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Abstract: Durian seed is an agricultural biomass waste of durian fruit. It can be a natural 

plant source of non-starch polysaccharide gum with potential functional properties. The 

main goal of the present study was to investigate the effect of chemical extraction variables 

(i.e., the decolouring time, soaking temperature and soaking time) on the physicochemical 

properties of durian seed gum. The physicochemical and functional properties of 

chemically-extracted durian seed gum were assessed by determining the particle size and 

distribution, solubility and the water- and oil-holding capacity (WHC and OHC). The 

present work revealed that the soaking time should be considered as the most critical 

extraction variable affecting the physicochemical properties of crude durian seed gum.  

Keywords: seed gum; chemical extraction; solubility; water-holding capacity; oil-holding 

capacity 

 

1. Introduction 

Polysaccharide gums are highly hydrophilic substances that are soluble or dispersible in water [1].  

They can be used as thickeners, gelling agents, texture modifiers and stabilizers. Polysaccharide gums 

can be classified as food additives groups which adjust food quality in terms of stability, texture and 

appearance. There has been great interest in botanical sources of natural gums because plant 

polysaccharide gums represent one the most abundant raw materials in commercial liquid and 
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semisolid foods [2]. Utilizing biomass from agricultural wastes as a raw material for valuable  

by-products has attracted the interest of researchers, especially in agriculture intensive countries [3].  

On the other hand, the demand for a new potential source of plant gum has increased, because they are 

viewed as biodegradable natural polymers. Plant gums are certified as non-toxic and non-carcinogenic 

polymers with flexible applications in the food, cosmetic and pharmaceutical products. In fact, they 

have more advantages than other gums from animal and microbial sources due to their acceptance by 

consumers [4,5]. 

Durian (Durio zibethinus Murray) is the most popular seasonal fruit in South East Asia countries [3]. 

Only one-third of the durian is edible, whereas the seeds (20–25%) and the shell are usually thrown 

away [6]. Durian seed gum is a by-product from the durian industry. It could be exploited as a new 

plant-based hydrocolloid. There are many different methods for extraction of hydrocolloid from 

various plant sources. The effectiveness of different extraction conditions was studied by previous 

researchers [7,8]. Different solvents are used, depending on the matrix and its components. In many 

food processing operations, organic solvents are employed based on the polarity, solubility and mass 

transfer characteristics of the compounds to be extracted [9].  

In the last decade, the physicochemical and functional characteristics of various plant gums such as 

locust bean gum [10], mesquite seed gum [11], basil seed gum [12], karaya gum [13], gum Arabic, 

pectin and carboxymethyl cellulose (CMC) [14–19] have been studied by several researchers. To the 

best of our knowledge, the effect of chemical extraction on physicochemical properties of durian seed 

gum has not been reported yet. The aim of the present study was to investigate the effect of chemical 

extraction conditions on the physicochemical properties of durian seed gum. The chemical extraction 

variables studied were the decolouring time (60–180 min), soaking temperature (25–55 °C) and 

soaking time (4–12 h). It should be noted that the influence of aqueous extraction on functional 

properties of durian seed gum was reported in our previous study [20].  

2. Results and Discussion 

2.1. Volumes-Weighted Mean (D [4,3]) 

The volume-weighted mean (D [4,3], average particle size) of durian seed gum in the aqueous 

system varied from 43.5 to 135.8 μm, depending on the extraction condition. The durian seed gum 

with smaller particle size might be preferred, because the hydration rate could be increased under such 

conditions. Table 1 showed that the volume-weighted mean (Y1) was positively proportional to the 

single effect of all extraction variables. Conversely, it was negatively affected by the interaction effects 

of the soaking temperature with the decolouring time and soaking time (Table 1). Table 2 indicated 

that the soaking temperature and decolouring time showed the most and least significant (p < 0.05) 

effects on the volume-weighted mean, respectively.  
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Table 1. Regression coefficients, R2 and p-value of lack of fit for final reduced models. 

