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Abstract: A new terthiophene monomer: 3',4'-dimethoxy-2,2':5',2"-terthiophene (TMT) 

was synthesized and characterized by 1H-NMR, 13C-NMR and FTIR. The solid-state 

oxidative polymerizations of TMT were performed in various ratios of oxidant (FeCl3)  

to monomer (TMT). The resulting polymers were characterized by 1H-NMR, FTIR,  

UV-vis-NIR, GPC, X-ray diffraction, CV, as well as TGA and conductivity measurements. 

The structure and properties of poly (TMT) were compared with those of polyterthiophene 

[poly(TT)] and poly (3',4'-ethylenedioxy-2,2':5',2"-terthiophene) [poly(TET)] prepared 

under the same polymerization conditions. After comparative analysis with poly(TT) and 

poly(TET), the effects of the dimethoxy substituent and FeCl3 on the structural and 

physicochemical properties of the poly(TMT)s were discussed in depth. The comparison 

suggested that the dimethoxy-substituted polymer did not display higher crystallinity, 

thermal stability, conductivity and electrochemical activity than ethylenedioxy substituted 

one. The results also showed that the effect of FeCl3 on poly(TMT) was similar that seen 

with the poly(TT), in which the oxidation degree, electrochemical activity and conductivity 

increased steadily with increasing [FeCl3]/[TT] ratio. Furthermore, the poly(TMT) and 

poly(TT) are mostly made up of dimers with a small amount of higher molecular  

weight components. 
  

OPEN ACCESS



Molecules 2012, 17 8648 

 

 

Keywords: poly (terthiophene); dimethoxy substituents; solid-state oxidative polymerization 

 

1. Introduction 

Among the various conjugated polymers, poly(thiophene) and its derivatives (PTs) have become  

the focus of considerable interest due to a unique combination of original electronic properties, 

environmental stability, and structural versatility [1,2], but PTs suffer from the occurrence of undesired 

α,β and β,β'-couplings during polymerization, which deteriorate their properties [3,4]. Incorporation of 

the substituents into the thiophene ring or cyclization between the 3 and 4 positions of the thiophene 

ring is a convenient way for preparing perfectly stereoregular, long conjugated polymers by 

elimination of α,β and β,β'-couplings [4]. The terthiophene type compounds are interesting monomers 

for designing new PTs, because of their preexisting α,α'-linkages and lower oxidation potential than 

that of thiophene monomer [5–9]. Furthermore, these precursors can be polymerized either chemically 

or electrochemically to form stable electroactive polymers [5–11]. Recently, we have demonstrated a 

novel room-temperature solid-state oxidative method for polymerization of ethylenedioxy-substituted 

terthiophene (TET), and we have found that the solid-state polymerization was an effective method for 

terthiophene type monomers [12]. 

In this paper, we synthesized a new terthiophene derivative: 3',4'-dimethoxy-2,2':5',2"-terthiophene 

(TMT), in which the 3 and 4 positions of the internal thiophene ring was substituted by free methoxy 

groups. The structure of TMT is similar to that of TET, in which dimethoxy groups are taken together 

to form the ethylenedioxy bridge. However, the dimethoxy units in terthiophene have different 

electron-donating effects and dihedral angles between the planes of adjacent aromatic units, compared 

with the ethylenedioxy unit in terthiophene. Thus, it can be deduced that the structure and properties of 

resulting poly(TMT) polymer should be different from those of poly(TET) and unsubstituted poly(TT). 

Therefore, it is reasonable to undertake a comparative study of the structure and properties of a series 

of polyterthiophenes obtained from TMT, TT and TET under the same polymerization conditions to 

further investigate the effect of free dimethoxy groups and FeCl3 on the structure and properties of 

resulting polymers. In the present work, with the above aim in mind, a room-temperature solid-state 

polymerization method was applied for oxidative polymerization of the new terthiophene monomer 

TMT by varying the molar ratio of FeCl3 to the TMT. The structure and properties of poly(TMT) were 

compared with those of poly(TT) and poly(TET) prepared under the same polymerization conditions. 

The effects of the dimethoxy substituents and FeCl3 on the structural and physicochemical properties 

of the resulting polymers were discussed in depth after comparison of the respective FTIR, UV-vis-NIR, 

X-ray diffraction, CV, as well as TGA and molecular weight and conductivity measurements. 

