Article

Parallel Synthesis of 2-Substituted 6-(5-Oxo-1-phenylpyrrolidin-3-yl)pyrimidine-5-carboxamides

Bojana Črček ${ }^{1}$, Jernej Baškovč ${ }^{1}$, Uroš Grošelj ${ }^{1}$, Drago Kočar ${ }^{1}$, Georg Dahmann ${ }^{2}$, Branko Stanovnik ${ }^{1}$ and Jurij Svete ${ }^{1, *}$
${ }^{1}$ Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, P.O. Box 537, 1000 Ljubljana, Slovenia
${ }^{2}$ Boehringer Ingelheim Pharma GmbH \& Co. KG, Medicinal Chemistry, 88397 Biberach, Germany
* Author to whom correspondence should be addressed; E-Mail: jurij.svete@fkkt.uni-lj.si; Tel.: +386-1-2419-254; Fax: +386-1-2419-360.

Received: 20 March 2012; in revised form: 24 April 2012 / Accepted: 26 April 2012 / Published: 8 May 2012

Abstract

A library of 24 6-(5-oxo-1-phenylpyrrolidin-3-yl)pyrimidine-5-carboxamides $\mathbf{1 0}\{1,2 ; 1-12\}$ was prepared by a parallel solution-phase approach. The synthesis comprises a five-step transformation of itaconic acid (11) into 1-methyl and 1-phenyl substituted 6-(5-oxo-1-phenylpyrrolidin-3-yl)pyrimidine-5-carboxylic acids $\mathbf{1 7}\{1,2\}$ followed by parallel amidation of $\mathbf{1 7}\{1,2\}$ with a series of 12 aliphatic amines $\mathbf{1 8}\{1-12\}$ to afford the corresponding carboxamides $\mathbf{1 0}$ in good overall yields and in $80-100 \%$ purity.

Keywords: parallel synthesis; pyrimidines; 2-(heteroaryl)ethylamines

1. Introduction

2-[(Hetero)aryl]ethylamines, such as dopamine, histamine, tryptamine, serotonin, and melatonin are representative chemical messengers playing a crucial role in biological processes [1]. Therefore, the preparation of libraries of their novel synthetic analogues is of particular interest and represents an important target in medicinal [2-5], synthetic organic, and combinatorial chemistry [6-10].

In the last two decades, alkyl 2-substituted 3-(dimethylamino)prop-2-enoates and related enaminones have proven to be easily available and versatile reagents for the preparation of various functionalized heterocycles [11-15]. Recently, a part of our research in this field has been focused on the synthesis of aminoethyl functionalized heterocycles. In this context, we first reported the synthesis
of non-racemic 1-heteroaryl-2-phenylethylamines $\mathbf{1 - 3}$ from α-amino acid derived enaminoketones [16]. Further, the syntheses of the pyrazole analogues of histamine were developed: 2-aminoethyl substituted 1 H -pyrazole derivatives $\mathbf{4 - 6}$ as the open-chain analogues [17-20] and 6,7-dihydro- 1 H -pyrazolo[4,3-c]pyridin- $4(5 \mathrm{H})$-one derivatives 7 [21], 5-(2-aminophenyl)pyrazole derivatives $\mathbf{8}$ [22], and 5-(5-oxo-1-phenylpyrrolidin-3-yl)-1H-pyrazole-4-carboxamides 9 [23] as the conformationally constrained analogues of histamine. In continuation, we have focused our attention on 2-substituted 6-(5-oxo-1-phenylpyrrolidin-3-yl)pyrimidine-5-carboxamides 10 (Figure 1).

Figure 1. Aminoethyl substituted heterocycles 1-10.

Herein, we report a parallel solution-phase synthesis of a library of 24 6-(5-oxo-1-phenylpyrrolidin3 -yl)pyrimidine-5-carboxamides $\mathbf{1 0}\{1,2 ; 1-12\}$ as novel 2-heteroarylethylamine derivatives.

2. Results and Discussion

2.1. Synthesis of Title Compounds $\mathbf{1 0}$

First, the starting compound $\mathbf{1 2}$ was prepared from commercially available itaconic acid (11) and aniline following the literature procedure [24]. Transformation of $\mathbf{1 2}$ into the enaminone $\mathbf{1 4}$ as the first key intermediate was performed following the literature protocol [23]: Masamune-Claisen condensation of $\mathbf{1 2}$ with 1,1'-carbonyldiimidazole (CDI) as activating agent in anhydrous acetonitrile at room temperature gave the β-keto ester 13, which when treated with N, N-dimethylformamide dimethylacetal (DMFDMA) in refluxing toluene gave the enaminone intermediate 14. Subsequent cyclisation of $\mathbf{1 4}$ with acetamidine $\mathbf{1 5}\{1\}$ and benzamidine $\mathbf{1 5}\{2\}$ afforded methyl 4-(5-oxo-1-phenylpyrrolidin-3-yl)pyrimidine-5-carboxylates $\mathbf{1 6}\{1\}$ and $\mathbf{1 6}\{2\}$ in 50% and 65% yield, respectively. Finally, hydrolysis of $\mathbf{1 6}\{1\}$ and $\mathbf{1 6}\{2\}$ with 1 M aqueous NaOH in a mixture of
methanol and THF at room temperature furnished the corresponding carboxylic acids $\mathbf{1 7}\{1\}$ and $\mathbf{1 7}\{2\}$ in 86% and 92% yield, respectively (Scheme 1).

Scheme 1. Synthesis of 4-(5-Oxo-1-phenylpyrrolidin-3-yl)pyrimidine-5-carboxylic Acids $17\{1,2\}$.

With the desired carboxylic acids $\mathbf{1 7}\{1,2\}$ as the key-intermediates in our hands, a parallel solution-phase synthesis of 2-substituted 6-(5-oxo-1-phenylpyrrolidin-3-yl)pyrimidine-5-carboxamides 10 was studied. We supposed that the reaction conditions for the parallel amidation step as well as the workup protocol should be similar to those employed in the synthesis of closely related pyrazole analogues 9 [23]. Accordingly, bis(pentafluorophenyl) carbonate BPC was chosen as the reagent for activation of the carboxylic acids $\mathbf{1 7}$ and acetonitrile as the solvent. Preliminary amidations of $\mathbf{1 7}\{1,2\}$ with benzylamine ($\mathbf{1 8}\{3\}$) as the model primary amine proceeded smoothly to furnish the desired N-benzylcarboxamides $\mathbf{1 7}\{1 ; 3\}$ and $\mathbf{1 7}\{2 ; 3\}$, which precipitated from the reaction mixtures and were isolated by filtration. Somewhat surprisingly, analogous amidations of $\mathbf{1 7}\{1,2\}$ with diethylamine ($\mathbf{1 8}\{8\}$) did not proceed to completion unless excess diethylamine ($\mathbf{1 8}\{8\}$) was employed. The corresponding carboxamides $\mathbf{1 7}\{1 ; 8\}$ and $\mathbf{1 7}\{2 ; 8\}$ did not precipitate from the reaction mixtures and were isolated by evaporation of the reaction mixtures followed by purification by dry flash column chromatography (DFCC) [25,26] over aluminium oxide [27]. Consequently, the following procedure for parallel amidation was applied: the acids $17\{1,2\}$ were activated with triethylamine and bis(pentafluorophenyl) carbonate (BPC) in acetonitrile at room temperature to give the intermediate pentafluorophenyl esters $\mathbf{1 9}\{1,2\}$, which were subsequently treated with 1 equiv. of primary amines $\mathbf{1 8}\{1-7\}$ or with 10 equiv. of secondary amines $\mathbf{1 8}\{8-12\}$ at room temperature for 12 h . Nine products that precipitated from the reaction mixtures were isolated by filtration to afford carboxamides $\mathbf{1 0}\{1 ; 3,4\}$ and $\mathbf{1 0}\{2 ; 1-7\}$ in $28-100 \%$ yields and in $84-100 \%$ purity (Workup A). The rest of the products, which did not precipitate from the reaction mixtures, were isolated by evaporation of the
reaction mixtures followed by purification of the residues by DFCC over aluminium oxide, and evaporation of the eluates to give compounds $\mathbf{1 0}\{1 ; 1,2,5-12\}$ and $\mathbf{1 0}\{2 ; 8-12\}$ in $40-100 \%$ yields and in $80-100 \%$ purity (Workup B). In this manner, all 24 carboxamides $\mathbf{1 0}\{1,2 ; 1-12\}$ were successfully obtained in $18-100 \%$ yields and in $80-100 \%$ purity. Out of 24 library members, 17 were $\geq 95 \%$ pure and 7 were $\geq 80 \%$ pure (Scheme 2, Table 1).

Scheme 2. Parallel synthesis of 6-(5-oxo-1-phenylpyrrolidin-3-yl)pyrimidine-5-carboxamides $\mathbf{1 0}$.

Table 1. Selected experimental data for compounds $10\{1,2 ; 1-12\}$.

Compd.	R^{1}	$\mathrm{R}^{2} \mathrm{R}^{3} \mathrm{NH} \mathrm{18}$	Workup [a]	Yield (\%)	Purity (\%)
$\mathbf{1 0}\{1 ; 1\}$	Me	1-pentylamine $\mathbf{1 8}\{1\}$	B	85	$80[\mathrm{~b}]$
$\mathbf{1 0}\{1 ; 2\}$	Me	cyclohexylamine $\mathbf{1 8}\{2\}$	B	69	$100[\mathrm{~b}]$
$\mathbf{1 0}\{1 ; 3\}$	Me	benzylamine $\mathbf{1 8}\{3\}$	A	77	$100[\mathrm{~b}, \mathrm{c}]$
$\mathbf{1 0}\{1 ; 4\}$	Me	2-methoxyethylamine $\mathbf{1 8}\{4\}$	A	28	$100[\mathrm{~b}, \mathrm{c}]$
$\mathbf{1 0}\{1 ; 5\}$	Me	3-amino-1-propanol $\mathbf{1 8}\{5\}$	B	94	$81[\mathrm{~b}]$
$\mathbf{1 0}\{1 ; 6\}$	Me	3-dimethylamino-1-propylamine $\mathbf{1 8}\{6\}$	B	40	$94[\mathrm{~b}]$
$\mathbf{1 0}\{1 ; 7\}$	Me	2-picolylamine $\mathbf{1 8}\{7\}$	B	76	$100[\mathrm{~b}]$
$\mathbf{1 0}\{1 ; 8\}$	Me	diethylamine $\mathbf{1 8}\{8\}$	B	100	$100[\mathrm{~b}]$
$\mathbf{1 0}\{1 ; 9\}$	Me	pyrrolidine $\mathbf{1 8}\{9\}$	B	79	$100[\mathrm{~b}]$
$\mathbf{1 0}\{1 ; 10\}$	Me	piperidine $\mathbf{1 8}\{10\}$	B	100	$100[\mathrm{~b}]$

Table 1. Cont.

Compd.	R^{1}	$\mathrm{R}^{2} \mathrm{R}^{3} \mathrm{NH} \mathbf{1 8}$	Workup [a]	Yield (\%)	Purity (\%)
$\mathbf{1 0}\{1 ; 11\}$	Me	morpholine $\mathbf{1 8}\{11\}$	B	99	$100[\mathrm{~b}]$
$\mathbf{1 0}\{1 ; 12\}$	Me	4-methylpiperazine $\mathbf{1 8}\{12\}$	B	100	$100[\mathrm{~b}]$
$\mathbf{1 0}\{2 ; 1\}$	Ph	1-pentylamine $\mathbf{1 8}\{1\}$	A	100	$100[\mathrm{~b}, \mathrm{c}]$
$\mathbf{1 0}\{2 ; 2\}$	Ph	cyclohexylamine $\mathbf{1 8}\{2\}$	A	100	$86[\mathrm{~b}, \mathrm{c}]$
$\mathbf{1 0}\{2 ; 3\}$	Ph	benzylamine $\mathbf{1 8}\{3\}$	A	77	$100[\mathrm{~b}, \mathrm{c}]$
$\mathbf{1 0}\{2 ; 4\}$	Ph	2-methoxyethylamine $\mathbf{1 8}\{4\}$	A	65	$100[\mathrm{~b}, \mathrm{c}]$
$\mathbf{1 0}\{2 ; 5\}$	Ph	3-amino-1-propanol $\mathbf{1 8}\{5\}$	A	98	$84[\mathrm{~b}, \mathrm{c}]$
$\mathbf{1 0}\{2 ; 6\}$	Ph	3-dimethylamino-1-propylamine $\mathbf{1 8}\{6\}$	A	71	$100[\mathrm{~b}]$
$\mathbf{1 0}\{2 ; 7\}$	Ph	2-picolylamine $\mathbf{1 8}\{7\}$	A	89	$87[\mathrm{~b}, \mathrm{c}]$
$\mathbf{1 0}\{2 ; 8\}$	Ph	diethylamine $\mathbf{1 8}\{8\}$	B	68	$88[\mathrm{~b}, \mathrm{c}]$
$\mathbf{1 0}\{2 ; 9\}$	Ph	pyrrolidine $\mathbf{1 8}\{9\}$	B	100	$100[\mathrm{~b}]$
$\mathbf{1 0}\{2 ; 10\}$	Ph	piperidine $\mathbf{1 8}\{10\}$	B	100	$100[\mathrm{~b}]$
$\mathbf{1 0}\{2 ; 11\}$	Ph	morpholine $\mathbf{1 8}\{11\}$	B	95	$100[\mathrm{~b}]$
$\mathbf{1 0}\{2 ; 12\}$	Ph	4-methylpiperazine $\mathbf{1 8}\{12\}$	B	100	$100[\mathrm{~b}]$

[a] Workup A: filtration of the reaction mixture; Workup B: evaporation of the reaction mixture, followed by DFCC purification. [b] Determined by LC-MS, ${ }^{1} \mathrm{H}-\mathrm{NMR}$, and ${ }^{13} \mathrm{C}-\mathrm{NMR}$. [c] Confirmed by elemental analysis. The found values for C, H, and N were within $\pm 0.4 \%$ range with respect to the theoretical values.

2.2. Structure Determination

The structures and purities of novel compounds $\mathbf{1 0}\{1,2 ; 1-12\}, \mathbf{1 6}\{1,2\}$, and $\mathbf{1 7}\{1,2\}$ were determined by spectroscopic methods (IR, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$, MS, HRMS), by LC-MS, and by elemental analyses for C, H, and N . Spectral and analytical data for novel compounds $\mathbf{1 0}\{1,2 ; 1-12\}$, $\mathbf{1 6}\{1,2\}$, and $\mathbf{1 7}\{1,2\}$ were in agreement with the proposed structures. Correlation of NMR data for compounds $\mathbf{1 0}\{1,2 ; 1-12\}, \mathbf{1 6}\{1,2\}$, and $\mathbf{1 7}\{1,2\}$ revealed very good agreement of chemical shifts and coupling constants for the core nuclei (Table 2).