Regression  

coefficient 

Volume mean  

(μm) 

Span Solubility 

(80 °C, %)

WHC (g water/ 

100 g gum) 

OHC (g oil/

100 g gum) 

Constant −51.76 4.2821 20.4917 279.50 185.18 

b1 0.82 −0.0021 0.2796 - 0.25 

b2 12.68 −0.7422 - −16.72 24.24 

b3 1.22 0.0848 −0.0744 −3.90 −7.32 

b1
2 - - - - −0.00 

b2
2 - 0.0243 - - −0.66 

b3
2 0.05 - 0.0107 - 0.06 

b12 - 0.0022 - - −0.05 

b13 −0.02 −0.0005 −0.0063 - 0.01 

b23 −0.39 - - 0.50 −0.15 

R2 0.750 0.824 0.925 0.780 0.979 

p-value 0.027 * 0.011 * 0.027 * 0.038 * 0.004 * 

Lack of fit 
(p-value) 

0.188 0.499 0.236 0.353 0.508 

bi, bii and bij: the estimated regression coefficients for the main linear effects, quadratic effects and 
interaction effects, respectively; 1-decouloring time; 2-soaking time; 3-soaking temperature); OHC: 
Oil-holding capacity; WHC: Water-holding capacity; *: significant (p < 0.05). 

Table 2. p-Value and F-ratio of chemical extraction variables in final reduced models. 

Variables 
 Main effects Quadratic effects Interaction effects 

 x1 x2 x3 x11 x22 x33 x1 x2 x1 x3 x2 x3

Volume 
Weighted 

mean (μm) 

p-value  
F-ratio 

0.020 
7.919 

0.024 
7.328 

0.557 * 
0.372 

- 
- 

- 
- 

0.021 
7.795 

- 
- 

0.042 
5.636 

0.014 
9.272 

Span 
p-value 
F-ratio 

0.853 * 
0.036 

0.003 
15.674 

0.013 
9.400 

- 
- 

0.034 
6.215 

- 
- 

0.023 
7.513 

0.046 
5.373 

- 
- 

Solubility  
(80 °C, %) 

p-value  
F-ratio 

0.011 
9.200 

- 
- 

0.859 * 
0.033 

- 
- 

- 
- 

0.042 
5.303 

- 
- 

0.010 
9.600 

- 
- 

WHC 
p-value 
F-ratio 

- 
- 

0.014 
8.433 

0.011 
9.223 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

0.007 
10.857

OHC 
p-value 
F-ratio 

0.243 * 
1.753 

0.002 
38.267 

0.002 
35.557 

0.005 
22.591

0.002 
31.629

0.005 
22.307 

0.017 
12.215 

0.011 
15.288

0.034 
8.346 

* Non-significant at p > 0.05; OHC: Oil-holding capacity (g oil/100 g gum); WHC: Water-holding capacity 

(g water/100 g gum); x1, x2 and x3 represents the main or single effect of the decolouring time, soaking time 

and soaking temperature, respectively. x1
2, x2

2 and x3
2 represents the quadratic effect of the decolouring time, 

soaking time and soaking temperature, respectively. x1 x2, x1 x3 and x2 x3 represent the interaction between the 

decolouring time and soaking time, interaction between the decolouring time and soaking time and 

interaction between soaking time and soaking time, respectively.  
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As shown in Figure 1a,b, the particle size increased with prolonged decolouring time and soaking 

time. This could be explained by the fact that decolouring or soaking for the long time may lead to the 

passage of large macromolecules (e.g., polysaccharides) and insoluble matters into the final extract. 

Hence, this phenomenon is probably responsible for increasing the volume-weighted mean (or large 

particle size). The results indicated that the main and quadratic terms of the soaking temperature were 

positively related to the volume-weighted mean; while the interaction effects of the soaking 

temperature with the decolouring time and soaking time were negatively proportional to the  

volume-weighted mean. The increase in the soaking temperature up to a certain level led to decrease 

volume-weighted mean. However, a further increase in the soaking temperature than the certain level 

resulted in larger volume-weighted mean (Figure 1a,b). This observation highlighted that the volume-

weighted mean was more significantly influenced by the interaction effect of the soaking temperature 

with other extraction variables rather than its single effect. The higher volume-weighted mean (or 

larger particle size) might not be preferred, because the hydration process could be longer under such 

conditions. 

Figure 1. Response surface plots for explaining the variation of volume-weighted mean as 

a function of (a) decolouring time and soaking temperature and (b) soaking time and 

soaking temperature. 

