemical shifts were made for assignments of all proton peaks of ME₃N₆C₃ (**8**) to those of ME₁N₆C₃ (**7**), as shown in Figure S1, except more complicated peaks at δ 3.55–3.71 for the methylene protons of –CH₂-O– (H_f). Other peaks are almost identical, those of all methyl or methylene proton peaks in the moieties of CH₃-O–, CH₃-CH₂-CH₂-N–, CH₃-CH₂-CH₂-N– and –CH₂-N– to δ 3.38 (H_g), 0.90 (H_a), δ 1.47 (H_b), and 2.40–2.54 (H_c and H_c·) respectively. After methylated quaternization and the reaction with C₆₀, ¹H NMR spectrum of C₆₀(>ME₃N₆⁺C₃) (**2**) showed nearly identical chemical shifts as those of C₆₀(>ME₁N₆⁺C₃) (**1**), except a slight shift of chemical shifts of all methyl or methylene proton peaks in the moieties of CH₃-CH₂-CH₂-N–, CH₃-CH₂-CH₂-N–, -CH₂-N–, (CH₃-N⁺–) to δ 0.94 (H_a), δ 1.75 (H_b), and δ 2.90–4.20 (H_c, H_C', H_h), respectively.