Since the products $\mathbf{1 0}\{1,2 ; 1-12\}$ were isolated as racemic mixtures [28], we also tried to find suitable conditions for separation of the enantiomers of compounds $\mathbf{1 0}$ by HPLC using analytical chiral stationary phase column Chiralcel ${ }^{\circledR}$ OD-H $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$ and n-hexane/isopropanol as mobile phase. To our pleasant surprise, all 24 racemic compounds were resolved under these conditions. Most probably, the results obtained on analytical column should be applicable in (semi)preparative separation of enantiomers of $\mathbf{1 0}\{1,2 ; 1-12\}$, while these separation conditions could also serve as a important information for separation of analogous racemic compounds (Table 3).

Finally, some physicochemical properties of compounds $\mathbf{1 0}\{1,2 ; 1-12\}$ were calculated to estimate their drug-likeness. The compounds have molecular weight (MW) between 160 and 500, number of atoms between 20 and $70, \mathrm{CLog} \mathrm{P}$ between -0.4 and 5.6 , number of hydrogen bond donors $(\mathrm{HBD}) \leq 5$, number of hydrogen bond acceptors $(\mathrm{HBA}) \leq 10$, and polar surface area (PSA) bellow $140 \AA^{2}$ [29,30]. These calculated physicochemical properties compliant with Lipinski's rule of five indicate promising drug-likeness of the synthesized compounds $\mathbf{1 0}\{1,2 ; 1-12\}$ (Table 4).

Table 2. Selected NMR data for compounds $\mathbf{1 0}\{1,2 ; 1-12\}$.

Compd.	δ (ppm)						${ }^{3} J_{\mathrm{H}-\mathrm{H}}(\mathrm{Hz})$					
	4-H	2'-Ha	2'-Hb	3'-H	4'-Ha	4'-Hb	2'a-2'b	2'a-3'	2'b-3'	3'-4'a	3'-4b	4'a-4'b
$16\{1\}$	9.11	4.15	4.24	4.70	2.96	3.17	9.6	6.4	8.4	9.1	7.3	16.9
$16\{2\}$	9.28	4.16	4.36	4.78	3.04	3.29	9.7	5.4	8.1	8.9	6.2	16.9
17 11\}	9.05	4.00	4.23	4.56			9.8	5.4	8.5	[a]	[a]	[a]
17\{2\}	9.25	4.06	4.35	4.73	2.96	3.03	9.9	4.1	7.9	4.9	8.6	16.7
$10\{1 ; 1\}$	8.62	4.14	4.23	4.28	2.90	3.15	9.3	6.5	7.3	8.8	7.3	17.0
$10\{1 ; 2\}$	8.60	4.16	4.22	4.27	2.91	3.15	9.1	6.5	8.7	8.8	7.5	16.9
$10\{1 ; 3\}$	8.63	4.09	4.18	4.28	2.83	3.10	9.5	6.8	8.9	9.0	7.7	16.9
$10\{1 ; 4\}$	8.65	4.15	4.21	4.28	2.90	3.16	9.4	7.1	8.6	8.9	7.9	16.8
$10\{1 ; 5\}$	8.65	4.16	4.22	4.31	2.92	3.12	9.6	6.8	8.9	9.0	7.7	16.9
$10\{1 ; 6\}$	8.61	4.14	4.25	4.43	2.92	3.18	9.6	6.7	8.4	9.1	7.8	16.9
$\mathbf{1 0}\{1 ; 7\}$	8.78	4.16	4.22	4.34	2.93	3.19	9.5	7.1	8.9	9.0	8.0	16.9
$10\{1 ; 8\}$	8.49	4.13	4.20	3.84	2.88	[b]	8.5	8.5	8.5	8.8	[a]	16.7
$\mathbf{1 0}\{1 ; 9\}$	8.56	4.17	4.21	3.96	2.90	3.17	9.5	8.4	7.6	9.0	8.7	16.9
$10\{1 ; 10\}$	8.47			3.90	2.90	3.19	[a]	[a]	[a]	[a]	[a]	[a]
$10\{1 ; 11$	8.48			3.91	2.90	3.18	[a]	[a]	[a]	[a]	[a]	[a]
$\mathbf{1 0}\{1 ; 12\}$	8.47	4.17		3.89	2.90	3.19	[a]	[a]	[a]	[a]	[a]	[a]
$10\{2 ; 1\}$	8.77	4.14	4.31	4.35	2.95	3.23	9.1	5.2	8.6	6.5	8.7	16.9
$\mathbf{1 0}\{2 ; 2\}$	8.75	4.15	~ 4.3	[a]	2.95	3.23	9.6	4.8	[a]	8.8	6.5	16.9
$10\{2 ; 3\}$	8.81	4.14	4.31	4.39	2.96	3.26	9.6	5.8	8.8	8.8	6.7	16.9
$\mathbf{1 0}\{2 ; 4\}$	8.82	4.17	4.32	4.37	2.98	3.27	9.4	5.8	8.8	8.6	6.8	16.8
$10\{2 ; 5\}$	8.80	4.17	4.31	4.38	2.98	3.21	9.6	5.6	8.9	8.7	6.5	16.9
$\mathbf{1 0}\{2 ; 6\}$	8.77	4.20	4.28	4.51	3.00	3.29	9.7	5.8	8.1	8.9	6.7	16.9
$10\{2 ; 7\}$	8.96	4.19	4.32	4.44	3.00	3.29	9.6	6.1	8.3	8.9	7.1	16.9
$\mathbf{1 0}\{2 ; 8\}$	8.65	4.22	4.24	3.92	2.95	[a]	[a]	[a]	[a]	8.9	[a]	16.9
$\mathbf{1 0}\{2 ; 9\}$	8.72	4.24	4.27	4.06	2.97	3.28	9.7	6.8	8.2	8.9	7.8	16.9
$10\{2 ; 10\}$	8.63	4.24	4.24	3.98	2.96	3.27	[a]	[a]	[a]	[a]	[a]	[a]
$10\{2 ; 11\}$	8.64	4.23	4.25	3.99	2.97	3.27	[a]	[a]	[a]	8.3	7.0	16.3
$\mathbf{1 0}\{2 ; 12\}$	8.64	4.25	4.25	3.98	2.98	3.29	[a]	[a]	[a]	[a]	[a]	[a]

[a] Multiplet or broad singlet; [b] Overlapped by other signals.
Table 3. Analytical data for separation of enantiomers of racemic compounds $\mathbf{1 0}\{1,2 ; 1-12\}$.

Compound	\boldsymbol{n}-hexane: \mathbf{i}-PrOH	R $\boldsymbol{t}(\mathbf{m i n})$	
		Enantiomer A	Enantiomer B
$\mathbf{1 0}\{1 ; 1\}$	$50: 50$	4.084	5.078
$\mathbf{1 0}\{1 ; 2\}$	$50: 50$	9.987	16.650
$\mathbf{1 0}\{1 ; 3\}$	$50: 50$	8.208	12.734
$\mathbf{1 0}\{1 ; 4\}$	$50: 50$	5.321	7.031
$\mathbf{1 0}\{1 ; 5\}$	$50: 50$	3.828	4.542
$\mathbf{1 0}\{1 ; 6\}$	$50: 50$	5.083	5.477
$\mathbf{1 0}\{1 ; 7\}$	$50: 50$	7.577	8.352
$\mathbf{1 0}\{1 ; 8\}$	$50: 50$	5.728	6.380
$\mathbf{1 0}\{1 ; 9\}$	$50: 50$	5.960	9.471
$\mathbf{1 0}\{1 ; 10\}$	$50: 50$		7.185

Table 3. Cont.

Compound	n-hexane: i-PrOH	$\mathrm{R} t(\mathrm{~min})$	
		Enantiomer A	Enantiomer B
$\mathbf{1 0}\{1 ; 11\}$	50:50	8.509	9.619
$\mathbf{1 0}\{1 ; 12\}$	50:50	7.206	7.928
$\mathbf{1 0}\{2 ; 1\}$	50:50	4.409	5.515
$\mathbf{1 0}\{2 ; 2\}$	50:50	4.537	5.840
$\mathbf{1 0}\{2 ; 3\}$	50:50	11.292	29.227
$\mathbf{1 0}\{2 ; 4\}$	50:50	6.462	7.522
$10\{2 ; 5\}$	80:20	14.864	18.975
$\mathbf{1 0}\{2 ; 6\}$	50:50	6.160	19.660
$\mathbf{1 0}\{2 ; 7\}$	50:50	10.778	12.764
$10\{2 ; 8\}$	50:50	5.293	24.904
$\mathbf{1 0}\{2 ; 9\}$	50:50	9.284	10.960
$\mathbf{1 0}\{2 ; 10\}$	50:50	7.102	8.212
$\mathbf{1 0}\{2 ; 11\}$	80:20	14.864	18.975
10\{2; 12\}	50:50	14.429	19.625

Table 4. Calculated physicochemical properties of compounds $\mathbf{1 0}\{1,2 ; 1-12\}$ [a].

Compound	MW $\left(\mathbf{g} \cdot \mathbf{m o l}^{-1}\right)$	No. of atoms	CLogP	No. of HBD	No. of HBA	PSA $\left(\mathbf{A}^{\mathbf{2}}\right)$
$\mathbf{1 0}\{1 ; 1\}$	366	53	2.82	1	6	74
$\mathbf{1 0}\{1 ; 2\}$	378	54	2.73	1	6	74
$\mathbf{1 0}\{1 ; 3\}$	386	51	2.67	1	6	74
$\mathbf{1 0}\{1 ; 4\}$	354	48	0.90	1	7	83
$\mathbf{1 0}\{1 ; 5\}$	354	48	0.46	2	7	94
$\mathbf{1 0}\{1 ; 6\}$	381	55	1.39	1	7	77
$\mathbf{1 0}\{1 ; 7\}$	387	50	1.17	1	7	86
$\mathbf{1 0}\{1 ; 8\}$	352	50	1.63	0	6	65
$\mathbf{1 0}\{1 ; 9\}$	350	48	1.20	0	6	65
$\mathbf{1 0}\{1 ; 10\}$	364	51	1.76	0	6	65
$\mathbf{1 0}\{1 ; 11\}$	366	49	0.73	0	7	75
$\mathbf{1 0}\{1 ; 12\}$	379	53	1.29	0	7	69
$\mathbf{1 0}\{2 ; 1\}$	428	60	4.42	1	6	74
$\mathbf{1 0}\{2 ; 2\}$	440	61	4.33	1	6	74
$\mathbf{1 0}\{2 ; 3\}$	448	58	4.27	1	6	74
$\mathbf{1 0}\{2 ; 4\}$	416	55	2.50	1	7	83
$\mathbf{1 0}\{2 ; 5\}$	416	55	2.06	2	7	94
$\mathbf{1 0}\{2 ; 6\}$	443	62	2.99	1	7	77
$\mathbf{1 0}\{2 ; 7\}$	449	57	2.77	1	7	86
$\mathbf{1 0}\{2 ; 8\}$	414	57	3.22	0	6	65
$\mathbf{1 0}\{2 ; 9\}$	412	55	2.80	0	6	65
$\mathbf{1 0}\{2 ; 10\}$	426	58	3.36	0	6	65
$\mathbf{1 0}\{2 ; 11\}$	428	56	2.33	0	7	75
$\mathbf{1 0}\{2 ; 12\}$	441	60	2.89	0	7	69

[a] Calculated with ChemBioDraw Ultra v11.0.

3. Experimental

3.1. General Methods

Melting points were determined on a Stanford Research Systems MPA100 OptiMelt automated melting point system (Sunnyvale, CA, USA). The NMR spectra were obtained on a Bruker Avance III UltraShield 500 plus (Karlsruhe, Germany) at 500 MHz for ${ }^{1} \mathrm{H}$ and 126 MHz for the ${ }^{13} \mathrm{C}$ nucleus, using DMSO- d_{6} and CDCl_{3} with TMS as the internal standard, as solvents. Mass spectra were recorded on a Agilent 6224 Accurate Mass TOF LC/MS spectrometer (Santa Clara, CA, USA), IR spectra on a Perkin-Elmer Spectrum BX FTIR spectrophotometer (Waltham, MA, USA). Microanalyses were performed on a Perkin-Elmer CHN Analyzer 2400 II (Waltham, MA, USA). Drying of the compounds 10 and 17 was performed in a Büchi drying oven (Flawil, Switzerland). Dry flash column chromatography (DFCC) was performed on Aluminium Oxide Fluka for Chromatography, cat. \# 06310 , type 506 C weakly acidic, $0.05-0.15 \mathrm{~mm}, \mathrm{pH} 6.0 \pm 0.5$ (Buchs, Switzerland).

For LC-MS/MS experiments, liquid chromatograph Perkin Elmer Series 200 from Perkin Elmer (Shelton, CT, USA) with UV detector and 3200 QTRAP LC/MS/MS System equipped with ESI and APCI ion sources from Applied Biosystems/MDS Sciex (Foster City, CA, USA) were used. HPLC column was Gemini, dimensions $150 \mathrm{~mm} \times 4.6 \mathrm{~mm}, 3 \mu \mathrm{~m}$ particles from Phenomenex (Torrance, CA, USA). Mobile phase was a gradient of acetonitrile (A) and deionised water (B): $0 \mathrm{~min}-10 \% \mathrm{~A}$, $25 \mathrm{~min}-100 \%$ A, 3 min equilibration time with initial mobile phase ($10 \% \mathrm{~A}$) was allowed for column equilibration. Mobile phase flow was $1 \mathrm{~mL} / \mathrm{min}$. Injection volume was $20 \mu \mathrm{~L}$. Signal was recorded using UV detector at 254 nm and mass spectra were recorded using positive (ESI +) and negative (ESI-) ionization mode simultaneously. Mass range was from 70 to 500 amu . Electrospray ion source (ESI) conditions were as follows: cone voltage 5500 V (ESI +) and -4500 V (ESI-), respectively, ion source temperature $4,000{ }^{\circ} \mathrm{C}$, curtain gas N_{2} pressure was set to 10 psi, nebulizer gas N_{2} pressure was set to 20 psi and turbo gas (air) pressure was set to 40 psi . Declustering potential 30 V and entrance potential 10 V was used, respectively.

Itaconic acid (11), 1,1'-carbonyldiimidazole, N, N-dimethylformamide dimethylacetal (DMFDMA), acetamidine hydrochloride $\mathbf{1 5}\{1\}$, benzamidine $\mathbf{1 5}\{2\}$, bis(pentafluorophenyl) carbonate (BPC), and amines $\mathbf{1 8}\{1-12\}$ are commercially available (Sigma-Aldrich). 5-Oxo-1-phenylpyrrolidin-3-carboxylic acid (12) [24] and methyl 3-oxo-3-(5-oxo-1-phenylpyrrolidin-3-yl)propanoate (13) [23] were prepared according to the literature procedures.

Parallel stirring and filtrations were carried out on Mettler-Toledo Bohdan MiniBlock ${ }^{\mathrm{TM}}$ Compact Shaking and Washing Station and Vacuum Collection Base (2×12 positions, Vortex stirring, 400 r.p.m. in all cases). Parallel evaporations were carried out on Büchi Syncore ${ }^{\circledR}$ Polyvap parallel evaporator (24 positions, Vortex stirring, 400 r.p.m. in all cases). Parallel drying was carried out on Hettlab IR-Dancer Infra-Red Vortex-Evaporator (42 positions, Vortex stirring, 400 r.p.m. in all cases).