2. Results and Discussion 

2.1. 1H-NMR, FT-IR Spectra and Molecular Weight 

Figure 1a represents the 13C-NMR spectrum of TMT in DMSO-d6, and Figure 1b–d represent  

the comparison of the 1H-NMR spectra of TMT and as-prepared and undoped poly(TMT)3  
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([FeCl3]/[TMT] ratio of 8:1) in DMSO-d6. The 13C-NMR and 1H-NMR spectra of TMT show the 

typical resonance lines for this monomer, and their assignments are shown in Figure 1a,b. As depicted 

in Figure 1c,d, the 1H-NMR spectra of as-prepared and undoped poly (TMT)3 showed a peak in the 

aliphatic region at δ ~ 3.97 and five aromatic peaks in the δ ~ 7.13–7.60 range. Based on the 

assignment of 1H-NMR spectra of TMT, the δ ~ 3.97 peak is attributed to the O–CH3 protons [15]. The 

resonance peak at δ ~ 7.60 is attributed to the hydrogen atoms on the α-position of the terminal 

thiophene, and the resonance peaks at δ ~ 7.36, 7.13 are attributed to the hydrogen atoms on the  

β-position of the terminal thiophene, while the other two resonance peaks at δ ~ 7.36, 7.28 may arise 

from the inner units of the 2,5 disubstituted rings [12,16]. 

Figure 1. 13C-NMR spectrum and 1H-NMR spectra of monomer and polymer:  

(a) 13C-NMR spectra of TMT in DMSO-d6; (b) 1H-NMR spectra of TMT in DMSO-d6;  

(c) poly (TMT)3 in DMSO-d6; (d) undoped poly (TMT)3 in DMSO-d6; Starred peaks 

comes from H2O and DMSO-d6. 

If one roughly estimates the integral intensity of five clear peaks at δ ~ 7.13–7.60 ppm of  

as-prepared and undoped poly (TMT)3 ([FeCl3]/[TMT] ratio of 8:1) in Figure 1c,d, it looks like the 

intensity of peaks, corresponding to each of H5, H4 and H3 protons at the polymer chain ends are more 

or less the same as the intensity of each peak attributed to the inner units of the 2,5-disubstituted rings. 

Furthermore, the ratio of surface integrals for the peaks at δ ~ 3.97 ppm and δ = 7.60 ppm is equal to 2, 

suggesting the poly(TMT) has a dimeric structure, containing in total six thiophene rings. This result  

is quite similar to the electrochemically synthesized poly(TET), which was found to be dimer of  

TET [12]. However, this was not confirmed by the GPC results shown in Table 1, which indicated a 

higher Mw ~ 3,400–3,600. This contradiction could result from overestimation of the Mw from GPC 

calibrated by PS standards, since the dimer has a rigid linear structure, while the standard is a flexible  
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polymer-polystyrene. Therefore, we can conclude that the poly(TMT) is mostly a dimer of TMT with a 

small amount of higher molecular weight components (trimer or longer oligomers of TMT). 

Table 1. The molecular weight, yield and conductivity of the polymers. 

Polymers [FeCl3]/[monomer] Mn Mw PDI Yield/% Conductivity 
poly(TMT)1 2:1 3,400 4,300 1.21 47% 1.2 × 10−3 S/cm 
poly(TMT)2 4:1 3,600 4,400 1.22 73% 3.2 × 10−3 S/cm 
poly(TMT)3 8:1 3,500 4,400 1.26 81% 4.5 × 10−3 S/cm 
poly(TT)1 2:1 3,300 4,000  1.21 56% 7.3 × 10−6 S/cm 
poly(TT)2 4:1 3,700 4,500 1.22 88% 4.4 × 10−5 S/cm 
poly(TT)3 8:1 3,500 4,200 1.24 90% 1.3 × 10−4 S/cm 

The comparison of the FT-IR spectra of monomers (TT and TMT), poly (TT)s, poly (TMT)s and 

undoped polymers ([FeCl3]/[monomer] ratio: 8:1) are presented in Figure 2. It is obvious from  

Figure 2b,c that poly (TMT)s present similar spectra to that of poly (TT)s, except for some bands 

associated with the introduction of dimethoxy substituent at ~2840–2927 cm−1, ~1389–1384 cm−1 and 

