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Abstract: Stereochemistry is an important determinant of a molecule’s biological activity. 

Stereoisomers can have different degrees of efficacy or even opposing effects when 

interacting with a target protein. Stereochemistry is a molecular property difficult to 

represent in 2D-QSAR as it is an inherently three-dimensional phenomenon. A major 

drawback of most proposed descriptors for 3D-QSAR that encode stereochemistry is that 

they require a heuristic for defining all stereocenters and rank-ordering its substituents. 

Here we propose a novel 3D-QSAR descriptor termed Enantioselective Molecular 

ASymmetry (EMAS) that is capable of distinguishing between enantiomers in the absence 

of such heuristics. The descriptor aims to measure the deviation from an overall symmetric 

shape of the molecule. A radial-distribution function (RDF) determines a signed volume  

of tetrahedrons of all triplets of atoms and the molecule center. The descriptor can be 

enriched with atom-centric properties such as partial charge. This descriptor showed good 

predictability when tested with a dataset of thirty-one steroids commonly used to 

benchmark stereochemistry descriptors (r
2
 = 0.89, q

2
 = 0.78). Additionally, EMAS improved 

enrichment of 4.38 versus 3.94 without EMAS in a simulated virtual high-throughput 

screening (vHTS) for inhibitors and substrates of cytochrome P450 (PUBCHEM AID891). 
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1. Introduction 

Stereoisomers are defined as different molecular species of equal constitution which are separated 

by energy barriers [1]. For organic molecules stereochemistry is most frequently caused by carbon 

atoms with four different substituents. However, other stereocenters exist such as positively charged 

nitrogen atoms with four different substituents, double bonds with different substituents on each of the 

two carbon atoms, stereoisomeric allenes, atropisomeric biphenyls, etc. Enantiomers are a subset of 

stereoisomers that are defined as non-superimposable mirror images (enantios being Greek for 

opposite and meros for part). Despite their structural similarities, enantiomers can display very 

different pharmacological profiles. Stereoisomers that are not enantiomers are called diastereomers. 

Stereoselectivity is widely prevalent in nature as most proteins are formed from the genetically 

encoded L-amino acids making small molecule binding pockets enantioselective [2]. In drug discovery, 

there are examples in which different enantiomers show different efficacies, e.g., dexrabeprazole [3] 

and beta blockers [4], and different toxicities, e.g., levobupivacaine [5]. In 1992, the FDA issued a 

statement requiring that the development of any racemate (mixture of a compound’s stereoisomers) 

carry a justification for the inclusion of both isomers [6] and in the year 2000, chiral drugs accounted 

for over $100 billion in sales [7]. Between 1985 and 2004, the number of single enantiomer drugs as a 

percentage of chiral molecules increased from 31.6% to 89.8% [8]. 

Given the importance of stereoselectivity in drug design, it is necessary that any computational 

approach to drug discovery distinguishes between stereoisomers. In Structure-Based Computer-Aided 

Drug Discovery (SB-CADD) stereochemistry is explicitly accounted for as the molecule is docked into 

a structural model of the protein binding site. The 3D structure of the molecule in complex with the 

protein is evaluated taking its stereochemistry into account. In complex with the target protein even 

enantiomers turn into diastereomers and can be distinguished. In Ligand-Based Computer-Aided Drug 

Discovery (LB-CADD) the chemical structures of active compounds are compared to derive common 

features that determine activity. The task of distinguishing stereoisomers and in particular enantiomers 

becomes more challenging as stereochemistry needs to be defined in the absence of the protein. This is 

impossible in 2D molecular descriptors where only the constitution of a molecule is taken into account. 

Therefore extensions to 2D molecular descriptors have been developed—sometimes described as 2.5D 

descriptors—that describe configuration and can therefore define stereochemistry. Lastly, 3D 

descriptors based on the molecular conformation can define stereochemistry, if appropriately designed. 

The IUPAC convention for distinguishing stereoisomers is the Cahn-Ingold-Prelog (CIP) 

convention distinguishing R (rectus) and S (sinister) configuration of stereocenters. It requires a 

priority weighting system for the different substituents that is incapable of dealing with some complex 

scenarios. Extensions to the CIP system have been introduced to handle situations in which the chiral 

center did not rest on an atom (chirality plane or axis) and for stereoisomers which do not possess 

centers of chirality at all (stereisomeric allenes, atropisomeric biphenyls, and ansa-compounds) [1]. 