3.2. Synthesis of Methyl 3-(Dimethylamino)-2-(5-oxo-1-phenylpyrrolidine-3-carbonyl)acrylate (14)

This compound was prepared according to a slightly modified literature procedure [23]. A mixture of β-keto ester $\mathbf{1 3}$ [23] ($5.2 \mathrm{~g}, 20 \mathrm{mmol}$), anhydrous toluene (20 mL), and DMFDMA ($2.8 \mathrm{~g}, 3 \mathrm{~mL}$,

20 mmol) was stirred at $60^{\circ} \mathrm{C}$ for 3 h . Volatile components were evaporated in vacuo to give the crude 14 as a yellow oil in quantitative yield.

3.3. Synthesis of Methyl 2-Methyl-6-(5-Oxo-1-phenylpyrrolidin-3-yl)pyrimidine-5-carboxylate (16\{1\})

Cold $\left(0^{\circ} \mathrm{C}\right)$ solution of t-BuOK ($2.3 \mathrm{~g}, 20 \mathrm{mmol}$) in anhydrous methanol (20 mL) was added to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of acetamidine hydrochloride $(\mathbf{1 5}\{1\}, 1.9 \mathrm{~g}, 20 \mathrm{mmol})$ in methanol $(20 \mathrm{~mL})$ and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min . The suspension was filtered with suction through a fritted funnel and the precipitated KCl was washed with anhydrous methanol $(2 \times 10 \mathrm{~mL})$ to afford a solution of the free acetamidine $\mathbf{1 5}\{1\}$ (20 mmol) in methanol. This was added to a solution of the crude enaminone $13(20 \mathrm{mmol})$ in methanol $(100 \mathrm{~mL})$ and the mixture was stirred at room temperature for 18 h . The precipitate was collected by filtration, and washed with methanol $(2 \times 10 \mathrm{~mL})$ to give $\mathbf{1 6}\{1\}$. Yield: $3.2 \mathrm{~g}(50 \%)$ of white solid; m.p. $131-133{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 2.77(3 \mathrm{H}, \mathrm{s}$, $\left.2-\mathrm{CH}_{3}\right) ; 2.96\left(1 \mathrm{H}, \mathrm{dd}, J=9.1,16.9 \mathrm{~Hz}, 4{ }^{\prime}-\mathrm{Ha}\right) ; 3.17\left(1 \mathrm{H}, \mathrm{dd}, J=7.3,16.9 \mathrm{~Hz}, 4^{\prime}-\mathrm{Hb}\right) ; 3.97$ ($3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right) ; 4.15\left(1 \mathrm{H}, \mathrm{dd}, J=6.4,9.6 \mathrm{~Hz}, 2^{\prime}-\mathrm{Ha}\right) ; 4.24\left(1 \mathrm{H}, \mathrm{dd}, J=8.4,9.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{Hb}\right) ; 4.70(1 \mathrm{H}$, quintet, $\left.J=8.3 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right) ; 7.14(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.4 \mathrm{~Hz}, p-\mathrm{Ph}) ; 7.37(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=8.0 \mathrm{~Hz}, o-\mathrm{Ph}) ; 7.63(2 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J=7.9 \mathrm{~Hz}, m-\mathrm{Ph}) ; 9.06(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 26.5,35.5,38.0,52.9,53.3$, $120.1,120.3,124.8,129.0,139.3,159.5,165.2,170.1,171.2,172.7 . \mathrm{LC}-\mathrm{MS}: \mathrm{R}_{t}=13.217 \mathrm{~min}$, $m / z=312\left(\mathrm{MH}^{+}\right)$, area $\%=80 . m / z$ (HRMS) Found: 312.1345 $\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires: $m / z=312.1343$. (Found: C, 65.22; H, 5.46; N, 13.16. $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires: C, 65.58; H, 5.50; N, 13.50.); $v_{\max }(\mathrm{KBr}) 3420,1718,1693,1598,1572,1545,1480,1397,1306,1268,1097,818,764$, $693 \mathrm{~cm}^{-1}$.

3.4. Synthesis of Methyl 6-(5-Oxo-1-phenylpyrrolidin-3-yl)-2-phenylpyrimidine-5-carboxylate (16\{2\})

Benzamidine $\mathbf{1 5}\{2\}(2.4 \mathrm{~g}, 20 \mathrm{mmol})$ was added to a solution of the crude enaminone $\mathbf{1 4}$ (20 mmol) in anhydrous methanol $(100 \mathrm{~mL})$ and the mixture was stirred at room temperature for 72 h . The precipitate was collected by filtration, and washed with methanol $(2 \times 30 \mathrm{~mL})$ to give $\mathbf{1 6}\{2\}$. Yield: $4.9 \mathrm{~g}(65 \%)$ of white solid; m.p. $146-147{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.04(1 \mathrm{H}, \mathrm{dd}, J=8.9$, $\left.16.9 \mathrm{~Hz}, 4^{\prime}-\mathrm{Ha}\right) ; 3.29\left(1 \mathrm{H}, \mathrm{dd}, J=6.2,16.9 \mathrm{~Hz}, 4^{\prime}-\mathrm{Hb}\right) ; 4.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) ; 4.16(1 \mathrm{H}, \mathrm{dd}, J=5.4,9.7$ $\left.\mathrm{Hz}, 2^{\prime}-\mathrm{Ha}\right) ; 4.36\left(1 \mathrm{H}, \mathrm{dd}, J=8.1,9.6 \mathrm{~Hz}, 2^{\prime}-\mathrm{Hb}\right) ; 4.78\left(1 \mathrm{H}, \mathrm{tt}, J=5.9,8.4 \mathrm{~Hz}, 3{ }^{\prime}-\mathrm{H}\right) ; 7.16(1 \mathrm{H}, \mathrm{t}$, $J=7.4 \mathrm{~Hz}, p-\mathrm{Ph}) ; 7.38(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=8.0 \mathrm{~Hz}, o-\mathrm{Ph}) ; 7.47-7.55(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}$ of Ph$) ; 7.64(2 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J=7.7 \mathrm{~Hz}, m-\mathrm{Ph}) ; 8.50-8.52(2 \mathrm{H}, \mathrm{m}, m-\mathrm{Ph}) ; 9.28(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 35.9$, $38.0,52.9,53.6,120.2,120.3,124.8,128.9,129.0,129.2,132.2,136.3,139.3,160.1,165.1,166.2$, 170.5, 173.0. LC-MS: $\mathrm{R}_{t}=19.692 \mathrm{~min}, m / z=374\left(\mathrm{MH}^{+}\right)$, area $\%=100 . m / z(E S I)=374\left(\mathrm{MH}^{+}\right) . m / z$ (HRMS) Found: $374.1499\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires: $m / z=374.1499$. (Found: C, 69.61; H, 5.44; $\mathrm{N}, 11.07 . \mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot 1 / 3 \mathrm{H}_{2} \mathrm{O}$ requires: C 69.59; H 5.23; N 11.07 .); $v_{\text {max }}(\mathrm{KBr}) 3484$, 1717, 1676, 1569, $1478,1406,1311,1281,1196,1108,836,766,692 \mathrm{~cm}^{-1}$.

3.5. Synthesis of 2-Methyl-6-(5-oxo-1-phenylpyrrolidin-3-yl)pyrimidine-5-carboxylic Acid (17\{1\})

A mixture of the ester $\mathbf{1 6}(13 \mathrm{mmol}), 1 \mathrm{M}$ aqueous $\mathrm{NaOH}(30 \mathrm{~mL})$, methanol (30 mL), and THF $(30 \mathrm{~mL})$ was stirred at room temperature for 5 h . Methanol and THF were removed by evaporation
in vacuo ($35^{\circ} \mathrm{C}, 100 \mathrm{mbar}$), the aqueous residue was acidified with concentrated hydrochloric acid to $\mathrm{pH} \sim 1$, and the product was extracted with dichloromethane $(4 \times 200 \mathrm{~mL})$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the filtrate was evaporated in vacuo to give $\mathbf{1 7}\{1\}$. Yield: $3.33 \mathrm{~g}(86 \%)$ of a pale yellow solid; m.p. $70-82^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta$ $2.66\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right) ; 2.88-2.96\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{CH}_{2}\right) ; 4.00\left(1 \mathrm{H}, \mathrm{dd}, J=5.4,9.8 \mathrm{~Hz}, 2^{\prime}-\mathrm{Ha}\right) ; 4.23(1 \mathrm{H}, \mathrm{dd}$, $\left.J=8.5,9.7 \mathrm{~Hz}, 2^{\prime}-\mathrm{Hb}\right) ; 4.56\left(1 \mathrm{H}, \mathrm{dq}, J=5.6,8.0 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right) ; 7.13(1 \mathrm{H}, \mathrm{brt}, J=7.4 \mathrm{~Hz}, p-\mathrm{Ph}) ; 7.37(2 \mathrm{H}$, br t, $J=8.0 \mathrm{~Hz}, o-\mathrm{Ph}) ; 7.65(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.8 \mathrm{~Hz}, m-\mathrm{Ph}) ; 9.05(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) ; 13.78(1 \mathrm{H}, \mathrm{s}, \mathrm{COOH})$. ${ }^{13} \mathrm{C}(126 \mathrm{MHz}$, DMSO-d 6) : $\delta 26.0,34.4,37.4,52.6,119.6,121.0,124.0,128.7,139.3,159.1,166.0$, 169.6, 170.0, 172.3. LC-MS: $R \mathrm{t}=13.7 \mathrm{~min}, m / z=296\left(\mathrm{M}-\mathrm{H}^{+}\right)$, area $\%=100 . \mathrm{m} / z(\mathrm{ESI})=296$ $\left(\mathrm{M}-\mathrm{H}^{+}\right) . m / z$ (HRMS) Found: $298.1189\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires: $m / z=298.1186$. (Found: C 64.51; H 5.16; N 13.95. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires: C 64.64; H 5.09; N 14.13 .); $v_{\max }(\mathrm{KBr}) 3418,1700$, 1676, 1597, 1542, 1500, 1400, 1265, 762, $692 \mathrm{~cm}^{-1}$.

3.6. Synthesis of 6-(5-Oxo-1-phenylpyrrolidin-3-yl)-2-phenylpyrimidine-5-carboxylic Acid (17\{2\})

A mixture of the ester $\mathbf{1 6}(13 \mathrm{mmol}), 1 \mathrm{M}$ aqueous $\mathrm{NaOH}(30 \mathrm{~mL})$, methanol (30 mL), and THF $(30 \mathrm{~mL})$ was stirred at room temperature for 5 h . Methanol and THF were removed by evaporation in vacuo ($35^{\circ} \mathrm{C}, 100 \mathrm{mbar}$) and the aqueous residue was acidified with concentrated hydrochloric acid to $\mathrm{pH} \sim 1$. The precipitate was collected by filtration to give $17\{2\}$. Yield: $4.34 \mathrm{~g}(92 \%)$ of a pale yellow solid; m.p. $251-253{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 2.96(1 \mathrm{H}, \mathrm{dd}, J=4.9,16.7 \mathrm{~Hz}$, $\left.4^{\prime}-\mathrm{Ha}\right) ; 3.03\left(1 \mathrm{H}, \mathrm{dd}, J=8.6,16.7 \mathrm{~Hz}, 4^{\prime}-\mathrm{Hb}\right) ; 4.06\left(1 \mathrm{H}, \mathrm{dd}, J=4.1,9.9 \mathrm{~Hz}, 2^{\prime}-\mathrm{Ha}\right) ; 4.35(1 \mathrm{H}, \mathrm{dd}$, $\left.J=7.9,9.9 \mathrm{~Hz}, 2^{\prime}-\mathrm{Hb}\right) ; 4.73\left(1 \mathrm{H}\right.$, br septet, $\left.J=4.2 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right) ; 7.13(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.4 \mathrm{~Hz}, p-\mathrm{Ph}) ; 7.37$ (2H, br t, $J=8.0 \mathrm{~Hz}, o-\mathrm{Ph}) ; 7.52(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=8.0 \mathrm{~Hz}, o-\mathrm{Ph}) ; 7.57(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.3 \mathrm{~Hz}, p-\mathrm{Ph}) ; 7.69$ ($2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.8 \mathrm{~Hz}, m-\mathrm{Ph}$); $8.43(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.2 \mathrm{~Hz}, m-\mathrm{Ph}) ; 9.25(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) ; 13.84(1 \mathrm{H}, \mathrm{s}$, $\mathrm{COOH}) .{ }^{13} \mathrm{C}\left(126 \mathrm{MHz}\right.$, DMSO- $\left._{6}\right): \delta 35.0,37.7,52.8,119.5,121.2,123.9,128.4,128.7,128.8,131.9$, 136.2, 139.5, 159.8, 164.3, 165.9, 170.8, 172.6. LC-MS: $R \mathrm{t}=18.192 \mathrm{~min}, m / z=358\left(\mathrm{M}-\mathrm{H}^{+}\right)$, area $\%=100 . m / z(E S I)=358\left(M-H^{+}\right) . m / z(H R M S)$ Found: $360.1346\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires: $m / z=360.1343$. (Found: C 69.38; H 4.65; $\mathrm{N} 11.38 . \mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{11 / 1 / 4} \mathrm{H}_{2} \mathrm{O}$ requires: C 69.37; H 4.84 ; N 11.56.); $v_{\max }(\mathrm{KBr}) 3420,2364,1708,1654,1567,1500,1424,1312,1257,1183,756,697 \mathrm{~cm}^{-1}$.
3.7. Parallel Synthesis of 2-Substituted 6-(5-Oxo-1-phenylpyrrolidin-3-yl)pyrimidine-5-carboxamides $10\{1,2 ; 1-12\}$

Two MiniBlocks ${ }^{\mathrm{TM}}$ were equipped with 12 fritted vessels each and mounted on a compact stirring and washing station. The reaction vessels were charged with carboxylic acids $\mathbf{1 7}\{1\}(12 \times 149 \mathrm{mg}$, $12 \times 0.5 \mathrm{mmol})$ and $\mathbf{1 7}\{2\}(12 \times 180 \mathrm{mg}, 12 \times 0.5 \mathrm{mmol})$, anhydrous acetonitrile $(24 \times 5 \mathrm{~mL})$, BPC $(24 \times 236 \mathrm{mg}, 24 \times 0.6 \mathrm{mmol})$, and triethylamine $(24 \times 0.14 \mathrm{~mL}, 24 \times 1 \mathrm{mmol})$ and the mixtures were stirred at room temperature for 30 min . Then, the amines $\mathbf{1 8}\{1-7\}(2 \times 12 \times 0.5 \mathrm{mmol})$ and amines $\mathbf{1 8}\{8-12\}(2 \times 4 \times 5 \mathrm{mmol})$ were added and stirring at room temperature was continued for 12 h . The reaction mixtures were filtered to afford $\mathbf{1 0}\{1 ; 3,4\}$ and $\mathbf{1 0}\{2 ; 1-7\}$ (Workup A). The filtrates containing the products $\mathbf{1 0}\{1 ; 1,2,5-12\}$ and $\mathbf{1 0}\{2 ; 8-12\}$ were evaporated in vacuo ($40{ }^{\circ} \mathrm{C} / 2 \mathrm{mbar}$) and the residues (resins) were dissolved in dichloromethane $(15 \times 2.5 \mathrm{~mL})$ and purified sequentially by DFCC over aluminium oxide ($5 \mathrm{~g}, \mathrm{~d}=15 \mathrm{~mm}$) by gradient elution with a) EtOAc (30 mL) and b)
$\operatorname{EtOAc}-\operatorname{EtOH}(5: 1,50 \mathrm{~mL})$. The combined eluates were evaporated in vacuo $\left(60^{\circ} \mathrm{C} / 1 \mathrm{mbar}\right)$ to afford compounds $\mathbf{1 0}\{1 ; 1,2,5-12\}$ and $\mathbf{1 0}\{2 ; 8-12\}$ (Workup B). The following compounds were prepared in this manner.