~969–967 cm−1 [7,17]. From the spectra of poly (TMT)s and poly (TT)s, it can be observed that the 

intensive vibration bands appeared in TMT and TT at ~3100 cm−1 arising from α–H stretching of 

thiophene moiety disappear completely, whereas, the peaks at ~3060 cm−1assigned to the Cβ-H 

stretching mode are still remained in both poly(TT)s and poly(TMT)s. Furthermore, new strong intense 

bands at ~785 cm−1 due to the β-Hs of the thiophene rings appear in the polymer spectra [8,18,21], 

indicating that α,α'-bonding predominates in both poly(TT)s and poly(TMT)s. Furthermore, the intensity 

ratio of C–Hβ to C–Hα deformation bands in poly(TMT) is almost the same as that of poly(TT), suggesting 

that the dimethoxy substituent has little influence on the α,α'-coupling. Comparing the spectra of poly- 

(TMT)s and poly(TET)s [12], it is found that β-defects in poly(TET)s are more than in poly(TMT)s. 

This can be related to the ethylene bridge, which can minimize steric distortion effects resulting in a 

high stereoregularity of TET, and consequently enhancing the formation of β-defects. 

Figure 2. FT-IR spectra of monomers and polymers: (a) monomers (TMT and TT);  

(b) poly (TT)s; (c) poly (TMT)s; [FeCl3]/[monomer] ratio: 2:1; 4:1; 8:1; (d) undoped 

polymers ( [FeCl3]/[monomer] ratio: 8:1). 
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Figure 2. Cont. 
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As can be seen from Figure 2d, the spectra of undoped polymers ([FeCl3]/[monomer] ratio: 8:1), 

such as: undoped poly(TT)3 and poly(TMT)3 are somewhat different from the respective as-prepared 

polymers. Further comparing the spectra of undoped and as-prepared polymers ([FeCl3]/[monomer] 

ratio: 8:1), one can see that the vibration bands appeared at ~1425 cm−1 and ~1390 cm−1 in as-prepared 

poly(TMT)3 almost disappeared in the case of undoped poly(TMT)3, while the intensity of vibration 

bands appeared at ~1320, 1120 and ~1027 cm−1 in as-prepared poly(TT)3 strongly decreased in the 

case of undoped poly(TT)3.All these observations suggests that the structure of as-prepared polymers 

([FeCl3]/[monomer] ratio: 8:1) can be changed after dedoping, which is similar to the previous 

observation in case of dialkyl substituted poly(TT) [7]. 

2.2. UV-Vis Absorption Spectra 

Figure 3 displays the optical absorption spectra of the monomers (TT and TMT), poly(TT)s,  

poly(TMT)s and undoped polymers ([FeCl3]/[monomer] ratio: 8:1) in acetonitrile. As shown in  

Figure 3a, TT and TMT show peaks at 355 nm and 364 nm, respectively. However, when comparing 

TT with TET (at 375 nm) [12], the bathochromic shift is obvious. This indicates that the effects of free 

dimethoxy units for enhancing the coplanirity of TT is smaller than those of ethylenedioxy units. 

As depicted in Figure 3, poly(TMT)1 and poly(TMT)2 show three characteristic peaks at  

451–483 nm, 650–662 nm and 910–918 nm, while poly(TMT)3 displays two characteristic peaks at  

645 nm and 920 nm. In the case of poly(TT), poly(TT)s show two characteristic peaks at 426–457 nm 

and peaks at 640–660 nm with a free tail extending into the near infrared region. The peaks at  

426–483 nm can be ascribed to the π→π* transitions of the polymer backbone, whereas the peaks at 

640–662 nm and 910–920 nm can be attributed to polaron and/or bipolaron bands, which are 

characteristic of oxidized poly(TMT) and poly(TT) [23–26]. On comparison, increasing of the 

[FeCl3]/[TMT] ratio causes a decrease in the intensity of the π→π* absorption bands and a red-shift 

from 451 to 483 nm, accompanied with a progressively decreasing intensity of the peaks at 451–483 

nm, especially π→π* absorption band disappears in the case of poly(TMT)3. In the case of poly(TT)s, 

the increasing [FeCl3]/[TT] ratio also causes a decrease in the intensity of the π→π* absorption bands 

and a red-shift from 426 to 457 nm, accompanied with the progressively increasing intensity of peaks 

at 640–660 nm with a free tail extending into the near infrared region. This implies that the oxidation 

degree of both of poly(TMT) and poly(TT) increases with the increasing [FeCl3]/[monomer] ratio. 
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Figure 3. UV-vis of spectra of monomers and polymers: (a) monomers (TMT and TT);  