Further complications arise for pseudoasymmetric stereogenic units, defined as pairs of enantiomorphic 

ligands together with two ligands which are non-enantiomorphic. In cases such as these, the priorities 

of two substituents depend on their own chiral centers. One particular disadvantage is that the CIP 

nomenclature does not always follow chemical intuition. For example, take the two molecules 

HC(CH3)(OH)F and HC(CH3)(SH)F. Naively we would align these close derivatives by superimposing 
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H with H, CH3 with CH3, OH with SH and F with F. This assigns R-HC(CH3)(OH)F to  

S-HC(CH3)(SH)F and vice versa. In fact, closely related derivatives that place similar functional 

groups in the same regions of space and are likely to have similar activity can have opposite CIP 

assignment. Therefore, the CIP convention is not suitable to describe stereochemistry effectively for 

LB-CADD.  

Extensions to 2D-QSAR have been proposed to distinguish enantiomers. Golbraikh and co-workers 

introduced a series of chirality descriptors that use an additional term called the chirality correction 

added to the vertex degrees of asymmetric atoms in a molecular graph [9]. This method is similar to 

one proposed by Yang and Zhong [10] where the chiral index was instead appended to the substituents 

attached to the chiral center. Multiple similar algorithms have also been proposed [11–14]. For 

example, Brown, et al. [11] added chirality to their graph kernel method. The drawbacks of these 

methods include their reliance on the problematic R/S designations as well as the combination of 

spatial and atom property information such that their indices become a principally mathematical 

concept with little interpretation on physical terms. 

Another approach proposed by Benigni and co-workers [15] describes a chirality measure based on 

the comparison of the 3D structure for a molecule with all others in a data set. Zabrodsky [16] 

proposed a similar continuous symmetry measure which quantifies the minimal distance movement for 

points of an object in order to transform it into a shape of desired symmetry. However, these molecular 

similarity indices are very sensitive to relative orientation and depend on pairwise molecular indices 

which can complicate QSAR-based high throughput screening. 

Aires-de-Sousa, et al. [17–19] introduced a 3D-QSAR method for handling enantiomers. Classical 

3D-QSAR descriptors such as radial distribution functions are incapable of distinguishing between 

enantiomers based on their nature. This method employs an RDF-like function that utilizes a ranking 

system for each chiral center introduced by Zhang and Aires-de-Sousa that reinterpreted the CIP rules 

in terms of more meaningful physicochemical properties. Additionally, it has the benefit of being a 

vector rather than single value which is equal and opposite for enantiomer pairs. However, this method 

requires the identification and appropriate labeling of all stereogenic units and suffers from the fact 

that spatial information is combined with atom properties where some physical interpretability is lost. 

It is also worth mentioning that it is not clear if it is pharmacologically relevant to specify every 

stereogenic component of a molecule, but rather if different profiles between enantiomers depend on 

specific chiral centers and/or an overall chirality of the molecule as a whole. 

CoMFA [20] is an appealing method for distinguishing between enantiomers as it avoids the 

necessity to identify stereogenic centers. Rather, it intrinsically takes chirality into account as the 

molecular fields of chiral isomers are inherently different. However, the method relies on superimposition 

of all molecules [9] which is difficult to achieve for large or diverse substance libraries. 

Here we propose a novel enantioselective 3D descriptor for QSAR that is similar to the RDF-like 

function proposed by Aires-de-Sousa and co-workers but with important differences to address the 

concerns raised above. We call this new method Enantioselective Molecular ASymmetry (EMAS). 

Our method does not rely on any priority ranking or distinction of every stereogenic unit, thereby 

eliminating the need to combine spatial and atomic properties and bypassing the difficulties that arise 

in non-conventional chiral centers. Rather, the enantiomeric distinctions “emerge” from the spatial 

distribution of atoms within the molecule. Additionally, EMAS is designed to avoid a rigid distinction 
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between enantiomers but rather to represent the overall asymmetry of a molecule as it compares to 

other similar molecules as well as its own enantiomorphs. Therefore, EMAS intends to describe 

overall molecular asymmetry while including a directionality component that can distinguish between 

enantiomers. 

2. Results and Discussion 

2.1. Enatiomorphism is Determined by Asymmetry in Shape or Property Distribution  

Enantiomorphism in small molecules is impacted by two phenomena. The first factor is the shape of 

the molecule—i.e., the distribution of its atom coordinates in space. If the mirror image of this shape 

cannot be superimposed with the original version, the two molecules are enantiomers. Beyond the 

overall shape the distribution of properties plays a role. We can envision molecules that have a (near) 

perfect symmetric shape. Image and mirror image will be identical shape wise. However, distribution 

of partial charge, polarizability, and electronegativity can be enantiomorphic. While both contributions 

are coupled they represent two dimensions of one phenomenon. For a specific molecule one of the 

other factors might be more pronounced. For example steroids can have enantiomorph shapes but have 

relatively uniform property distributions as they are dominated by apolar CH groups. On the other 

hand, the molecule CFClBrI is an almost perfect regular tetrahedron with a highly enantiomorph 

distribution of partial charge and polarizability. As both contributions can determine properties and 

activities of small molecules, stereochemical descriptors should capture and ideally distinguish both 

contributions. 