3.7.1. 2-Methyl-6-(5-oxo-1-phenylpyrrolidin-3-yl)-N-pentylpyrimidine-5-carboxamide ($\mathbf{1 0}\{1 ; 1\}$)

Prepared from $\mathbf{1 7}\{1\}$ and 1-pentylamine ($\mathbf{1 8}\{1\}$), workup B. Yield: $204 \mathrm{mg}(85 \%)$ of yellow-brown resin. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.92\left(3 \mathrm{H}, \mathrm{dd}, J=4.7,9.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{C}_{5} \mathrm{H}_{11}\right), 1.35-1.40(4 \mathrm{H}, \mathrm{m}$, $2 \mathrm{CH}_{2}$ of $\left.\mathrm{C}_{5} \mathrm{H}_{11}\right), 1.64\left(2 \mathrm{H}\right.$, quintet, $J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2}$ of $\left.\mathrm{C}_{5} \mathrm{H}_{11}\right), 2.74\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 2.90(1 \mathrm{H}, \mathrm{dd}$, $\left.J=8.8,17.0 \mathrm{~Hz}, 4^{\prime}-\mathrm{Ha}\right), 3.15\left(1 \mathrm{H}, \mathrm{dd}, J=7.3,17.0 \mathrm{~Hz}, 4^{\prime}-\mathrm{Hb}\right), 3.45\left(2 \mathrm{H}, \mathrm{br} \mathrm{q}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}\right)$, $4.14\left(1 \mathrm{H}, \mathrm{dd}, J=6.5,9.3 \mathrm{~Hz}, 2^{\prime}-\mathrm{Ha}\right), 4.23\left(1 \mathrm{H}, \mathrm{t}, J=8.8 \mathrm{~Hz}, 2^{\prime}-\mathrm{Hb}\right), 4.28\left(1 \mathrm{H}, \mathrm{br} \mathrm{q}, J=8.2 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right)$, $6.24(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.15(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.4 \mathrm{~Hz}, p-\mathrm{Ph}), 7.36(2 \mathrm{H}, \mathrm{brt}, J=7.9 \mathrm{~Hz}, m-\mathrm{Ph}), 7.59(2 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J=7.6 \mathrm{~Hz}, o-\mathrm{Ph}), 8.62(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.2,22.5,26.3,29.3,29.4,35.7$, $38.3,40.6,53.9$, $120.6,125.1,126.5,129.1,139.1,154.7,165.9,168.3,169.8,172.9$. LC-MS: $R \mathrm{t}=14.733 \mathrm{~min}, m / z=367\left(\mathrm{MH}^{+}\right)$, area $\%=80 . m / z(\mathrm{ESI})=365\left(\mathrm{M}^{-} \mathrm{H}^{+}\right) . m / z(\mathrm{HRMS})$ Found: 365.1987 $([\mathrm{M}-\mathrm{H}]) . \mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires: $m / z=365.1983 . v_{\max }(\mathrm{KBr}) 3460,2356,1651,1516,1501,985,760$, $694 \mathrm{~cm}^{-1}$.

3.7.2. N-Cyclohexyl-2-methyl-6-(5-oxo-1-phenylpyrrolidin-3-yl)pyrimidine-5-carboxamide (10 $\{1 ; 2\}$)

Prepared from $\mathbf{1 7}\{1\}$ and (cyclohexylamine $\mathbf{1 8}\{2\}$), workup B. Yield: 228 mg (69%) of yellow-brown resin. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.16-1.32\left(4 \mathrm{H}, \mathrm{m}, 4 \mathrm{H}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 1.43(2 \mathrm{H}, \mathrm{br} \mathrm{tq}$, $J=3.5,12.1 \mathrm{~Hz}, 2 \mathrm{H}$ of $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 1.68\left(1 \mathrm{H}, \mathrm{br} \mathrm{td}, J=3.5,12.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 1.75-1.81(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 2.05\left(2 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=2.2,12.3 \mathrm{~Hz}, 2 \mathrm{H}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 2.74\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 2.91(1 \mathrm{H}, \mathrm{dd}, J=8.8$, $\left.16.9 \mathrm{~Hz}, 4^{\prime}-\mathrm{Ha}\right), 3.15\left(1 \mathrm{H}, \mathrm{dd}, J=7.5,16.9 \mathrm{~Hz}, 4^{\prime}-\mathrm{Hb}\right), 3.95(1 \mathrm{H}, \mathrm{ttd}, J=3.9,7.8,14.5 \mathrm{~Hz}, 1 \mathrm{H}$ of $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 4.16\left(1 \mathrm{H}, \mathrm{dd}, J=6.5,9.1 \mathrm{~Hz}, 2^{\prime}-\mathrm{Ha}\right), 4.22\left(1 \mathrm{H}, \mathrm{t}, J=8.7 \mathrm{~Hz}, 2^{\prime}-\mathrm{Hb}\right), 4.27(1 \mathrm{H}$, quintet, $\left.J=8.0 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 6.04(1 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{NH}), 7.16(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.8 \mathrm{~Hz}, p-\mathrm{Ph}), 7.36(2 \mathrm{H}, \mathrm{br} \mathrm{t}$, $J=8.0 \mathrm{~Hz}, m-\mathrm{Ph}), 7.59(2 \mathrm{H}, \mathrm{brd}, J=7.7 \mathrm{~Hz}, o-\mathrm{Ph}), 8.60(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $25.0,25.6,26.2,33.2,35.7,38.3,49.6,53.9,120.6,125.1,126.7,129.1,139.1,154.6,165.1,168.2$, 169.7, 173.0. LC-MS: $R \mathrm{t}=14.483 \mathrm{~min}, m / z=379\left(\mathrm{MH}^{+}\right), \operatorname{area} \%=100 . \mathrm{m} / \mathrm{z}(\mathrm{ESI})=379\left(\mathrm{MH}^{+}\right) . m / z$ (HRMS) Found: $379.2131\left(\mathrm{MH}^{\dagger}\right) . \mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires: $m / z=379.2129 . v_{\max }(\mathrm{KBr}) 3418,2934,1634$, $1516,1501,1400,1281,1150,1007,839,762,694 \mathrm{~cm}^{-1}$.

3.7.3. N-Benzyl-2-methyl-6-(5-oxo-1-phenylpyrrolidin-3-yl)pyrimidine-5-carboxamide (10 \{1; 3\})

Prepared from $\mathbf{1 7}\{1\}$ and benzylamine ($\mathbf{1 8}\{3\}$), workup A. Yield: $150 \mathrm{mg}(77 \%)$ of white solid; m.p. $153-155{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.72\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 2.83(1 \mathrm{H}, \mathrm{dd}, J=9.0,16.9 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 4^{\prime}-\mathrm{Ha}\right), 3.10\left(1 \mathrm{H}, \mathrm{dd}, J=7.7,16.9 \mathrm{~Hz}, 4^{\prime}-\mathrm{Hb}\right), 4.09\left(1 \mathrm{H}, \mathrm{dd}, J=6.8,9.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{Ha}\right), 4.18(1 \mathrm{H}, \mathrm{t}$, $\left.J=8.9 \mathrm{~Hz}, 2^{\prime}-\mathrm{Hb}\right), 4.28\left(1 \mathrm{H}\right.$, quintet, $\left.J=7.9 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 4.59$ and $4.63(2 \mathrm{H}, 2 \mathrm{dd}, 1: 1, J=5.5,14.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 6.72(1 \mathrm{H}, \mathrm{t}, J=5.3 \mathrm{~Hz}, \mathrm{NH}), 7.14(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.4 \mathrm{~Hz}, p-\mathrm{Ph}), 7.31-7.38(7 \mathrm{H}, \mathrm{m}, m-\mathrm{Ph}, \mathrm{Ph}$), $7.55(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.4 \mathrm{~Hz}, o-\mathrm{Ph}), 8.63(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 26.4,35.6,38.3$, 44.6, 53.9, 120.5, 125.0, 126.2, 128.2, 128.3, 129.1, 129.2, 137.6, 139.2, 155.0, 165.9, 168.3, 170.0, 172.9. LC-MS: $R \mathrm{t}=13.808 \mathrm{~min}, m / z=387\left(\mathrm{MH}^{+}\right)$, area\% $=100 . m / z(\mathrm{ESI})=385\left(\mathrm{M}-\mathrm{H}^{+}\right)$.
m / z (HRMS) Found: $385.1669([\mathrm{M}-\mathrm{H}]) . \mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires: $m / z=385.167$. (Found: $\mathrm{C} 71.30 ; \mathrm{H}$ 5.83; $\mathrm{N} 14.44 . \mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires: C 71.48; H 5.74; N 14.50); $v_{\max }(\mathrm{KBr}) 3422,3269,1706,1634$, $1560,1498,1446,1396,1308,1279,1218,824,756,691 \mathrm{~cm}^{-1}$.
3.7.4. N-(2-Methoxyethyl)-2-methyl-6-(5-oxo-1-phenylpyrrolidin-3-yl)pyrimidine-5-carboxamide (10\{1; 4\})

Prepared from $\mathbf{1 7}\{1\}$ and 2-methoxyethylamine ($\mathbf{1 8}\{4\}$), workup A. Yield: $48 \mathrm{mg}(28 \%)$ of white solid; m.p. $101-103{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.74\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 2.90(1 \mathrm{H}, \mathrm{dd}, J=8.9$, $\left.16.8 \mathrm{~Hz}, 1 \mathrm{H}, 4{ }^{\prime}-\mathrm{Ha}\right), 3.16\left(1 \mathrm{H}, \mathrm{dd}, J=7.9,16.8 \mathrm{~Hz}, 4^{\prime}-\mathrm{Hb}\right), 3.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.57-3.59$ and $3.63-3.66\left(4 \mathrm{H}, 2 \mathrm{~m}, 1: 1, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.15\left(1 \mathrm{H}, \mathrm{dd}, J=7.1,9.4 \mathrm{~Hz}, 2^{\prime}-\mathrm{Ha}\right), 4.21(1 \mathrm{H}, \mathrm{t}, J=8.6 \mathrm{~Hz}$, $\left.2^{\prime}-\mathrm{Hb}\right), 4.28\left(1 \mathrm{H}\right.$, quintet, $\left.J=8.1 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 6.25(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.15(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.4 \mathrm{~Hz}, p-\mathrm{Ph}), 7.36$ (2H, br t, $J=8.0 \mathrm{~Hz}, m-\mathrm{Ph}), 7.61(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.5 \mathrm{~Hz}, o-\mathrm{Ph}), 8.65(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, CDCl_{3} : $\delta 26.3,35.7,38.3,40.1,53.8,59.1,70.9,120.4,120.4,124.9,126.2,129.0,129.0,139.2,155.0$, $166.0,168.1,169.9,172.8$. LC-MS: $R \mathrm{t}=10.167 \mathrm{~min}, m / z=355\left(\mathrm{MH}^{+}\right)$, area $\%=100 . \mathrm{m} / z(\mathrm{ESI})=355$ $\left(\mathrm{MH}^{+}\right) . m / z$ (HRMS) Found: $389.1387\left(\left[\mathrm{M}+\mathrm{Cl}^{-}\right) . \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClN}_{4} \mathrm{O}_{3}\right.$ requires: $m / z=389.1386$. (Found: C 64.17; H 6.22; $\mathrm{N} 15.67 . \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires: C 64.39; H 6.26; N 15.81); $v_{\text {max }}(\mathrm{KBr}) 3422,3269,1706$, $1634,1560,1498,1446,1396,1308,1279,1218,824,756,691 \mathrm{~cm}^{-1}$.

3.7.5. N-(3-Hydroxypropyl)-2-methyl-6-(5-oxo-1-phenylpyrrolidin-3-yl)pyrimidine-5-carboxamide (10\{1; 5\})

Prepared from $\mathbf{1 7}\{1\}$ and 3-amino-1-propanol ($\mathbf{1 8}\{5\}$), workup B. Yield: 205 mg (94\%) of yellow-brown resin. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 1.85\left(2 \mathrm{H}\right.$, quintet, $J=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.73 $\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 2.92\left(1 \mathrm{H}, \mathrm{dd}, J=9.0,16.9 \mathrm{~Hz}, 4^{\prime}-\mathrm{Ha}\right), 3.12\left(1 \mathrm{H}, \mathrm{dd}, J=7.7,16.9 \mathrm{~Hz}, 4^{\prime}-\mathrm{Hb}\right), 3.62(2 \mathrm{H}$, ddd, $\left.J=2.2,5.6,11.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}\right), 3.81\left(2 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.16(1 \mathrm{H}, \mathrm{dd}, J=6.8,9.6 \mathrm{~Hz}$, $\left.2^{\prime}-\mathrm{Ha}\right), 4.22\left(1 \mathrm{H}, \mathrm{t}, J=8.9 \mathrm{~Hz}, 2^{\prime}-\mathrm{Hb}\right), 4.31\left(1 \mathrm{H}\right.$, quintet, $\left.J=7.9 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 6.40(1 \mathrm{H}, \mathrm{br}$ s, NH), 7.16 $(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.5 \mathrm{~Hz}, p-\mathrm{Ph}), 7.19(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=5.0 \mathrm{~Hz}, \mathrm{OH}), 7.36(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=8.0 \mathrm{~Hz}, m-\mathrm{Ph}), 7.58$ $(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, o-\mathrm{Ph}), 8.65(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 26.2,31.4,35.6,38.4$, $38,7,54.0,61.2,120.7,125.2,126.3,129.1,139.0,155.0,166.4,168.3,169.8,173.1$. LC-MS: $R \mathrm{t}=9.183 \mathrm{~min}, m / z=355\left(\mathrm{MH}^{+}\right)$, area $\%=81 . m / z(\mathrm{ESI})=353([\mathrm{M}-\mathrm{H}]) . m / z$ (HRMS) Found: $353.1623\left([\mathrm{M}-\mathrm{H}]^{-}\right) . \mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires: $m / z=353.1619 . v_{\text {max }}(\mathrm{KBr}) 3444,2370,1645,1517,1501$, 1309, 984, 838, 761, $691 \mathrm{~cm}^{-1}$.
3.7.6. N-(3-Dimethylaminopropyl)-2-methyl-6-(5-oxo-1-phenylpyrrolidin-3-yl)pyrimidine-5-carboxamide (10\{1; 6\})