 

2.2. Span or Particle Size Distribution 

The width of the size distribution is determined by measuring the span. It is defined as  

Span = [D(0.9) − D(0.1)]/D(0.5); where D (0.10), D (0.50) and D (0.90) are the particle diameters at 

10% (small particles), 50% (medium size particle) and 90% (large coarse particle), respectively 

(Equation 2). The smaller span represents the narrower size distribution [21,22]. A very high span with 

a large D (0.90) is not desirable because it is related to the presence of a considerably higher volume of 

coarse particles (D, 90) [22,23]. According to Equation (2), the span becomes larger when D (0.90) is 

larger or D (0.10), and D (0.50) are smaller. In fact, the presence of a higher volume of large coarse 

particles (D, 0.90) or lower volume of medium (D, 0.50) and small (D, 0.10) particles results in larger 

span (or wide particle size distribution). Conversely, the smaller span (or narrower particle size 

distribution) may be due the larger volume of the medium (D, 0.50) and small (D, 0.10) particles [22].  

Table 1 showed that the span (Y2) was negatively associated with the single effects of the 

decolouring time and soaking time. In addition, the interaction effect of the decolouring time and 
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soaking temperature negatively affected the span. Conversely, the interaction effect of the decolouring 

time and soaking time exhibited a significant (p < 0.05) positive effect on the span (Table 1). The 

results showed that the decolouring time and soaking time had the least and most significant (p < 0.05) 

effect on the span or particle size distribution, respectively (Table 1). The curves shown in Figure 2a 

confirmed the nonlinear relationship between the chemical extraction variables and span (Y2). This 

could be explained by the fact that the span was more significantly (p < 0.05) influenced by the 

quadratic and interaction effects of extraction variables rather than their single effects. The span 

increased not only by prolonging the decolouring time, but also by extending the soaking time  

(Figure 2a). Ideally a low span with a small D (0.90), moderate D (0.50) and comparatively large D 

(0.90) is the suitable physical property in the crude gum. As also reported by Gorji et al. [24], a large 

D (0.9) and high span indicated that particle size distribution was significantly influenced by the 

presence of large particles.  

Figure 2. Response surface plots for explaining the variation of span as a function of  

(a) decolouring time and soaking time and (b) decolouring time and soaking temperature.  

 

2.3. Solubility  

Some hydrocolloids induce their maximum functional properties after fully dissolving in water [25]. 

Full solubility is also favorable from the viewpoint of the appearance and texture. The interaction of 

hydrocolloids with water molecules can reduce the diffusion rate of water molecules into the 

hydrocolloid matrix. The interaction rate depends on the hydrogen bonding and temperature as well as 

the formation of water clusters [20]. As reported by previous researchers [25,26], a heating process 

was required to totally dissolve some of the hydrocolloids in order to induce the full viscosity. 

However, the heating process should not be very high because the viscosity might be decreased due to 

thermal hydrolysis of the hydrocolloid [25]. The results indicated that crude durian seed gum provided 

a relatively medium solubility in the elevated temperature (21.4–53.2%).  

A crude gum may not be fully dissolved in water due to the presence of insoluble particles and 

impurities. The water solubility depends on the presence of hydroxyl groups, nature of monosaccharide, 

inter sugar linkages (α or β) and the ability to associate by intermolecular interactions [24]. The 

relatively wide range of solubility could be due to the different particle size (43.5 to 135.8 μm) of 

crude gums extracted under different extraction conditions. The particle size is a critical factor 

affecting the solubility [25]. The larger and coarser particles take longer time to be dissolved due to the 
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longer time required for the penetration of water into the sample matrix. Conversely, the presence of 

smaller particle leads to shorter time for the penetration of water into the sample matrix, thus inducing 

better solubility [25]. Koocheki et al. [27] also reported a relative low solubility (25%) for  

Lepidium perfoliatum seed gum. They described that the low solubility of Lepidium perfoliatum seed 

gum might be related to the presence of impurities in the chemical structure of the crude gum. In the 

current study, the low solubility of the crude gum could be related to the considerable impact of the 

soaking process on the chemical composition of durian seed gum. Figure 3 showed that the solubility 

(80 °C) increased with prolonging the decolouring time. Conversely, the solubility (80 °C) decreased 

when the soaking temperature was increased (Figure 3). This could be related to the significant  

(p < 0.05) effect of the soaking temperature on the chemical composition of the seed gum.  

Figure 3. Response surface plot for explaining the variation of solubility (80 °C, 30 min) 

as a function of decolouring time and soaking temperature.  

 

The dissolution process can be endothermic or exothermic, depending on the amount of energy 

required for the process. When water dissolves a substance, the water molecules attract or bond to the 

particles (molecules or ions) of the substance, thereby separating the particles from each other. This 

involves strong bonds between the substance particles and water molecules caused by water’s polarity. 