(b) poly(TT)s; (c) poly(TMT)s; [FeCl3]/[monomer] ratio: 2:1; 4:1; 8:1; (d) undoped 

polymers ([FeCl3]/[monomer] ratio: 8:1). 
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Comparing the spectra of poly(TT)s and poly(TMT)s, a red shift for the peaks assigned to the 

π→π* transitions is observed in the spectra of poly(TMT)s, and the poly(TMT)s seem to be more 

oxidized than poly(TT) for the same [FeCl3]/[monomer] ratio, indicating enhanced stability in the 

oxidized state (doping state) of poly(TMT). This can be assigned to the strong electron-donating effect 

of the dimethoxy substituents, which will cause an increase in the conjugated length of the polymer  

chains [15,17]. 

In our previous report, we found that all the absorption spectra of poly(TET)s have maxima located 

at the same wavelength of 462 nm, ascribed to the π→π* transitions of the polymer backbone at 

different [FeCl3]/[TET] ratios [12], suggesting a red shift for the peak assigned to π→π* transitions 

compared with the reduced phase of poly(TMT). It is interesting that with its positive effect on the 

coplanirity of polymer backbone and similar electronic effects to dimethoxy groups, the ethylenedioxy 

group makes poly(TET)s more reduced than poly(TMT)s. The possible reason for this phenomenon 

may be related to the higher stability of the TET cation radical, which decreases the degree of 

polymerization. The lower degree of polymerization will cause a shorter polymer chain length in poly- 

(TET) than in poly(TMT) and poly(TT). Consequently, the lower degree of polymerization in 

poly(TET) hinders further doping, while the higher degree of polymerization in poly(TT)s and poly 

(TMT)s facilitates the degree of doping of the resulting polymer. 

As a comparison, the spectra of undoped polymers ([FeCl3]/[monomer] ratio: 8:1), such as: 

undoped poly(TT)3 and poly(TMT)3 show only one characteristic peak at 421 and 449 nm, 
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respectively, which are ascribed to the π→π* transitions of the polymer backbone, and the peaks 

attributed to polaron and/or bipolaron bands disappear after the dedoping. This phenomena is in good 

agreement with previous conclusions for methyl substituted poly(TT), in which the polaron and/or 

bipolaron bands disappeared after the electrochemically prepared methyl substituted poly(TT) was 

reduced at a potential of −0.4 V [26]. Furthermore, according to the earlier electrochemical and  

spectro-electrochemical studies on model oligothiophenes, it can be concluded that the spectra of  

poly(TT)s, and poly(TMT)s are characteristic for a sexithiophene dication [26]. 

2.3. XRD Patterns 

Figure 4 shows the powder XRD patterns of poly(TT)s, poly(TMT)s and undoped polymers 

([FeCl3]/[monomer] ratio: 8:1). The powder XRD patterns of poly(TMT)s exhibit two broad 

diffraction peaks at approximately 2θ = 13°, 23°, respectively, associated to the intermolecular π→π* 

stacking or assigned to the (200) and (020) reflection [15,27,28]. As shown in Figure 4a, poly(TT)s 

present a highly crystalline structure which is similar to the poly(α-quaterthiophene) and chemically 

coupled poly(thiophene) [27]. All poly(TT)s display three main diffraction peaks at 2θ = ~19°, ~23°, 

~27°, respectively, which are the 110, 200, and 210 reflections of the crystalline fraction of sample 

according to previous research [27,28]. It is clear from Figure 4, that aside from the main diffraction 

peaks, the sharp diffraction peaks at 2θ = 33°, 35°, 49°, 54° with low intensity which are present in all 

poly- (TT)s and poly(TMT)s correspond to the FeC14
− doping agent, which generally accompanies the 

as-made polythiophene [12]. 

Figure 4. XRD of polymers: (a) poly(TT)s; (b) poly(TMT)s; [FeCl3]/[monomer] ratio: 2:1; 

4:1; 8:1; (c) undoped polymers ([FeCl3]/[monomer] ratio: 8:1). 
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Figure 4 also implies that the poly(TMT)s display more amorphous than poly(TT)s, and there are 

no big differences in XRD patterns while varying the [FeCl3]/[TMT] ratio (Figure 4b). This can be 

associated with the introduction of dimethoxy substituents in the terthienyl rings, which may decrease the 

crystallinity with its separation effect on the polymer main chains. This phenomenan was also observed 

while comparing the XRD results of highly crystalline polythiophene [28] with poly(EDOT) [15]. It is 

clear from the comparison of XRD patterns of poly(TMT)s and poly(TET)s [12], that the diffraction 

peaks associated to the intermolecular π→π* stacking are shifted to a lower angle and are more amorphous, 

which may result from the increased interchain spacing introduced by the free dimethoxy substituents. 