Prepared from $\mathbf{1 7}\{1\}$ and 3-(dimethylamino)propylamine ($\mathbf{1 8}\{6\}$), workup B. Yield: $115 \mathrm{mg}(40 \%)$ of yellow resin. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.79\left(2 \mathrm{H}\right.$, br quintet, $\left.J=5.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.28$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}$), $2.54\left(2 \mathrm{H}, \mathrm{t}, J=5.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NMe}_{2}\right), 2.74\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 2.92(1 \mathrm{H}, \mathrm{dd}, J=9.1,16.9 \mathrm{~Hz}$, $\left.4^{\prime}-\mathrm{Ha}\right), 3.18\left(1 \mathrm{H}, \mathrm{dd}, J=7.8,16.9 \mathrm{~Hz}, 4^{\prime}-\mathrm{Hb}\right), 3.56\left(2 \mathrm{H}, \mathrm{tq}, J=6.0,7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}\right), 4.14(1 \mathrm{H}, \mathrm{dd}$, $\left.J=6.7,9.6 \mathrm{~Hz}, 2^{\prime}-\mathrm{Ha}\right), 4.25\left(1 \mathrm{H}, \mathrm{dd}, J=8.4,9.6 \mathrm{~Hz}, 2^{\prime}-\mathrm{Hb}\right), 4.43\left(1 \mathrm{H}\right.$, quintet, $\left.J=8.2 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 7.15$ $(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.4 \mathrm{~Hz}, p-\mathrm{Ph}), 7.36(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=8.0 \mathrm{~Hz}, m-\mathrm{Ph}), 7.62(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.7 \mathrm{~Hz}, o-\mathrm{Ph}), 8.61$
$(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 8.78(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 24.6,26.2,35.8,37.6,38.5,43.7$, 53.9, 56.0, 120.5, 125.0, 126.0, 129.0, 139.2, 155.3, 166.5, 168.2, 169.7, 173.0. LC-MS: $R \mathrm{t}=1.867 \mathrm{~min}, m / z=382\left(\mathrm{MH}^{+}\right), \operatorname{area} \%=94 . m / z(\mathrm{ESI})=353\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: 382.2242 $\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires: $m / z=382.2238$. $v_{\text {max }}(\mathrm{KBr}) 3444,2356,1651,1503,1312,1163,1008$, $985,838,762,693 \mathrm{~cm}^{-1}$.
3.7.7. 2-Methyl-6-(5-oxo-1-phenylpyrrolidin-3-yl)-N-((pyridin-2-yl)methyl)pyrimidine-5-carboxamide (10\{1; 7\})

Prepared from $\mathbf{1 7}\{1\}$ and 2-picolylamine ($\mathbf{1 8}\{7\}$), workup B. Yield: 214 mg (76%) of yellow-brown resin. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.76\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 2.93\left(1 \mathrm{H}, \mathrm{dd}, J=9.0,16.9 \mathrm{~Hz}, 4^{\prime}-\mathrm{Ha}\right), 3.19$ $\left(1 \mathrm{H}, \mathrm{dd}, J=8.0,16.9 \mathrm{~Hz}, 4^{\prime}-\mathrm{Hb}\right), 4.16\left(1 \mathrm{H}, \mathrm{dd}, J=7.1,9.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{Ha}\right), 4.22\left(1 \mathrm{H}, \mathrm{t}, J=8.9 \mathrm{~Hz}, 2^{\prime}-\mathrm{Hb}\right)$, $4.34\left(1 \mathrm{H}\right.$, quintet, $\left.J=8.9 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 4.74$ and $4.78\left(2 \mathrm{H}, 2 \mathrm{dd}, 1: 1, J=4.8,16.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}\right), 7.15(1 \mathrm{H}$, br t, $J=7.4 \mathrm{~Hz}, p-\mathrm{Ph}), 7.28(1 \mathrm{H}, \mathrm{dd}, J=5.3,7.2 \mathrm{~Hz}, 5 "-\mathrm{H}), 7.36(3 \mathrm{H}, \mathrm{br} \mathrm{t}, J=8.0 \mathrm{~Hz}, m-\mathrm{Ph}, \mathrm{NH})$, $7.58-7.64$ ($3 \mathrm{H}, \mathrm{m}, o-\mathrm{Ph}, 3 "-\mathrm{H}$), 7.75 ($1 \mathrm{H}, \mathrm{dt}, J=1.7,7.7 \mathrm{~Hz}, 4 "-\mathrm{H}$), 8.53 ($1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=4.6 \mathrm{~Hz}, 6 \mathrm{C}-\mathrm{H}$), $8.78(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 26.3,35.7,38.4,44.7,53.9,120.5,122.8,123.2$, $125.0,126.3,129.1,137.7,139.2,149.1,155.0,155.2,165.9,168.3,170.0$, 173.0. LC-MS: $R \mathrm{t}=11.775 \mathrm{~min}, m / z=388\left(\mathrm{MH}^{+}\right)$, area $\%=100 . m / z(\mathrm{ESI})=388\left(\mathrm{MH}^{+}\right) . m / z(\mathrm{HRMS})$ Found: $388.1769\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires: $m / z=388.1768$. $v_{\text {max }}(\mathrm{KBr}) 3452,1654,1515,1500,1405$, 1311, 986, 760, $696 \mathrm{~cm}^{-1}$.

3.7.8. N, N-(Diethyl)-2-methyl-6-(5-oxo-1-phenylpyrrolidin-3-yl)pyrimidine-5-carboxamide $(\mathbf{1 0}\{1 ; 8\})$

Prepared from $\mathbf{1 7}\{1\}$ and diethylamine ($\mathbf{1 8}\{8\}$), workup B. Yield: $219 \mathrm{mg}(100 \%)$ of yellow resin. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.14$ and $1.29\left(6 \mathrm{H}, 2 \mathrm{t}, 1: 1, J=7.1 \mathrm{~Hz}, 2 \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.75\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right)$, $2.86\left(1 \mathrm{H}, \mathrm{dd}, ~ J=8.8,16.7 \mathrm{~Hz}, 4{ }^{\prime}-\mathrm{Ha}\right), 3.15-3.27\left(3 \mathrm{H}, \mathrm{m}, 4{ }^{\prime}-\mathrm{Hb}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.53-3.67$ ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.83\left(1 \mathrm{H}\right.$, quintet, $\left.J=8.6 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 4.12\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=8.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{Ha}\right), 4.20(1 \mathrm{H}, \mathrm{br} \mathrm{t}$, $\left.J=8.6 \mathrm{~Hz}, 2^{\prime}-\mathrm{Hb}\right), 7.17(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.4 \mathrm{~Hz}, p-\mathrm{Ph}), 7.37(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=8.0 \mathrm{~Hz}, m-\mathrm{Ph}), 7.60(2 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J=7.8 \mathrm{~Hz}, o-\mathrm{Ph}), 8.49(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.1,14.5,26.1,36.1,39.9,43.7$, $120.5,125.2,127.3,129.1,139.0,153.7,166.2,166.6,168.9,172.5$. LC-MS: $R \mathrm{t}=13.242 \mathrm{~min}$, $m / z=353\left(\mathrm{MH}^{+}\right)$, area $\%=100 . m / z(\mathrm{ESI})=353\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: $353.1973\left(\mathrm{MH}^{+}\right)$. $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires: $m / z=353.1972 . v_{\text {max }}(\mathrm{KBr}) 3413,2346,1637,1516,1500,1430,1310,995,761$, $691 \mathrm{~cm}^{-1}$.
3.7.9. 2-Methyl-6-(5-oxo-1-phenylpyrrolidin-3-yl)-N-(pyrrolidin-1-yl)pyrimidine-5-carboxamide (10\{1; 9\})

Prepared from $\mathbf{1 7}\{1\}$ and pyrrolidine ($\mathbf{1 8}\{9\}$), workup B. Yield: $205 \mathrm{mg}(79 \%)$ of yellow resin. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.90-2.08(4 \mathrm{H}, \mathrm{m}, 4 \mathrm{H}$ of pyrrolidine $), 2.75\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 2.88(1 \mathrm{H}$, dd, $\left.J=9.0,16.8 \mathrm{~Hz}, 4^{\prime}-\mathrm{Ha}\right), 3.17\left(1 \mathrm{H}, \mathrm{dd}, J=8.7,16.8 \mathrm{~Hz}, 4{ }^{\prime}-\mathrm{Hb}\right), 3.23-3.29(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of pyrrolidine), $3.30-3.37(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of pyrrolidine), $3.68(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$ of pyrrolidine), 3.97 (1 H , quintet, $\left.J=8.4 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 4.15\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=8.9 \mathrm{~Hz}, 2^{\prime}-\mathrm{Ha}\right), 4.21\left(1 \mathrm{H}, \mathrm{dd}, J=7.6,9.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{Hb}\right)$, $7.17(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.4 \mathrm{~Hz}, p-\mathrm{Ph}), 7.37(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=8.0 \mathrm{~Hz}, m-\mathrm{Ph}), 7.60(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, o-\mathrm{Ph}), 8.56$
$(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 24.6,26.1,26.4,36.2,38.3,46.3,49.5,53.8,120.6$, $125.2,127.5,129.1,138.9,154.4,165.4,166.5,169.1,172.7 . \mathrm{LC}-\mathrm{MS}: ~ R \mathrm{t}=12.258 \mathrm{~min}, \mathrm{~m} / \mathrm{z}=351$ $\left(\mathrm{MH}^{+}\right)$, area $\%=100 . m / z(E S I)=351\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: $351.1815\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires: $m / z=351.1816 . v_{\max }(\mathrm{KBr}) 3422,2362,1638,1516,1426,997,764,670 \mathrm{~cm}^{-1}$.
3.7.10. 2-Methyl-6-(5-oxo-1-phenylpyrrolidin-3-yl)-N-(piperidin-1-yl)pyrimidine-5-carboxamide ($\mathbf{1 0}\{1 ; 10\}$)

Prepared from $\mathbf{1 7}\{1\}$ and piperidine ($\mathbf{1 8}\{10\}$), workup B. Yield: $201 \mathrm{mg}(100 \%)$ of yellow resin. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.54(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \mathrm{H}$ of piperidine), $1.72(4 \mathrm{H}, \mathrm{br} \mathrm{s}, 4 \mathrm{H}$ of piperidine), $2.76\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 2.81-2.99\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{Ha}\right), 3.13-3.25\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{Hb}\right), 3.29(2 \mathrm{H}, \mathrm{br}$ s, 2 H of piperidine), $3.77\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \mathrm{H}\right.$ of piperidine), $3.90\left(1 \mathrm{H}\right.$, quintet, $\left.J=8.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 4.19(2 \mathrm{H}$, br s, $\left.2^{\prime}-\mathrm{CH}_{2}\right), 7.17(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.4 \mathrm{~Hz}, p-\mathrm{Ph}), 7.38(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=8.0 \mathrm{~Hz}, m-\mathrm{Ph}), 7.60(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.7 \mathrm{~Hz}$, $o-\mathrm{Ph}), 8.47(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 24.4,25.8,26.1,27.0,36.2,43.3,48.9$, 120.6, 125.2, 126.8, 129.1, 139.0, 154.2, 165.5, 166.4, 169.0, 172.6. LC-MS: Rt $=12.55 \mathrm{~min}$, $m / z=365\left(\mathrm{MH}^{+}\right)$, area $\%=100 . m / z($ ESI $)=365\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: $365.197\left(\mathrm{MH}^{+}\right)$. $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires: $m / z=365.1972$. $v_{\text {max }}(\mathrm{KBr}) 3438,2325,1630,1515,1500,1431,1288,1000$, $760,692 \mathrm{~cm}^{-1}$.

3.7.11. 2-Methyl-6-(5-oxo-1-phenylpyrrolidin-3-yl)-N-(morpholin-4-yl)pyrimidine-5-carboxamide ($\mathbf{1 0}\{1 ; 11\}$)

Prepared from $\mathbf{1 7}\{1\}$ and morpholine ($\mathbf{1 8}\{11\}$), workup B. Yield: $228 \mathrm{mg}(99 \%)$ of yellow resin. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.76\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 2.86-2.95\left(1 \mathrm{H}, \mathrm{m}, 4{ }^{\prime}-\mathrm{Ha}\right), 3.11-3.23(1 \mathrm{H}, \mathrm{m}$, $\left.4^{\prime}-\mathrm{Hb}\right), 3.32-3.43(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of morpholine), 3.60-3.71(2H, m, 2 H of morpholine), 3.79-3.88(4H, $\mathrm{m}, 4 \mathrm{H}$ of morpholine $), 3.91\left(1 \mathrm{H}\right.$, quintet, $\left.J=8.4 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 4.12-4.25\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{CH}_{2}\right), 7.17(1 \mathrm{H}, \mathrm{br} \mathrm{t}$, $J=7.4 \mathrm{~Hz}, o-\mathrm{Ph}), 7.38(2 \mathrm{H}, \mathrm{brt}, J=8.0 \mathrm{~Hz}, m-\mathrm{Ph}), 7.60(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.7 \mathrm{~Hz}, o-\mathrm{Ph}), 8.48(1 \mathrm{H}, \mathrm{s}$, $4-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 26.2,36.2,42.7,45.8,48.1,67.0,120.6,125.2,125.8,129.1$, 138.9, 154.5, 165.9, 166.9, 169.5, 172.4. LC-MS: $R \mathrm{t}=10.342 \mathrm{~min}, m / z=367\left(\mathrm{MH}^{+}\right)$, area $\%=100$. $m / z(E S I)=367\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: $367.1766\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires: $m / z=367.1765$. $v_{\text {max }}(\mathrm{KBr}) 3454,2326,1633,1516,1501,1428,1284,1117,984,840,762,696 \mathrm{~cm}^{-1}$.