It requires energy to fracture the bonds between the molecules or ions of the solute. When water 

molecules bond to the solute molecules or ions, energy will be released. If the energy required to 

separate the particles of the solute is more than the energy released by the water molecules bonded to 

the particles, the dissolution process is an endothermic reaction. If the energy required for separating 

the particles of the solute is less than the energy released by the water molecules bonded to the 

particles, the dissolution process is an exothermic reaction [28].  

The results indicated that the decolouring time exhibited the most significant (p < 0.05) effect on 

the solubility (80 °C, Y3); while the soaking temperature had the least significant (p < 0.05) effect on 

the solubility (80 °C, Y3) (Table 2). This observation can be explained by the fact that the increase in 

the soaking temperature may lead to release of the insoluble polysaccharide (e.g., insoluble dietary 

fiber) or other insoluble impurities into the final extract, thereby reducing the solubility. On the other 

hand, Table 2 shows that the soaking time did not show any significant (p > 0.05) effect on the 

solubility (80 °C) of crude durian seed gum. Therefore, it should not be kept in the final reduced model 

fitted to the solubility data (Table 1). 
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2.4. Water-Holding Capacity (WHC) 

Hydration properties are influenced by the swelling capacity, solubility, and water-holding capacity 

(WHC) [29]. WHC represents the ability of a substance to associate with water under limited water 

conditions [30]. The wide industrial application of gums is due to their ability of holding water to 

produce gels or highly viscous solutions [31]. Plant gums are solid materials usually consisting of 

polysaccharides, which are either water-soluble or absorb water and swell up to form a gel; while they 

are insoluble in oils or organic solvents [32]. WHC represents the percentage of hydrophilic fraction, 

which has a greater affinity to absorb water [33]. It depends on pore size, conformational structure and 

capillary of the molecule, which are strongly correlated with the extent of molecule hydration with 

polar compounds along with the hydrophilic interaction through hydrogen bonding [34]. Therefore, 

high WHC is associated with the enhancement of the hydrophilic character. 

The results indicated that WHC varied from 94.1 to 218.5 (g water/100g gum) (Figure 4). As stated 

by Kinsella [35], WHC depends on the interaction between water and compound, amount of hydration 

positions or active side (OH) and environmental condition.  

Figure 4. Response surface plot for explaining the variation of water-holding capacity 

(WHC) as a function of soaking time and temperature.  

 

The wide range of WHC could be explained by the significant effect of extraction variables on the 

chemical composition (i.e., carbohydrate profile and protein fraction) of crude durian seed gum. Janaki 

and Sashidhar [36] also illustrated that this variation might be attributed to the differences in the 

composition of the gum. The variation of WHC could be also explained by the conformational 

structure of the gum. As explained by Hermansson et al. [37], a fine, uniform structure with numerous 

small pores would probably result in more absorptive capacity and better water retention than a coarse 

structure with large pores. The results showed that WHC of chemically-extracted durian seed gum was 

found to be lower than that of reported for fenugreek gum (270 g water/100 g gum) [38] and  

Ziziphus mauritiana Lam gum (>500 g water/100 g dry matter) [39]. Conversely, it was higher than 

WHC reported for Vigna radiate gum (63 g water/100 g gum) [40], karaya gum (67–111 g water/100 g 

gum) [13], and rhizome flour of lotus (2.56 ± 0.05%) [34]. Thongsombat et al. [41] also reported a 

relatively low WHC (90 g water/100 g gum) for pectin. Figuerola et al. [42] compared WHC of apple, 

grapefruit, lemon and orange fibres. They reported that the capacity of water-holding of fiber 
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concentrates varied between 162 and 226 (g/100 g dry matter). Larrauri et al. [43] also reported the 

relatively high WHC (210 g/100 g dry matter) in pineapple fiber. These values are close to the WHC 

of crude durian seed gum.  

In our preliminary study, it was observed that the rate of water-holding decreased as the absorption 

process continued (data not shown). This was also reported in the previous study [44]. This could be 

due to the movement of water into capillary and intermicellar spaces, thus filling the free spaces [44]. 

This phenomenon decreases the driving force for the water absorption, thus reducing the absorption 

rate. The seed absorbs moisture, swells up, and some water-soluble nutrients leach into the soaked 

water by simple diffusion during the soaking process. This swelling behavior depends on the nature 

and ratio of the matrix and solvent, the soaking temperature and the length of the soaking time [45]. 