2.2. Radial Distribution Functions Separate Shape Information and Property Distribution 

Radial Distribution Functions (RDFs) are often applied in 3D-QSAR [21,22]. As a means of 

comparison, the general form of the atomic radial distribution function is shown: 

[            
         

 
   
 

 
 ] (1)  

In this equation,   is a smoothing parameter, often called the ‘temperature’ while     is the distance 

between atoms   and  ,   is the total number of atoms in the molecule, and   is the running variable for 

the function     . Often, such equations are ‘weighted’ with a property coefficient for both atoms     . 

The function plots shape (i.e., distance between two atoms) on the x-axis, the respective property 

coefficient on the y-axis thereby separating geometry from property distribution. With        this 

function is a representation of the overall shape of the molecule based on the frequencies of all atom 

pair distances within each radial distance step. As distances are invariant to mirroring, enantiomers 

share identical RDF functions. Note that diastereomers have distinct RDFs as not all atom pair 

distances are identical.  

2.3. Expanding RDFs to ‘Signed’ Volumes that Are Sensitive to Shape Enantiomorphy 

We first look for the simplest geometric form that would be sensitive to mirroring. This shape 

would be a tetrahedron. We choose tetrahedrons consisting of all combinations of three atoms       

and the center of the molecule. Other approaches use all permutations of four atoms. The present 
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approach reduces the computational demand. The geometric property plotted for the tetrahedron is 

volume.   ,   , and    are the coordinates of the three atoms. The center of the molecule is defined by 

point  . Then, we compute the signed volume as: 

[               

 
                                    ] (2)  

While the absolute term always reflects volume, it is important to note that the result can have a 

positive or negative sign, depending on the order of points which is initially arbitrary. We note that the 

volume has an arbitrary sign that inverts when the molecule is converted into its mirror image. We 

note further that the volume becomes 0 if the plane defined by   ,   , and    includes  . This property 

is beneficial as a planar arrangement of atoms cannot be enantiomorphic. However, for a tetrahedron to 

contribute to enantiomorphy, its edges              ,               , and                must be of different length. This 

property is captured by a stereochemistry score: 

[                 
                                                                                                       

                                                               
 ] (3)  

Two things emerge from the numerator: the asymmetry is evaluated based on the variation in 

distances between the three atoms. If any two distances are equal, the triangle formed from the three 

atom coordinates will contain perfect symmetry and the score will be 0. Additionally, the directional 

(enantiomorphic) information emerges based on the order of distances. For example, if               >                

>               , then this product will have a negative sign            . However, if, from the vantage 

point of the molecular center, the order of distances has been shuffled (as would be seen in an 

enantiomer                >               >               ), the sign changes as well            . Figure 1 

demonstrates how opposite directions emerge depending on the ordering of instances. Recall that by 

allowing a signed volume, we ensure that the order of distances does not rely on the order of atoms 

coordinates encountered, but rather as the order of distances seen from the molecular center in terms of 

the cross product’s direction. The score is normalized by a constant factor of 0.0962243 which is 

calculated as the maximum possible score when the largest of the three distances is 1. Details can be 

found in the supplemental information. Figure 2 compares atom triplets that give rise to high versus 

low scores as well as scores with opposite directions. 

The final directional asymmetry score (DAS) of any given atom triplet becomes: 

[                                        
 ] (4)  

Note that the products cube-root has been taken to achieve a dimension of distance resembling a 

common RDF. This procedure preserves the sign and expands the range of frequently occurring  

low-scoring triplets at the cost of rare triplets with high scores. Substituting this directional asymmetry 

in place of atom distance, the EMAS function becomes: 

[                                         
 

   
 

   
 

 
 ] (5)  

where   is the smoothing parameter,   is the total number of non-hydrogen atoms, and   is the running 

variable of the function        . The alternate sign preceding the exponential function transfers the 