3.7.12. 2-Methyl-6-(5-oxo-1-phenylpyrrolidin-3-yl)-N-(4-methylpiperazin-1-yl)pyrimidine-5-carboxamide

 ($10\{1 ; 12\}$)Prepared from $\mathbf{1 7}\{1\}$ and 4-methylpiperazine ($\mathbf{1 8}\{12\}$), workup B. Yield: $203 \mathrm{mg}(100 \%)$ of yellow resin. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.38\left(3 \mathrm{H}, \mathrm{s}, 4{ }^{\prime \prime}-\mathrm{CH}_{3}\right), 2.39(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1 \mathrm{H}$ of piperazine $), 2.46(1 \mathrm{H}$, $\mathrm{br} \mathrm{s}, 1 \mathrm{H}$ of piperazine), 2.53-2.65 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of piperazine), $2.76\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 2.82-2.98(1 \mathrm{H}, \mathrm{m}$, $\left.4^{\prime}-\mathrm{Ha}\right), 3.12-3.25\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{Hb}\right), 3.40(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of piperazine $), 3.78-3.87(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of piperazine), $3.89\left(1 \mathrm{H}\right.$, quintet, $\left.J=8.4 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 3.90-3.97(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of piperazine $), 4.17(2 \mathrm{H}, \mathrm{m}$, $\left.2^{\prime}-\mathrm{CH}_{2}\right), 7.17(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.4 \mathrm{~Hz}, p-\mathrm{Ph}), 7.38(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=8.0 \mathrm{~Hz}, m-\mathrm{Ph}), 7.60(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.7 \mathrm{~Hz}$, $o-\mathrm{Ph}), 8.47(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 26.2,31.1,36.2,41.8,45.7,45.9,47.3,54.7$, $55.3,120.5,125.2,126.1,129.1,139.0,154.5,165.7,166.7,169.4,172.4 . \mathrm{LC}-\mathrm{MS}: R \mathrm{t}=9.683 \mathrm{~min}$,
$m / z=380\left(\mathrm{MH}^{+}\right)$, area $\%=100 . m / z(\mathrm{ESI})=380\left(\mathrm{MH}^{+}\right) . m / z(\mathrm{HRMS})$ Found: $380.2085\left(\mathrm{MH}^{+}\right)$. $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires: $m / z=380.2081$. $v_{\text {max }}(\mathrm{KBr}) 3448$, 2365, 1636, 1500, 1292, 1154, 986, 764, $694 \mathrm{~cm}^{-1}$.

3.7.13. 6-(5-Oxo-1-phenylpyrrolidin-3-yl)-N-pentyl-1-phenylpyrimidine-5-carboxamide (10\{2;1\})

Prepared from $\mathbf{1 7}\{2\}$ and 1-pentylamine ($\mathbf{1 8}\{1\}$), workup A. Yield: $214 \mathrm{mg}(100 \%)$ of white solid; m.p. $122-126^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.93\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{C}_{5} \mathrm{H}_{11}\right), 1.36-1.41$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{CH}_{2}\right.$ of $\left.\mathrm{C}_{5} \mathrm{H}_{11}\right), 1.62-1.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of $\left.\mathrm{C}_{5} \mathrm{H}_{11}\right), 2.95\left(1 \mathrm{H}, \mathrm{dd}, J=8.7,16.9 \mathrm{~Hz}, 4^{\prime}-\mathrm{Ha}\right), 3.23$ $\left(1 \mathrm{H}, \mathrm{dd}, J=6.5,16.9 \mathrm{~Hz}, 4^{\prime}-\mathrm{Hb}\right), 3.46\left(2 \mathrm{H}, \mathrm{q}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of $\left.\mathrm{C}_{5} \mathrm{H}_{11}\right), 4.14(1 \mathrm{H}, \mathrm{dd}, J=5.2,9.1 \mathrm{~Hz}$, $\left.2^{\prime}-\mathrm{Ha}\right), 4.31\left(1 \mathrm{H}, \mathrm{t}, J=8.6 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 4.32-4.37\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{Hb}\right), 6.39(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.14(1 \mathrm{H}, \mathrm{br} \mathrm{t}$, $J=7.4 \mathrm{~Hz}, p-\mathrm{Ph}), 7.35(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=8.0 \mathrm{~Hz}, m-\mathrm{Ph}), 7.44-7.52(3 \mathrm{H}, \mathrm{m}, m, p-\mathrm{Ph}), 7.59(2 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J=7.8 \mathrm{~Hz}, o-\mathrm{Ph}), 8.44(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.0 \mathrm{~Hz}, o-\mathrm{Ph}), 8.77(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 14.2,22.5,29.3,29.4,35.9,38.3,40.5,54.1,120.5,125.0,126.6,128.8,128.9,129.0,131.8,136.6$, 139.2, 155.4, 165.3, 165.9, 168.5, 173.1. LC-MS: $R \mathrm{t}=20.192 \mathrm{~min}, m / z=429\left(\mathrm{MH}^{+}\right)$, area $\%=100$. $m / z(E S I)=429\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: $429.2289\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires: $m / z=429.2285$. (Found: C 72.10; H 6.44; $\mathrm{N} 12.90 . \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires (428.5): C 72.87; H 6.59; N 13.07.); $v_{\text {max }}(\mathrm{KBr})$ 3436, 2340, 1677, 1656, 1537, 1435, 1409, 1308, 755, $693 \mathrm{~cm}^{-1}$.

3.7.14. N -Cyclohexyl-6-(5-oxo-1-phenylpyrrolidin-3-yl)-2-phenylpyrimidine-5-carboxamide $(\mathbf{1 0}\{2 ; 2\})$

Prepared from $\mathbf{1 7}\{2\}$ and cyclohexylamine ($\mathbf{1 8}\{2\}$), workup A. Yield: $225 \mathrm{mg}(100 \%)$ of white solid; m.p. 196-199 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.21-1.32\left(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 1.40-1.48$ $\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 1.65-1.71\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 1.76-1.82\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 2.03-2.10$ $\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 2.95\left(1 \mathrm{H}, \mathrm{dd}, J=8.8,16.9 \mathrm{~Hz}, 4^{\prime}-\mathrm{Ha}\right), 3.23\left(1 \mathrm{H}, \mathrm{dd}, J=6.5,16.9 \mathrm{~Hz}, 4^{\prime}-\mathrm{Hb}\right)$, $3.96\left(1 \mathrm{H}, \mathrm{tdd}, J=4.0,8.0,11.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 4.15\left(1 \mathrm{H}, \mathrm{q}, J=4.8 \mathrm{~Hz}, 2^{\prime}-\mathrm{Ha}\right), 4.27-4-35(2 \mathrm{H}, \mathrm{m}$, $\left.2^{\prime}-\mathrm{Hb}, 3^{\prime}-\mathrm{H}\right), 6.22(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{NH}), 7.13(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.4 \mathrm{~Hz}, p-\mathrm{Ph}), 7.35(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=8.0 \mathrm{~Hz}$, $m-\mathrm{Ph}), 7.43-7.52(3 \mathrm{H}, \mathrm{m}, p, m-\mathrm{Ph}), 7.59(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.8 \mathrm{~Hz}, o-\mathrm{Ph}), 8.44(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.0 \mathrm{~Hz}, o-\mathrm{Ph})$, $8.75(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 25.1,25.6,33.2,35.9,38.2,49.6,54.0,120.4$, 124.9, 126.8, 128.8, 128.9, 129.0, 131.8, 136.6, 139.2, 155.4, 165.1, 165.2, 168.4, 173.0. LC-MS: $R \mathrm{t}=20.275 \mathrm{~min}, m / z=441\left(\mathrm{MH}^{+}\right)$, area $\%=86 . m / z(\mathrm{ESI})=441\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: $441.2287\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires: $m / z=441.2285$. (Found: $\mathrm{C} 73.66 ; \mathrm{H} 6.13 ; \mathrm{N} 12.53$. $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2}$ (440.5) requires: $\mathrm{C} 73.61 ; \mathrm{H} 6.41 ; \mathrm{N} 12.72$.); $v_{\text {max }}(\mathrm{KBr}) 3411,2342,1691,1633,1567$, 1431, 1400, 1316, 1229, 756, 717, $693 \mathrm{~cm}^{-1}$.

3.7.15. N-Benzyl-6-(5-oxo-1-phenylpyrrolidin-3-yl)-2-phenylpyrimidine-5-carboxamide (10\{2;3\})

Prepared from $\mathbf{1 7}\{2\}$ and benzylamine ($\mathbf{1 8}\{3\}$), workup A. Yield: $173 \mathrm{mg}(77 \%)$ of white solid; m.p. ${ }^{169-171}{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.96\left(1 \mathrm{H}, \mathrm{dd}, J=8.8,16.9 \mathrm{~Hz}, 4{ }^{\prime}-\mathrm{Ha}\right), 3.26(1 \mathrm{H}, \mathrm{dd}$, $\left.J=6.7,16.9 \mathrm{~Hz}, 4^{\prime}-\mathrm{Hb}\right), 4.14\left(1 \mathrm{H}, \mathrm{dd}, J=5.8,9.6 \mathrm{~Hz}, 2^{\prime}-\mathrm{Ha}\right), 4.31\left(1 \mathrm{H}, \mathrm{t}, J=8.8 \mathrm{~Hz}, 2^{\prime}-\mathrm{Hb}\right), 4.39$ (1 H , ddd, $J=6.4,8.3,12.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}$), 4.64 and $4.68\left(2 \mathrm{H}, 2 \mathrm{dd}, \mathrm{J}=5.7,14.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}^{\prime}\right), 6.48(1 \mathrm{H}, \mathrm{t}$, $J=5.4 \mathrm{~Hz}, \mathrm{NH}), 7.15(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.4 \mathrm{~Hz}, p-\mathrm{Ph}), 7.32-7.41\left(7 \mathrm{H}, \mathrm{m}, m-\mathrm{Ph}, \mathrm{Ph}^{\prime}\right), 7.45-7.52(3 \mathrm{H}, \mathrm{m}$, $m, p-\mathrm{Ph}), 7.60(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.9 \mathrm{~Hz}, o-\mathrm{Ph}), 8.46(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.0 \mathrm{~Hz}, o-\mathrm{Ph}), 8.81(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 35.9,38.2,44.6,54.1,120.4,124.9,126.2,128.2,128.3,128.9,129.0$, 129.1, 129.3, 131.9, 136.5, 137.5, 139.3, 155.4, 165.5, 165.8, 168.8, 173.0. LC-MS: Rt = 19.4 min , $m / z=449\left(\mathrm{MH}^{+}\right)$, area $\%=100 . m / z(E S I)=449\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: $449.198\left(\mathrm{MH}^{+}\right)$. $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires: $m / z=449.1972$. (Found: $\mathrm{C} 74.63 ; \mathrm{H} 5.43 ; \mathrm{N}$ 12.38. $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}$ (448.5) requires: C 74.98; H 5.39; N 12.49.); $v_{\max }(\mathrm{KBr}) 3418,1679,1662,1570,1498,1434,1305,760$, $692 \mathrm{~cm}^{-1}$.
3.7.16. N-(2-Methoxyethyl)-6-(5-oxo-1-phenylpyrrolidin-3-yl)-2-phenylpyrimidine-5-carboxamide ($10\{2 ; 4\}$)

Prepared from $\mathbf{1 7}\{2\}$ and 2-methoxyethylamine ($\mathbf{1 8}\{4\}$), workup A. Yield: $138 \mathrm{mg}(65 \%)$ of white solid; m.p. $164-168{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.98\left(1 \mathrm{H}, \mathrm{dd}, J=8.6,16.8 \mathrm{~Hz}, 4^{\prime}-\mathrm{Ha}\right), 3.27$ $\left(1 \mathrm{H}, \mathrm{dd}, J=6.8,16.9 \mathrm{~Hz}, 4^{\prime}-\mathrm{Hb}\right), 3.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.60\left(2 \mathrm{H}, \mathrm{t}, J=4.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OMe}\right), 3.66-3.69$ $\left(2 \mathrm{H}, \mathrm{t}, J=5.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}\right), 4.17\left(1 \mathrm{H}, \mathrm{dd}, J=5.8,9.4 \mathrm{~Hz}, 2^{\prime}-\mathrm{Ha}\right), 4.32\left(1 \mathrm{H}, \mathrm{t}, J=8.8 \mathrm{~Hz}, 2^{\prime}-\mathrm{Hb}\right)$, 4.34-4.40 ($1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}$), $6.60(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.14(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.4 \mathrm{~Hz}, p-\mathrm{Ph}), 7.36(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=8.0 \mathrm{~Hz}$, $m-\mathrm{Ph}), 7.45-7.53(3 \mathrm{H}, \mathrm{m}, p, m-\mathrm{Ph}), 7.62(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.7 \mathrm{~Hz}, o-\mathrm{Ph}), 8.46(2 \mathrm{H}, \mathrm{dd}, J=1.4,8.1 \mathrm{~Hz}$, $o-\mathrm{Ph}), 8.82(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 35.9,38.3,40.1,54.0,59.1,70.9,120.4$, 124.9, 126.4, 128.8, 128.9, 129.1, 131.9, 136.6, 139.3, 155.6, 165.4, 166.0, 168.5, 173.0. LC-MS: $R \mathrm{t}=15.017 \mathrm{~min}, m / z=417\left(\mathrm{MH}^{+}\right)$, area $\%=100 . m / z(\mathrm{ESI})=417\left(\mathrm{MH}^{+}\right) . m / z(\mathrm{HRMS})$ Found: 415.1779 $\left([\mathrm{M}-\mathrm{H}]^{-}\right) . \mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires: $m / z=415.1776$. (Found: C 68.03; H 5.43; N 13.11. $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot 2 / 5 \mathrm{H}_{2} \mathrm{O}$ (423.7) requires: C 68.04; H 5.90; N 13.23.); $v_{\max }(\mathrm{KBr}) 3466,2934,1682,1663$, $1568,1432,1306,1122,761,693 \mathrm{~cm}^{-1}$.
3.7.17. N-(3-Hydroxypropyl)-6-(5-oxo-1-phenylpyrrolidin-3-yl)-2-phenylpyrimidine-5-carboxamide (10\{2; 5\})

Prepared from $\mathbf{1 7}\{2\}$ and 3-amino-1-propanol ($\mathbf{1 8}\{5\}$), workup A. Yield: $206 \mathrm{mg}(98 \%)$ of white solid; $145-146{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.86\left(2 \mathrm{H}\right.$, quintet, $J=5.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.98 $\left(1 \mathrm{H}, \mathrm{dd}, J=8.7,16.9 \mathrm{~Hz}, 4^{\prime}-\mathrm{Ha}\right), 3.21\left(1 \mathrm{H}, \mathrm{dd}, J=6.5,16.9 \mathrm{~Hz}, 4^{\prime}-\mathrm{Hb}\right), 3.65(2 \mathrm{H}, \mathrm{br} \mathrm{q}, J=6.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{NH}\right), 3.82\left(2 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz}, \mathrm{CH} \mathrm{H}_{2} \mathrm{OH}\right), 4.17\left(1 \mathrm{H}, \mathrm{dd}, J=5.6,9.6 \mathrm{~Hz}, 2^{\prime}-\mathrm{Ha}\right), 4.31(1 \mathrm{H}, \mathrm{t}, J=8.9 \mathrm{~Hz}$, $\left.2^{\prime} \mathrm{Hb}\right), 4.38\left(1 \mathrm{H}, \mathrm{ddd}, J=6.4,8.3,12.2 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 7.12(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; 7.14(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.4 \mathrm{~Hz}$, $p-\mathrm{Ph}), 7.35(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=8.0 \mathrm{~Hz}, m-\mathrm{Ph}), 7.44-7.52(3 \mathrm{H}, \mathrm{m}, m, p-\mathrm{Ph}), 7.60(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.7 \mathrm{~Hz}, o-\mathrm{Ph})$, $8.44(2 \mathrm{H}, \mathrm{dd}, J=1.5,8.5 \mathrm{~Hz}, o-\mathrm{Ph}), 8.80(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), \mathrm{OH}$ exchanged. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $31.5,35.9,38.4,38.7,54.1,61.3,120.6,125.1,126.3,128.8,128.9,129.1,131.9,136.5,139.2,155.7$, 165.3, 166.4, 168.6, 173.2. LC-MS: $R \mathrm{t}=13.117 \mathrm{~min}, m / z=417\left(\mathrm{MH}^{+}\right)$, area $\%=84 . m / z(E S I)=417$ $\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: $417.192\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires: $m / z=417.1921$. (Found: C 68.23; H 5.60; $\mathrm{N} 13.21 . \mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{-1 / 3} \mathrm{H}_{2} \mathrm{O}$ (422.5) requires: C 68.24; H 5.89; N 13.27.$\left.\right)$; $v_{\max }(\mathrm{KBr}) 3458$, $2343,1682,1646,1568,1432,1402,1306,1071,762,694 \mathrm{~cm}^{-1}$.
3.7.18. N-(3-Dimethylaminopropyl)-6-(5-oxo-1-phenylpyrrolidin-3-yl)-2-phenylpyrimidine-5-carboxamide (10\{2; 6\})