Table 1 demonstrated that the interaction effects of the soaking time and temperature positively 

influenced the water-holding capacity (WHC, Y4). On the other hand, WHC (Y4) was negatively 

proportional to the main effects of the soaking time and temperature (Table 1). The results indicated 

that only the main and interaction effects of the soaking time and temperature exhibited a significant  

(p < 0.05) effect on WHC. Conversely, the decolouring time did not show any significant (p > 0.05) effect 

on WHC (Table 2). Therefore, it should be removed from the final reduced model. The interaction 

effect of the soaking temperature and soaking time showed the most significant (p < 0.05) effect on 

WHC; while the main effect of the soaking time had the least significant (p < 0.05) effect on WHC of 

chemically-extracted durian seed gum (Table 2).  

2.5. Oil-Holding Capacity (OHC) 

In the present study, oil-holding capacity (OHC) of chemically-extracted durian seed gum varied 

from 43.7 to 128.8 (g oil/100 g gum) depending on the extraction condition (Figure 5). This value was 

almost similar to the OHC reported by Galla and Dubasi [13] for karaya gum (81–114 g oil/100 g 

gum) and higher than the OHC reported by previous researchers [44] for rhizome flour of lotus  

(2.03 ± 0.25%). Figuerola et al. [44] also reported that OHC of dietary fibers from Liberty apple and 

Valencia orange were 60 (g oil/100 g dry matter) and 181 (g oil/100 g dry matter), respectively. OHC 

of hydrocolloids depends on the chemical and conformational structure of hydrocolloid, e.g., the ratio 

and position of hydrophobic to hydrophilic groups present in the hydrocolloid structure. High OHC is 

related to enhance the hydrophobic character [34]. The chemical extraction resulting in lower content 

of the hydrophobic fraction leads to a reduced gum OHC. As shown in Table 1, OHC was positively 

proportional to the main effect of the decolouring time and soaking time as well as the interaction 

effect of the decolouring time and soaking temperature (Table 1), whereas, OHC (Y5) was negatively 

related to the main effect of the soaking temperature as well as the interaction effect of the soaking 

time with the decolouring time and soaking temperature (Table 1). Kinsella [46] illustrated that the 

mechanism of oil-holding was mostly attributed to the physical entrapment of oil by the non-polar 

chains of protein. Higher oil-holding capacity might also be due to the presence of non-polar amino 

acids [47]. Table 2 demonstrated that the soaking time and decolouring time exhibited the most and 

least significant (p < 0.05) effect on the oil-holding capacity. All extraction variables except for single 

effect of the decolouring time were significantly (p < 0.05) fitted in the final reduced model. Among 

all functional properties, the chemical extraction variables showed the most significant effect on the 
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oil-holding capacity of crude durian seed gum (Table 2). Figure 5 showed that OHC increased with 

prolonging the soaking time. The chemical extraction at low soaking temperature for the short 

decolouring time also led to increase OHC.  

Figure 5. Response surface plots for explaining the variation of oil-holding capacity 

(OHC) as a function of (a) decolouring time and soaking temperature and (b) soaking time 

and temperature.  

 

3. Experimental  

3.1. Chemicals and Standards  

Durian (D. zibethinus) fruits were purchased from a local market in Selongor, Malaysia. Ripened 

durian fruits were selected based on the size uniformity and lack of visual defects. The fruits were  

de-husked (cut open the rind), by cutting along the suture on the back of the lobules. Durian seeds 

were removed, cleaned and rinsed thoroughly with sterile distilled water [20]. There is a possibility to 

produce “hard seed” if the moisture is reduced. Hard durian seeds with reduced moisture content will 

resist germination under favorable conditions, thus prolonging the storage life. The seed was partially 

dried by the air circulation. The dried seeds were then packed in plastic bags and stored in a dry and 

cool place (10 ± 2 °C) until the extraction process [20]. All the experiments were performed with 

deionized water. 