In comparison to the as-prepared polymers ([FeCl3]/[monomer] ratio: 8:1), in the powder XRD 

patterns of undoped poly(TT)3 and poly(TMT)3, the sharp diffraction peaks at 2θ = 33°, 35°, 49°, 54° 

with low intensity presented in all poly(TT)s and poly(TMT)s corresponding to the FeC14
− doping 

agent almost disappeared in the case of undoped poly(TT)3 and poly(TMT)3. Furthermore, the 

crystallinities of the undoped poly(TT)3 and poly(TMT)3 are lower than those of the respective  

as-prepared polymers, which indicates that the dedoping process can make the polymers more 

amorphous than as-prepared polymer. 

2.4. Thermal Stability 

Figure 5 represents the weight (%) loss versus temperature data for poly(TT)s and poly(TMT)s. As 

shown in Figure 6, poly(TT)s and poly(TMT)s display three major weight loss steps. The initial weight 

loss of less than 5% is due to the volatilization of solvents, and/or absorbed moisture, and oligomers  

of the monomer. Comparing the TGA curves of poly(TMT)s and poly(TT)s, it can be observed that  

the initial degradation temperature (384–421 °C) of poly(TT)s is higher than that of poly(TMT)s  

(315–347 °C), indicating that the poly(TT) exhibits higher thermal stability than poly(TMT). The 

improved stability of poly(TT) as compared to poly(TMT), can be attributed to its highly symmetric 

structure and the absence of any alkyl or alkoxy substituents in the terthienyl chain, which is generally 

considered as a main factor decreasing the thermal stability of the polythiophene [21]. Furthermore, 

poly(TMT)s exhibit lower thermal stability than poly(TET) [12]; the reason is possibly the lower 

crystallinity of poly(TMT)s, and consequently this decreases the thermal stability of the polymer. 

Figure 5. TGA of polymers: (a) poly(TT)s; (b) poly(TMT)s; [FeCl3]/[monomer] ratio: 2:1; 4:1; 8:1. 
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Figure 6. Cyclic voltammograms of polymers: (a) poly(TT)s; (b) poly(TMT)s;  

[FeCl3]/[monomer] ratio: 2:1; 4:1; 8:1. 
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As shown in Figure 5, the initial weight loss temperatures for poly(TMT)s are found to increase in 

the order of poly(TMT)1 < poly(TMT)3 < poly(TMT)2, and the same order is also observed in the 

case of poly(TT)s. By comparison, in the case of poly(TT)s and poly(TMT)s, the polymers prepared 

using the highest [FeCl3]/[monomer] ratio give the highest residue at 900 °C, which can result from a 

higher conjugated length of polymers than that of others. However, in the case of poly(TET) [12], 

there is only slight difference in TGA curves, suggesting that [FeCl3]/[TET] ratio has little effect on 

thermal stability of poly(TET). This is in agreement with the results from UV-spectra of poly(TET)s, 

indicating the same structural properties in poly(TET)s resulted from the low molecular weight and 

doping degree, as well as the slight differences in the molecular weight in poly(TET)s.  

2.5. Electrochemical Properties and Conductivity 

Figure 6 shows the cyclic voltammograms (CVs) of poly(TT)s and poly(TMT)s films on Pt in  

0.1 mol/L Et4NBF4 acetonitrile solution at a scan rate of 50 mV/s. As seen in Figure 6, the anodic 

peaks (~1.5–1.6 V) of poly (TT)s are not clearly defined, while well defined cathodic peaks are located 

at 0.5–0.8 V. The CVs of poly(TT)s are very similar to those of electrochemically synthesized  

poly(TT) [20,25,26]. 