Prepared from $\mathbf{1 7}\{2\}$ and 3-(dimethylamino)propylamine ($\mathbf{1 8}\{6\}$), workup A. Yield: $158 \mathrm{mg}(71 \%)$ of white solid; $111-114{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.78-1.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.29$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}$), $2.54\left(2 \mathrm{H}, \mathrm{t}, J=5.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NMe}_{2}\right.$), $3.00\left(1 \mathrm{H}, \mathrm{dd}, J=8.9,16.9 \mathrm{~Hz}, 4^{\prime}-\mathrm{Ha}\right), 3.29(1 \mathrm{H}$, dd, $\left.J=6.7,16.9 \mathrm{~Hz}, 4^{\prime}-\mathrm{Hb}\right), 3.54-3.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NH}\right), 4.17\left(1 \mathrm{H}, \mathrm{dd}, J=5.8,9.7 \mathrm{~Hz}, 2^{\prime}-\mathrm{Ha}\right), 4.36$ $\left(1 \mathrm{H}, \mathrm{dd}, J=8.1,9.7 \mathrm{~Hz}, 2^{\prime}-\mathrm{Hb}\right), 4.51\left(1 \mathrm{H}, \mathrm{tt}, J=6.6,8.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 7.14(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.4 \mathrm{~Hz}, p-\mathrm{Ph})$, $7.37(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=8.0 \mathrm{~Hz}, m-\mathrm{Ph}), 7.46-7.53(3 \mathrm{H}, \mathrm{m}, p, m-\mathrm{Ph}), 7.64(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.7 \mathrm{~Hz}, o-\mathrm{Ph}), 8.48$ $(2 \mathrm{H}, \mathrm{dd}, J=1.6,7.9 \mathrm{~Hz}, o-\mathrm{Ph}), 8.77(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 8.85(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $23.7,36.2,38.9,40.4,44.6,53.7,58.3,120.4,124.8,126.4,128.7,128.8,129.0,131.2,137.2,139.5,159.6$, 164.1, 168.2, 171.3, 173.8. LC-MS: $R \mathrm{t}=9.342 \mathrm{~min}, m / z=444\left(\mathrm{MH}^{+}\right)$, $\operatorname{area} \%=100 . \mathrm{m} / \mathrm{z}(\mathrm{ESI})=444$ $\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: $444.2401\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires: $m / z=444.2394 . v_{\max }(\mathrm{KBr}) 3446$, 2946, 1689, 1631, 1570, 1431, 754, $692 \mathrm{~cm}^{-1}$.
3.7.19. 6-(5-Oxo-1-phenylpyrrolidin-3-yl)-2-phenyl-N-((pyridin-2-yl)methyl)pyrimidine-5-carboxamide (10\{2; 7\})

Prepared from $\mathbf{1 7}\{2\}$ and 2-picolylamine ($\mathbf{1 8}\{7\}$), workup A. Yield: $204 \mathrm{mg}(89 \%)$ of gray solid, m.p. $160-165{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.00\left(1 \mathrm{H}, \mathrm{dd}, J=8.9,16.9 \mathrm{~Hz}, 4{ }^{\prime}-\mathrm{Ha}\right), 3.29(1 \mathrm{H}, \mathrm{dd}$, $\left.J=7.1,16.9 \mathrm{~Hz}, 4^{\prime}-\mathrm{Hb}\right), 4.19\left(1 \mathrm{H}, \mathrm{dd}, J=6.1,9.6 \mathrm{~Hz}, 2^{\prime}-\mathrm{Ha}\right) 4.32\left(1 \mathrm{H}, \mathrm{dd}, J=8.3,9.6 \mathrm{~Hz}, 2^{\prime}-\mathrm{Hb}\right)$, $4.44\left(1 \mathrm{H}, \mathrm{t}, J=7.0,8.4 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 4.76$ and $4.80\left(2 \mathrm{H}, 2 \mathrm{dd}, 1: 1, J=4.7,17.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}\right), 7.14(1 \mathrm{H}, \mathrm{br}$ $\mathrm{t}, J=7.4 \mathrm{~Hz}, p-\mathrm{Ph}), 7.25(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=5.2,7.1 \mathrm{~Hz}, 5 \mathrm{H}-\mathrm{H}), 7.33-7.38(3 \mathrm{H}, \mathrm{m}, p, m-\mathrm{Ph}), 7.46-7.53(3 \mathrm{H}$, $\mathrm{m}, m-\mathrm{Ph}, \mathrm{NH}), 7.62(2 \mathrm{H}, \mathrm{brd}, J=7.7 \mathrm{~Hz}, o-\mathrm{Ph}), 7.73(2 \mathrm{H}, \mathrm{dt}, J=1.7,7.6 \mathrm{~Hz}, 3 "-\mathrm{H}, 4 "-\mathrm{H}), 8.49(2 \mathrm{H}$, $\mathrm{dt}, J=1.5,8.1 \mathrm{~Hz}, o-\mathrm{Ph}), 8.54(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=4.6 \mathrm{~Hz}, 6 \mathrm{C}-\mathrm{H}), 8.96(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, CDCl_{3} : $\delta 35.9,38.4,44.7,54.1,120.4,122.4,123.0,124.9,126.4,128.8,128.9,129.0,131.8,136.6$, $137.3,139.3,149.2,155.1,156.0,165.4,165.9,168.5,173.0 . \mathrm{LC}-\mathrm{MS}: R \mathrm{t}=15.65 \mathrm{~min}, \mathrm{~m} / \mathrm{z}=450$ $\left(\mathrm{MH}^{+}\right), \mathrm{area} \%=87 . m / z(\mathrm{ESI})=450\left(\mathrm{MH}^{+}\right) . m / z(\mathrm{HRMS})$ Found: $448.1785\left([\mathrm{M}-\mathrm{H}]{ }^{-}\right) . \mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires: $m / z=448.1779$. (Found: C 70.65 ; H $5.00 ; \mathrm{N} 15.09 . \mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ (458.5) requires: C 70.73 ; H 5.28; N 15.27.); $v_{\max }(\mathrm{KBr}) 3472,1682,1662,1569,1434,1404,1307,758,693 \mathrm{~cm}^{-1}$.

3.7.20. N,N-(Diethyl)-6-(5-oxo-1-phenylpyrrolidin-3-yl)-2-phenylpyrimidine-5-carboxamide ($\mathbf{1 0}\{2 ; 8\}$)

Prepared from $\mathbf{1 7}\{2\}$ and diethylamine ($\mathbf{1 8}\{8\}$), workup B. Yield: $148 \mathrm{mg}(68 \%)$ of yellowish resin. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.17$ and $1.32\left(6 \mathrm{H}, 2 \mathrm{t}, 1: 1, J=7.1 \mathrm{~Hz}, 2 \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 2.95(1 \mathrm{H}$, dd, $\left.J=8.9,16.9 \mathrm{~Hz}, 4^{\prime}-\mathrm{Ha}\right), 3.24-3.34\left(3 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{Hb}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.60$ and $3.66(2 \mathrm{H}, 2$ septets, $J=7.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.92\left(1 \mathrm{H}\right.$, quintet, $\left.J=8.0 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 4.22$ and $4.24\left(2 \mathrm{H}, 2 \mathrm{dd}, 1: 1, J=10.0,12.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{CH}_{2}\right)$, $7.16(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.4 \mathrm{~Hz}, p-\mathrm{Ph}), 7.38(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=8.0 \mathrm{~Hz}, m-\mathrm{Ph}), 7.46-7.54(3 \mathrm{H}, \mathrm{m}, p, m-\mathrm{Ph}), 7.64$ $(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.9 \mathrm{~Hz}, o-\mathrm{Ph}), 8.47(2 \mathrm{H}, \mathrm{dd}, J=1.8,8.0 \mathrm{~Hz}, o-\mathrm{Ph}), 8.65(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(126$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.6,36.2,38.8,42.3,53.9,120.3,124.8,126.8,128.8,128.9,129.1,131.4,137.2$, 139.5, 159.8, 164.5, 168.6, 170.7, 173.6. LC-MS: $R t=18.008 \mathrm{~min}, m / z=415\left(\mathrm{MH}^{+}\right)$, area $\%=88$. $m / z(E S I)=415\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: $415.2121\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires: $m / z=415.2129$.
(Found: C 69.44; H 6.41; N 12.62. $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (432.5) requires: $\mathrm{C} 69.42 ; \mathrm{H} 6.53$; N 12.95 .); $v_{\max }$ (KBr) 3410, 2364, 1665, 1638, 1616, 1500, 1393, 1366, 1312, 751, 717, $690 \mathrm{~cm}^{-1}$.
3.7.21. 6-(5-Oxo-1-phenylpyrrolidin-3-yl)-2-phenyl-N-(pyrrolidin-1-yl)pyrimidine-5-carboxamide (10\{2; 9\})

Prepared from $\mathbf{1 7}\{2\}$ and pyrrolidine ($\mathbf{1 8}\{9\}$), workup B. Yield: $208 \mathrm{mg}(100 \%)$ of yellow resin. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.93-2.10(4 \mathrm{H}, \mathrm{m}, 4 \mathrm{H}$ of pyrrolidine), $2.97(2 \mathrm{H}, \mathrm{dd}, J=8.9,16.9 \mathrm{~Hz}$, $\left.4^{\prime}-\mathrm{Ha}\right), 3.28\left(1 \mathrm{H}, \mathrm{dd}, J=7.8,16.9 \mathrm{~Hz}, 4^{\prime}-\mathrm{Hb}\right), 3.29-3.36$ and $3.37-3.43(2 \mathrm{H}, 2 \mathrm{~m}, 1: 1,2 \mathrm{H}$ of pyrrolidine), $3.72\left(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$ of pyrrolidine), $4.06\left(1 \mathrm{H}\right.$, quintet, $\left.J=8.1 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 4.24(1 \mathrm{H}$, dd, $\left.J=6.8,9.6 \mathrm{~Hz}, 2^{\prime}-\mathrm{Ha}\right), 4.27\left(1 \mathrm{H}, \mathrm{dd}, J=8.2,9.7 \mathrm{~Hz}, 2^{\prime}-\mathrm{Hb}\right), 7.16(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.4 \mathrm{~Hz}, p-\mathrm{Ph}), 7.38$ $(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=8.0 \mathrm{~Hz}, m-\mathrm{Ph}), 7.45-7.53(3 \mathrm{H}, \mathrm{m}, m, p-\mathrm{Ph}), 7.63(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.7 \mathrm{~Hz}, o-\mathrm{Ph}), 8.47(2 \mathrm{H}$, dd, $J=1.8,8.2 \mathrm{~Hz}, o-\mathrm{Ph}), 8.72(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 24.6,26.4,36.3,38.3$, 46.3, 49.5, 53.9, 120.4, 120.5, 125.1, 127.8, 128.7, 128.9, 129.1, 131.7, 136.7, 139.2, 155.2, 159.6, 164.8, 172.7. LC-MS: $R \mathrm{t}=17.075 \mathrm{~min}, m / z=413\left(\mathrm{MH}^{+}\right)$, area $\%=100 \mathrm{~m} / z(\mathrm{ESI})=413\left(\mathrm{MH}^{+}\right)$. m / z (HRMS) Found: $413.1975\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires: $m / z=413.1972 . v_{\max }(\mathrm{KBr}) 3431,2361$, $1636,1500,1418,983,754,704,668 \mathrm{~cm}^{-1}$.
3.7.22. 6-(5-Oxo-1-phenylpyrrolidin-3-yl)-2-phenyl-N-(piperidin-1-yl)pyrimidine-5-carboxamide (10\{2; 10\})

Prepared from $\mathbf{1 7}\{2\}$ and piperidine ($\mathbf{1 8}\{10\}$), workup B. Yield: $214 \mathrm{mg}(100 \%)$ of yellow resin. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 1.51-1.61(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of piperidine), $1.74(4 \mathrm{H}, \mathrm{br} \mathrm{s}, 4 \mathrm{H}$ of piperidine), $2.96\left(1 \mathrm{H}, \mathrm{br}\right.$ s, $\left.4^{\prime}-\mathrm{Ha}\right), 3.27\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4^{\prime}-\mathrm{Hb}\right), 3.34(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \mathrm{H}$ of piperidine), $3.79(2 \mathrm{H}, \mathrm{br}$ s, 2 H of piperidine), $3.98\left(1 \mathrm{H}\right.$, quintet, $\left.J=7.9 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 4.24\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2^{\prime}-\mathrm{CH}_{2}\right), 7.16(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.4 \mathrm{~Hz}$, $p-\mathrm{Ph}), 7.38(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.9 \mathrm{~Hz}, m-\mathrm{Ph}), 7.47-7.54(3 \mathrm{H}, \mathrm{m}, m, p-\mathrm{Ph}), 7.64(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.8 \mathrm{~Hz}, o-\mathrm{Ph})$, $8.47(2 \mathrm{H}, \mathrm{dd}, J=1.9,7.9 \mathrm{~Hz}, o-\mathrm{Ph}), 8.63(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 22.6,22.9$, 36.0, 38.6, 44.6, 54.0, 120.4, 124.7, 127.0, 128.6, 128.7, 129.0, 131.2, 137.2, 139.4, 159.6, 164.2, 168.4, 170.9, 173.8. LC-MS: $R \mathrm{t}=18.608 \mathrm{~min}, m / z=427\left(\mathrm{MH}^{+}\right)$, area $\%=100 . m / z(\mathrm{ESI})=427\left(\mathrm{MH}^{+}\right)$. m / z (HRMS) Found: $427.2135\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires: $m / z=427.2129 . v_{\max }(\mathrm{KBr}) 3438,2326$, 1630, 1515, 1500, 1431, 1288, 1000, 760, $692 \mathrm{~cm}^{-1}$.
3.7.23. 6-(5-Oxo-1-phenylpyrrolidin-3-yl)-N-(morhpolin-4-yl)-2-phenylpyrimidine-5-carboxamide ($\mathbf{1 0}\{2 ; 11\}$)