3.2. Chemical Extraction of Crude Durian Seed Gum  

Chemical extraction was performed according to the method described by Singh et al. [48] with the 

minor modifications. The successive steps of defatting, decolouring, solvent soaking, gum dissolution, 

centrifugation, and precipitation were considered for the chemical extraction (Figure 6). Durian seeds 

were washed and chopped into small pieces. Then, they were air dried using air circulation before 

milling into flour. Cold extraction was used to extract the oil from the durian seed flour in order to 

avoid any thermal degradation. A preliminary study showed that the solvent mixture containing hexane 

and isopropanol (60:40) was the most efficient solvent for the defatting process among all studied 

solvents (i.e., petroleum ether, hexane, isopropanol and ethanol), so the defatting process was carried 

out using this solvent mixture at room temperature (25 ± 1 °C). The solvent residue was removed by 
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centrifugation at 1,400 g for 15 min (Avanti J-25 Centrifuge, Beckman Coulter GmbH, Krefeld, 

Germany). Then, defatted-durian seed flour (1 kg) was exhaustively decolored using ethanol at 

different decolouring time (60–180 min). The decolourized seed flour was vacuum filtered and then 

soaked in 1% aqueous acetic acid for different soaking times (4–12 h) and at different temperatures 

(25–55 °C). Then, the slurry was filtered with nylon cloth filter. The filtrate was precipitated with 95% 

ethanol, and the precipitated slurry was washed three times using absolute ethanol (99.9%) to produce 

a very light brown amorphous crude gum. The crude gum was collected and oven dried at 40 °C. 

Figure 6. Flow chart of chemical extraction of durian seed gum [48].  

 

3.3. Analytical Tests 

3.3.1. Volume-Weighted Means (D [4,3]) 

The volume-weighted mean (D [4,3] or average particle size) of durian seed gum in the aqueous 

system was measured by a particle size analyzer equipped with an accessory Hydro 2000S (Malvern 

Mastersizer 2000, Malvern Instrument Limited, Worcestershire, UK). In this experiment, 0.5 g of 

crude durian seed gum was dispersed in distilled water (0.5% w/w). The Malvern Mastersizer 2000, 

which is considered a spatial sampling device, correlates with the phenomena that a particle passing 

through the laser beam can cause the laser light to scatter in many angles dependent on the particle 

diameter. Particle characteristics were computed automatically from a compressed range [24]. A few 

drops of the gum dispersion (0.5% w⁄w) were introduced into the diluting chamber of the instrument 

until the beam obstruction level fell within the optimum range displayed on the screen. The dilution 

chamber was an integrated ultrasonic water bath equipped with a propeller-type stirrer. It exposes the 

sample to a shear force high enough to ensure breakage of flocks and aggregates and hence uniform 

distribution of droplets. The measurement readings of the volume-weighted mean were reported as 

average of four individual replications for each sample. The volume-weighted mean diameter is 

estimated by the following equation [24,49]: 
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 (1)

where ni is the number of particles with diameter di [24,49].  

3.3.2. Span  

Particle size distribution (PSD) was determined by measuring the span [50]. The seed gum solution 

(0.5% w⁄w) was prepared by dispersing crude durian seed gum in deionized water (refractive index,  

RI = 1.33 and absorption value = 0.1) using mechanical stirring at 500 rpm for 1 h at 25 °C. Subsequently, 

the seed gum solution (0.5% w⁄w) was hydrated for 24 h prior to analysis. Then, span was measured by 

using the laser diffraction particle analyzer (Mastersizer 2000) based on the following equation: 

 (2)

where D (v, 0.1), D (v, 0.5) and D (v, 0.9) are diameters at 10%, 50% and 90% cumulative volume, 

respectively. The span measurement (i.e., droplet size distribution) was carried out immediately after 

preparing the dispersion (0.5% w/w) in four replications for each sample [49].  

3.3.3. Solubility 

The solubility was determined according to the previous researchers [51], with minor modification. 

One g of seed gum powder was added to 100 mL of distilled water. Then, the mixture was agitated 

with mechanical stirring at elevated temperature (80 °C) for 30 min. The solubility of samples was 

measured at this elevated temperature (80 °C). The gum solution was then centrifuged at 6,000 g for  

30 min to remove the insoluble material. The supernatant was transferred to disposable Petri dishes 

and oven dried at 105 °C for 24 h until constant weight. The percent solubility was calculated by the 

weight difference and expressed in dry basis. The determination of solubility was carried out in 

triplicate. Therefore, the average of three measurements was considered for further data analysis. 