In the case of poly(TMT)s, well defined anodic and cathodic peak potentials are observed at  

1.1–1.21 V and 0.4–0.5 V, respectively. It is obvious from the comparison of CVs of poly(TT)s and 

poly(TMT)s, that the electrochemical windows of poly(TMT)s are larger than those of poly(TT)s, 

suggesting higher coulombic capacity, and the electrochemical oxidation of poly(TMT)s started at  

0.55–0.63 V, which is lower than that of poly (TT)s (0.72–0.79 V). However, the electrochemical 

oxidation of poly(TMT)s started at 0.55–0.63 V, which is lower than that of poly(TET)s  

(0.21–0.44 V) [12]. 

All these results show that the poly(TMT)s are electrochemically more active than poly(TT)s, but 

less active than poly(TET)s. This was further proven by conductivity measurements. The conductivity 

measurements reveal that the as-made poly(TMT)s and poly(TET)s [12] have three orders of 

magnitude lower conductivity at room temperature, while poly(TT)s shows lower conductivity than 

that of poly(TMT)s (Table1). The differences in conductivities of poly(TMT)s and poly(TET)s can be 
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understood by the more compact and rigid structure in polymer chains of poly(TET)s than in  

poly(TMT). Although the free dimethoxy substituents can facilitate the doping process and result in 

less β-defects, the steric distortion effects of the dimethoxy substituents decreases the co-planarity of 

the polymer chains, and consequently make the poly(TMT) more amorphous with decreased 

conductivity and electrochemical activity than poly(TET). As shown in Table 1, the conductivities of 

poly(TT)s and poly(TMT)s increase with the increasing [FeCl3]/[monomer] ratio. This can be 

explained by the UV-spectra results, which indicate that the oxidation degree of poly(TT) and  

poly(TMT) increase steadily with the increasing of [FeCl3]/[monomer] ratio, consequently the higher 

oxidation degree will produce higher conductivity in the polymers. As a comparison, Zak et al. have 

reported the electrochemistry of the oligothiophenes [sexi (3-octylthiophene) oligomer] in solid state, and 

the solid film of sexi(3-octyl thiophene) on electrode undergoes multiple redox processes [29].  

Jadamiec et al. have reported that a well defined peak at 0.49 V was observed for oligo-3'-methyl-

2,2':5',2"-terthiophene during the electrochemical polymerization of 3'-methyl-2,2':5',2"-terthiophene [26]. 

However, in this case, the cyclic voltammograms (CVs) of poly(TMT) or poly(TT) do not show well 

defined sharp peaks for oligoterthiophene. This phenomena may be the result of the special 

components of these polymers. As concluded from the 1H-MNR and UV-vis absorption spectra results 

of, poly(TMT) or poly(TT) are mostly dimers of TMT or TT with a small amount of higher molecular 

weight components (trimer or longer oligomers). Generallycharge transfer is the main factor during the 

redox process for the appearance of defined sharp peaks in CVs. In this case, the charge transfer during 

the redox process could be restricted by the lower conductivity of higher molecular weight components 

in these polymers. Consequently, the redox process of oligo-terthiophene are difficult. 

3. Experimental 

3.1. General  

Fourier transform infrared (FT-IR) spectra were recorded on a Bruker Equinox-55 FT-IR 

spectrometer using KBr pellets. The 1H-NMR and 13C-NMR spectra (400 MHz) were obtained  

using a Mercury-VX300 spectrometer. UV-vis spectra were obtained using a Hitachi-U3010 

spectrophotometer. Thermal analysis was performed with an Netzsch STM90 thermal analysis 

instrument; the samples were heated from 25 °C to 900 °C at a rate of 10 °C min−1 under a nitrogen 

atmosphere, at a flow rate of 100 mL min−1. X-ray diffraction (XRD) patterns were recorded with an 

D/Max 2400 X-ray diffractometer using Cu Ka radiation, 40 kV, 40 mA. GPC (gel permeation 

chromatography) measurements were performed on a Waters GPCV-2000 apparatus equipped with a 

RI detector using DMF as the solvent at a rate of 1.0 mL/min, twenty microliters of 1.0% (w/v) sample 

solutions were injected for each analysis, calibration was accomplished with polystyrene standards 

(Polysciences, USA). Reagent grade terthiophene, 3,4-dimethoxythiophene, 2-(tributylstannyl)-thiophene, 

N-bromo-succinimide (NBS) and anhydrous iron (III) chloride were obtained from Aldrich.  

2,5-Dibromo-3,4-dimethoxythiophene and Pd(PPh3)4 were synthesized according to the literature [13,14]. 