Prepared from $\mathbf{1 7}\{2\}$ and morpholine ($\mathbf{1 8}\{11\}$), workup B. Yield: $204 \mathrm{mg}(95 \%)$ of yellow resin. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.97(1 \mathrm{H}, \mathrm{dd}, J=8.3,16.3 \mathrm{~Hz}, 4 \mathrm{H}-\mathrm{Ha}), 3.27(1 \mathrm{H}, \mathrm{br}$ dd, $J=7.0$, $\left.16.3 \mathrm{~Hz}, 4^{\prime}-\mathrm{Hb}\right), 3.38-3.49(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of morpholine $), 3.63-3.72(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ of morpholine $)$, 3.80-3.92 ($4 \mathrm{H}, \mathrm{m}, 4 \mathrm{H}$ of morpholine), $3.99\left(1 \mathrm{H}\right.$, quintet, $\left.J=7.7 \mathrm{~Hz}, 3{ }^{\prime}-\mathrm{H}\right), 4.23$ and $4.25(2 \mathrm{H}, 2 \mathrm{br} \mathrm{d}$, $\left.1: 1,2^{\prime}-\mathrm{CH}_{2}\right), 7.17(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.4 \mathrm{~Hz}, p-\mathrm{Ph}), 7.38(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=8.0 \mathrm{~Hz}, m-\mathrm{Ph}), 7.47-7.55(3 \mathrm{H}, \mathrm{m}$, $m, p-\mathrm{Ph}), 7.64(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.7 \mathrm{~Hz}, o-\mathrm{Ph}), 8.47(2 \mathrm{H}, \mathrm{dd}, J=1.5,8.0 \mathrm{~Hz}, o-\mathrm{Ph}), 8.64(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 35.9,38.6,43.3,54.0,64.2,120.4,124.8,126.7,128.6,128.7,129.0$, 131.2, 137.1, 139.3, 159.7, 164.2, 168.5, 170.8, 173.8. LC-MS: $R \mathrm{t}=16.042 \mathrm{~min}, m / z=429\left(\mathrm{MH}^{+}\right)$,
area $\%=100 . m / z(E S I)=429\left(\mathrm{MH}^{+}\right) . m / z(H R M S)$ Found: $429.1921\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires: $m / z=429.1921 . v_{\max }(\mathrm{KBr}) 3449,2366,1669,1607,1500,1368,1313,1125,752,717,689 \mathrm{~cm}^{-1}$.

3.7.24. 6-(5-Oxo-1-phenylpyrrolidin-3-yl)-N-(4-methylpiperazin-1-yl)-2-phenylpyrimidine-5carboxamide ($\mathbf{1 0}\{2 ; 12\}$)

Prepared from $\mathbf{1 7}\{2\}$ and 4-methylpiperazine ($\mathbf{1 8}\{12\}$), workup B. Yield: $225 \mathrm{mg}(100 \%)$ of yellow resin. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.37\left(3 \mathrm{H}, \mathrm{s}, 4{ }^{\prime \prime}-\mathrm{CH}_{3}\right), 2.36-2.42(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ of piperazine), 2.46 $\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1 \mathrm{H}\right.$ of piperazine), $2.53-2.64\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}\right.$ of piperazine), $2.92-3.03\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{Ha}\right), 3.24-3.34$ $\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{Hb}\right), 3.45(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \mathrm{H}$ of piperazine), $3.85(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1 \mathrm{H}$ of piperazine), $3.95(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1 \mathrm{H}$ of piperazine), $3.98\left(1 \mathrm{H}\right.$, quintet, $\left.J=7.9 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 4.25\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2^{\prime}-\mathrm{CH}_{2}\right), 7.17(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.4 \mathrm{~Hz}$, $p-\mathrm{Ph}), 7.38(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=8.0 \mathrm{~Hz}, m-\mathrm{Ph}), 7.46-7.54(3 \mathrm{H}, \mathrm{m}, m, p-\mathrm{Ph}), 7.63(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, o-\mathrm{Ph})$, $8.47(2 \mathrm{H}, \mathrm{dd}, J=1.5,8.0 \mathrm{~Hz}, o-\mathrm{Ph}), 8.64(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 36.3,42.0$, $46.1,47.5,54.8,55.5,120.5,125.1,126.4,128.7,128.9,129.1,131.8,136.6,139.1,155.2,165.0$, 165.8, 166.9, 172.5. LC-MS: $R \mathrm{t}=9.392 \mathrm{~min}, m / z=442\left(\mathrm{MH}^{+}\right)$, area $\%=100 . \mathrm{m} / z(\mathrm{ESI})=380\left(\mathrm{MH}^{+}\right)$. m / z (HRMS) Found: $442.2238\left(\mathrm{MH}^{+}\right) . \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires: $m / z=442.2238 . v_{\max }(\mathrm{KBr}) 3456,2340$, $1637,1500,1421,1298,1168,983,760,696 \mathrm{~cm}^{-1}$.

4. Conclusions

2-Substituted 6-(5-oxo-1-phenylpyrrolidin-3-yl)pyrimidine-5-carboxamides $\mathbf{1 0}$ as a novel type of conformationally constrained 2-(heteroaryl)ethylamines are available in six-steps from itaconic acid (11). The synthetic pathway consists of two parts: (a) a five-step preparation of pyrimidine-5carboxylic acids $\mathbf{1 7}\{1,2\}$ as the key-intermediates and (b) combinatorial solution-phase BPC-mediated amidation of $\mathbf{1 7}\{1,2\}$ with primary and secondary amines $\mathbf{1 8}\{1-12\}$ to give the title compounds $\mathbf{1 0}\{1,2 ; 1-12\}$ in good overall yields and purity upon simple workup. The method is general and substrate-independent. All 24 amidations proceeded smoothly and no major differences in reactivity was observed with respect to the $\mathrm{C}(2)$ substituent in the pyrimidine-5-carboxylic acids $\mathbf{1 7}$. On the other hand, the secondary amines $\mathbf{1 8}\{8-12\}$ were less reactive in these amidations than the primary amines $\mathbf{1 8}\{1-7\}$. Consequently, a 10 -fold excess of secondary amines $\mathbf{1 8}\{8-12\}$ was employed in order to assure completion of the amidation reaction. Besides, preparation of the 2-chloro analogue of 16, e.g., by treatment of $\mathbf{1 4}$ with methyl carbamimidate followed by demethylation and chlorination, would enable functionalization at position 2 in the pyrimidine ring, either by $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction, or by cross-coupling reaction. These results also indicate that the above synthetic method could serve as a useful tool for the preparation of novel compound libraries for pharmaceutical and other practical applications.

Acknowledgements

The financial support from Boehringer-Ingelheim Pharma (Biberach, Germany) and from the Slovenian Research Agency through grant P1-0179 is gratefully acknowledged. We acknowledge with thanks the financial contributions of pharmaceutical companies Krka d.d. (Novo mesto, Slovenia) and Lek d.d. a new Sandoz Company (Ljubljana, Slovenia), which made the purchase of Mettler-Toledo Bohdan MiniBlock ${ }^{\text {TM }}$ Compact Shaking and Washing Station and Vacuum Collection Base possible.

References and Notes

1. Patrick, G.L. An Introduction to Medicinal Chemistry, 4th ed.; Oxford University Press: Oxford, UK, 2009; pp. 1-752.
2. Takahashi, T.; Miyazawa, M. N-Caffeoyl serotonin as selective COX-2 inhibitor. Bioorg. Med. Chem. Lett. 2012, 22, 2494-2496.
3. Zefirova, O.N.; Baranova, T.Y.; Lyssenko, K.A.; Zefirov, N.A.; Zyk, N.V.; Vassiliev, P.M.; Yakovlev, D.S.; Spasov, A.A. Synthesis and biological testing of conformationally restricted serotonin analogues with bridgehead moieties. Mendeleev Commun. 2012, 22, 75-77.
4. Bonner, L.A.; Laban, U.; Chemel, B.R.; Juncosa, J.I.; Lill, M.A.; Watts, V.J.; Nichols, D.E. Mapping the catehol binding site in dopamine D1 receptors: Synthesis and evaluation of two parallel series of bicyclic dopamine analogues. ChemMedChem 2011, 6, 1024-1040.
5. Zlotos, D.P.; Attia, M.I.; Julius, J.; Sethi, S.S.; Witt-Enderby, P.A. 2-[(2,3-Dihydro-1H-indol-1yl)methyl]melatonin analogues: A novel class of MT_{2}-Selective melatonin receptor antagonists. J. Med. Chem. 2009, 52, 826-833.
6. Dolle, R.E. Solid-phase Synthesis of Heterocyclic Systems (Heterocycles Containing One Heteroatom). In Handbook of Combinatorial Chemistry. Drugs, Catalysts, Materials; Nicolaou, K.C., Hanko, R., Hartwig, W., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2002; Volume 2, pp. 643-684.
7. Pernerstorfer, J. Molecular Design and Combinatorial Compound Libraries. In Handbook of Combinatorial Chemistry. Drugs, Catalysts, Materials; Nicolaou, K.C., Hanko, R., Hartwig, W., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2002; Volume 2, pp. 725-742.
8. Dolle, R.E.; le Bourdonnec, B.; Morales, G.A.; Moriarty, K.J.; Salvino, J.M. Comprehensive survey of chemical libraries for drug discovery and chemical biology: 2007. J. Comb. Chem. 2008, 10, 753-802.
9. Dolle, R.E.; le Bourdonnec, B.; Goodman, A.J.; Morales, G.A.; Thomas, C.J.; Zhang, W. Comprehensive survey of chemical libraries for drug discovery and chemical biology: 2008. J. Comb. Chem. 2009, 11, 739-790.
10. Dolle, R.E.; le Bourdonnec, B.; Worm, K.; Morales, G.A.; Thomas, C.J.; Zhang, W. Comprehensive survey of chemical libraries for drug discovery and chemical biology: 2009. J. Comb. Chem. 2010, 12, 765-806.
11. Stanovnik, B.; Svete, J. Synthesis of heterocycles from alkyl 3-(dimethylamino)propenoates and related enaminones. Chem. Rev. 2004, 104, 2433-2480.
12. Svete, J. Ex-chiral pool enaminones in the synthesis of functionalised heterocycles. Monatsh. Chem. 2004, 135, 629-641.
13. Svete, J. Utilisation of chiral enaminones and azomethine imines in the synthesis of functionalised pyrazoles. ARKIVOC 2006, vii, 35-56.
14. Bevk, D.; Svete, J.; Stanovnik, B. Enaminones and Related Compounds in the Synthesis of Pyrazoles. In Modern Approaches to the Synthesis of O - and N-Heterocycles; Research Signpost: Kerala, India, 2007; Volume 3, pp. 73-88.
15. Stanovnik, B.; Grošelj, U. Dialkyl acetone-1,3-dicarboxylates and their mono- and bis(dimethylamino) methylidene derivatives in the synthesis of heterocyclic systems. Adv. Heterocycl. Chem. 2010, 100, 145-174.
16. Pirc, S.; Bevk, D.; Golobič, A.; Stanovnik, B.; Svete, J. Transformation of amino acids into nonracemic 1-(heteroaryl)ethanamines by the enamino ketone methodology. Helv. Chim. Acta 2006, 89, 30-44.
17. Kralj, D.; Grošelj, U.; Meden, A.; Dahmann, G.; Stanovnik, B.; Svete, J. A simple synthesis of 4-(2-aminoethyl)-5-hydroxy-1H-pyrazoles. Tetrahedron 2007, 63, 11213-11222.
18. Kralj, D.; Novak, A.; Dahmann, G.; Grošelj, U.; Meden, A.; Svete, J. One-pot parallel solutionphase synthesis of 1 -substituted 4-(2-aminoethyl)-1H-pyrazol-5-ols. J. Comb. Chem. 2008, 10, 664-670.
19. Grošelj, U.; Kralj, D.; Wagger, J.; Dahmann, G.; Stanovnik, B.; Svete, J. Synthesis of 3-(2-aminoethyl)-5-hydroxy-1H-pyrazole derivatives. ARKIVOC 2012, iii, 49-65.
20. Kralj, D.; Friedrich, M.; Grošelj, U.; Kiraly-Potpara, S.; Meden, A.; Wagger, J.; Dahmann, G.; Stanovnik, B.; Svete, J. A synthesis of 1-substituted 5-[2-(acylamino)ethyl]-1H-pyrazole-4carboxamides. Tetrahedron 2009, 65, 7151-7162.
21. Žerovnik, D.; Grošelj, U.; Kralj, D.; Malavašič, Č.; Bezenšek, J.; Dahmann, G.; Stare, K.; Meden, A.; Stanovnik, B.; Svete, J. Synthesis of 1,5,6,7-tetrahydro-4H-pyrazolo[4,3-c]pyridin-4-ones as conformationally constrained pyrazole analogues of histamine. Synthesis 2010, 3363-3373.
22. Janjić, M.; Prebil, R.; Grošelj, U.; Kralj, D.; Malavašič, Č.; Golobič, A.; Stare, K.; Dahmann, G.; Stanovnik, B.; Svete, J. A simple synthesis of 5-(2-aminophenyl)-1H-pyrazoles. Helv. Chim. Acta 2011, 94, 1703-1717.
23. Perdih, P.; Baškovč, J.; Dahmann, G.; Grošelj, U.; Kočar, D.; Novak, A.; Stanovnik, B.; Svete, J. Parallel synthesis of 1-substituted 5-(5-oxopyrrolidin-3-yl)-1H-pyrazole-4-carboxamides Synthesis 2011, 2822-2832.
24. Paytash, P.L.; Sparrow, E.; Gathe, J.C. The reaction of itaconic acid with primary amines. J. Am. Chem. Soc. 1950, 72, 1415-1416.
25. Harwood, L.M.; Moody, C.J. 'Dry Flash’ Column Chromatography. In Experimental Organic Chemistry, Principles and Practice; Blackwell Science: Oxford, UK, 1989; pp. 185-188.
26. Harwood, L.M. "Dry-Column" Flash Chromatography. Aldrichimica Acta 1985, 18, 25-25.
27. Since satisfactory results were obtained with evapotative workup and DFCC, the use of scavenging reagents such as solid supported tosyl chloride or propionyl chloride was not explored. Besides, covalent binding of scavenging reagents to products containing hydroxy and amino functions would probably make the isolation of products more difficult.
28. The above method is applicable for the synthesis of libraries of racemic compounds $\mathbf{1 0}$ for primary testing and screening. However, for a larger scale synthesis of certain enantiomerically pure final products 10, a modified 'chiral pool' synthesis of non-racemic $\mathbf{1 0}$ utilizing enantiomerically pure starting compound $\mathbf{1 2}$ should be developed.
29. Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Del. Rev. 2001, 46, 3-26.
30. Ghose, A.K.; Viswandhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1999, 1, 55-68.

Sample Availability: Samples of the compounds $\mathbf{1 6}\{1,2\}, \mathbf{1 7}\{1,2\}$, and $\mathbf{1 0}\{1,2 ; 1-12\}$ are available from the authors.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