3.3.4. Water- and Oil-Holding Capacity  

Water-holding capacity (WHC) for crude durian seed gum was determined as described in the 

literature [13,52] with minor modifications. One g of crude durian seed gum was suspended in 10 mL 

of distilled water, vortexed for 2 min and then centrifuged with a refrigerated centrifuge 3–18 K 

(Sartorius, Sigma 3-18, Gottingen, Germany) at 3,000 g for 30 min. The free water was decanted and 

the water absorbed by the samples was expressed as grams of water absorbed per 100 g of seed gum. 

Oil-holding capacity (OHC) was also determined by dispersing 1 g of crude durian seed gum in 10 mL 

of refined sunflower oil, and repeated the experiment. It was expressed as grams of oil absorbed per 

100 g of seed gum [13]. The measurements were performed in triplicate for each sample. In the current 

study, WHC and OHC were calculated based on the following equations:  

WHC = (SSW–SW) / SW (3)

OHC = (OSW–SW) / SW (4)

where SSW, OSW and SW are the water swollen sample weight, oil-adsorbed sample weight and 

sample weight, respectively [52].  
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3.4. Experimental Design and Data Analysis  

A three-factor central composite design was used to investigate the effect of chemical extraction 

conditions (x1, decolouring time; x2 soaking time; and x3, soaking temperature) on physical and 

functional properties (span, volume weighted mean, solubility (80 °C), WHC and OHC respectively) 

(Table 3). Twenty experimental treatments were assigned based on the CCD with three independent 

variables at five levels of each variable (Table 3). 

Table 3. Matrix of the central composite design (CCD) for chemical extraction. 

Runs Blocks Decolouring time 
(x1, min) 

Soaking time 
(x2, h) 

Soaking temperature  
(x3, °C) 

1 * 1 120.0 8.0 40.0 
2 1 60.0 4.0 25.0 
3 1 180.0 12.0 25.0 
4 1 60.0 12.0 55.0 
5 1 180.0 4.0 55.0 

6 * 1 120.0 8.0 40.0 
7 2 180.0 12.0 55.0 
8 2 60.0 4.0 55.0 

9 * 2 120.0 8.0 40.0 
10 2 60.0 12.0 25.0 
11 2 180.0 4.0 25.0 

12 * 2 120.0 8.0 40.0 
13 3 120.0 14.5 40.0 
14 3 218.0 8.0 40.0 

15 * 3 120.0 8.0 40.0 
16 3 120.0 8.0 64.5 
17 3 120.0 8.0 15.5 

18 * 3 120.0 8.0 40.0 
19 3 22.0 8.0 40.0 
20 3 120.0 1.5 40.0 

Note: (*), centre point. 

Extraction conditions ranges studied were decolouring time (60–180 min), soaking time (4–12 h) 

and soaking temperature (25–55 °C). It should be reminded that all eight factorial points and six centre 

points fall inside the range of chemical extraction variables. The presence of six star points outside the 

studied ranges can help the researchers to find out the possible unexpected changes of the response 

which may occur beyond the studied ranges [53]. The changes of functional properties of gum were 

predicted according to the following equation: 

Y = β0 + Σ βi xi + Σ βii x
2

i + Σ βij xi xj (5)

where Y is response calculated by the model, β0 is a constant, βi, βii and βij are linear, squared and 

interaction coefficient, respectively [54]. The final regression model was only fitted to those 

statistically significant (p < 0.05) terms. However, some insignificance variables were still kept in the 

final reduced model due to the presence of significant (p < 0.05) quadratic or interaction term 
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containing this variable [55]. The adequacy of the model was determined using model analysis, lack of 

fit and coefficient of determination (R2) [56]. Minitab version 15 (Minitab Inc., State College, PA, 

USA) was used for the creation of the experimental design and data analysis.  

4. Conclusions  

In the current study, the effect of three extraction variables on the physicochemical and functional 

properties of durian seed gum was investigated. The current study revealed that the soaking process 

had a more significant impact than the decolouring process on the physicochemical and functional 

properties of durian seed gum. This might be explained by the considerable impact of the soaking 

process on the quantity and quality of impurities present in the crude gum structure. The current work 

reveals that the chemical extraction under a shorter decolouring and soaking time results in narrower 

particle size distribution. The present study suggests that the soaking time should be considered as the 

most critical extraction variable affecting the functional properties of the chemically-extracted durian 

seed gum. The crude durian seed gum showed a relatively low solubility and WHC. This might be due 

to the presence of water insoluble impurities and large particles. Therefore, further modification of the 

process is recommended to improve the solubility, water adsorption capacity and other functional 

properties of crude durian seed gum.  
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