Other chemicals used were of analytical reagent grade, and used as received without further treatment.  
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3.2. Synthesis of TMT 

3',4'-Dimethoxy-2,2':5',2"-terthiophene (TMT) was synthesized according to the procedure given  

in [12], as shown in Scheme 1. 1H-NMR (DMSO-d6, ppm): δ: 7.58 (dd, 2H, J = 5.1 Hz, 1.1 Hz), 7.30 

(dd, 2H, J = 3.6, 1.1Hz), 7.11 (dd, 2H, J = 5.1 Hz, 3.6 Hz), 3.90 (s, 4H). 13C-NMR (DMSO-d6, ppm): 

121.97, 128.68, 132.32, 132.59, 138.25, 150.71. 1H-NMR and 13C-NMR spectra are shown in Figure 1. 

Scheme 1. Synthesis of 3',4'-dimethoxy-2,2':5', 2"-terthiophene (TMT). 

 

3.3. Solid-State Polymerization of TMT and TT 

A typical solid-state polymerization procedure was as follows [12]: 3',4'-Dimethoxy-2,2':5',2"-

terthiophene (TMT, 0.308 g, 0.001 mol) and anhydrous iron (III) chloride (FeCl3, 0.324 g, 0.002 mol) 

were put in a mortar at room temperature, are ground  to mix them thoroughly. After grinding the 

reactant about 30 min, the mixture became a pale green solid, then by further grinding for 2.5 h, the 

color of the mixture changed to black. The resulting polymer was removed from the solid mixture  

by repeatedly washing with ether, ethanol and distilled water until the filtrate was colorless, and  

then the powder was dried under vacuum at 50 °C for 48 h. The obtained polymer was designated  

as poly(TMT)1. In similar manner, the molar ratio of oxidant to monomer (represented by  

[FeCl3]/[TMT]) was adjusted at 4:1 and 8:1, respectively, the resulting polymers were noted as  

poly (TMT)2 and poly (TMT)3. 

The poly (TT)s (Poly (TT)1, poly (TT)2, poly (TT)3) were synthesized in similar manner by 

adjusting [FeCl3]/[TT]) ratio at 2:1, 4:1 and 8:1, respectively. The poly(TMT)3 and poly(TT)3 were 

treated with reducing agent (hydrazine monohydrate, N2H4 × H2O) for 24 h at room temperature under 

nitrogen to give undoped polymers. 

3.4. Electrochemical Tests 

The cyclic voltammetry (CV) was performed in a conventional three-electrode cell using CHI660A 

electrochemical workstation, the working electrode was a polymer film electrode prepared by casting a 

DMF solution of polymer on a platinium electrode. The reference electrode was SCE, and the counter 

electrode was a 1 cm2 area Pt flag, and the supporting electrolyte was 0.1 mol/L tetraethylammonium 

tetrafluoroborate (Et4NBF4)/acetonitrile solution. The conductivity of polymers was measured by using 

the standard four-probe technique. 
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4. Conclusions 

In this work, a new poly(terthiophene) derivative: poly (3',4'-dimethoxy-2,2':5',2"-terthiophene)  

was synthesized by a solid-state oxidative polymerization method at various ratios of FeCl3 to TMT. 

The experimental results were compared with those of polyterthiophene [poly(TT)] and  

poly(3',4'-ethylenedioxy-2,2':5',2"-terthiophene) [poly(TET)] prepared under the same solid-state 

oxidative polymerization conditions. The comparison results suggested that the dimethoxy substituents 

were a main factor for the structural and physicochemical differences between the poly(TMT),  

poly(TT) and poly(TET). Although the free dimethoxy substituents can facilitate the doping process 

and produce less β-defects, the steric distortion effects of dimethoxy substituents led the poly(TMT) to 

become more amorphous and less thermally stable with decreased conductivity and electrochemical 

activity than poly(TET). Furthermore, the steric distortion effects of dimethoxy substituents led  

the poly(TMT) to have a similar change tendency as poly(TT), in which the oxidation degree, 

electrochemical activity and conductivity increased steadily with increasing [FeCl3]/[monomer] ratio. 

In addition, the poly(TMT) or poly(TT) are mostly a dimer of TMT or TT with a small amount of 

higher molecular weight components (trimer or longer oligomers). Well defined sharp peaks for  

oligoterthiophene was not observed due to the restriction of charge transfer during the redox process 

by the lower conductivity of higher molecular weight components in these polymers. 
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