“directionality” of the score to the overall function so that at any given score, the intensity reflects the 

subtraction of negative (one direction) from positive (opposite direction). Figure 3 maps the EMAS 

plot for epothilone B and its mirror image. 
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Figure 1. Calculating DAS (A) Scores reflect opposing enantiomorphs based on cross-product 

direction and geometric center. Enantiomers [(2R,3R)-2-(chloromethyl)-3-propyloxirane 

and (2S,3S)-2-(chloromethyl)-3-propyloxirane] with two stereocenters are shown. (B) Two 

triangles are visualized in both enantiomers. These triangles encompass the same triplets of 

atoms between the two molecules. Four tetramers formed by the atom triplets and 

molecular center are visualized. i, j, k, and i', j', k' reflect the order of these atoms in either 

molecule. Importance of atom ordering is shown based on the direction of cross product 

(red arrow) and location of molecular center (black circle). (C) Volume and score 

calculations for the four tetrahedrons across both enantiomers are shown. Note the opposite 

signs and scores between the two enantiomers’ tetrahedrons.  

 

Figure 2. Diazepam (A) Top five scoring atom triplets in diazepam are shown. The black 

circle in all figures represents the molecular center. (B) Lowest five scoring atom triplets in 

diazepam. All triplets shown here score 0 and do not contribute to the RDF-like code. (C) 

Top five positive and top five negative scoring triplets in diazepam. Here is visualized the 

different distribution of high scoring positive (yellow) versus high scoring negative 

(orange) triplets in diazepam. 
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Figure 2. Cont. 

 

Figure 3. EMAS curves for epothilone B (A) Plotted EMAS curves for epothilone B (blue) 

compared with its mirror image (red). X-axis represents the Directional Asymmetry Score 

in angstroms while the y-axis indicates the frequency of these scores across the entire 

molecule. (B) Atom triplets with a directional asymmetry score of approximately  

0.3 angstroms. Note that these triangles generally cover the center of the molecule and are 

fairly symmetric. (C) Atom triplets with a directional asymmetry score of approximately 

1.3 angstroms. Note that these triangles are further from the center of the molecule and 

have an asymmetric shape. (D) Atom triplets with a directional asymmetry score of 

approximately 1.7 angstroms. Note that these atom triplets lie furthest from the center of 

the molecule and are very asymmetric. 
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As with the basic radial distribution function, the absence of any weighting coefficient results in a 

descriptor that encodes only spatial information. While this is important information in and of itself, 

the addition of a property weighting coefficient increases the utility of this descriptor. Since we are 

iterating over all atom triplets, the possibility that one atom property can throw off two other atom 

properties in unintended ways made it problematic in some cases to simply multiply the three atom 

properties together. Adding the properties, on the other hand, can circumvent this issue but two atom 

properties of equal magnitude and opposite signs can cancel each other out. Therefore, we retained the 

functionality for both property coefficient methods and suggest that any use of this descriptor in larger 

datasets test either method since one may outperform the other depending on the dataset. 

2.4. Evaluation of EMAS as a Novel Descriptor 

2.4.1. Predictability Benchmarking: Cramer’s Steroids 

A commonly used dataset for evaluating the predictive capability of novel stereochemistry-based 

descriptors was introduced by Cramer et al. in 1988 [20] and several structures were corrected in a 

subsequent publication [23]. These thirty-one steroid structures are accompanied with their experimental 

binding affinities to human corticosteroid-binding globulins (CGB) and provide a small dataset containing 

many stereocenters. Additionally, the rigidity of these compounds makes them an ideal benchmark set 

for 3D-QSAR algorithms eliminating the factor of conformational flexibility. Since EMAS can be 

employed in three forms: spatial only, property weighting coefficient via summation, and property 

weighting coefficient via multiplication, we trained three separate artificial neural network (ANN) 

models using descriptors derived in each of these three methods. To predict binding affinities over the 

entire dataset, we used a cross-validated leave-one-out approach. To compare the predictive power of 

our model versus other descriptors that have been tested against the steroid set, we calculated the 

correlation coefficient    of predicted versus experimental affinities and the “cross-validated   ”   .  

As expected, the ANN model generated using no property weighting (solely spatial information) 

performed the worst of the three, producing a    of 0.78 and a    of 0.60. By weighting with a 

multiplicative property coefficient, the performance increased considerably, resulting in a    of 0.86 

and a    of 0.74. Weighting with the property summation coefficient yielded the best predictions with 

a    of 0.89 and a    of 0.78.  

Since we began with an interest in generating a molecular asymmetry descriptor that could 

distinguish between enantiomers, we wanted to ensure that the inclusion of directionality increased the 

information contained in the descriptor. Therefore, we created a version of the descriptor that 

incorporates just the absolute value of all stereochemistry scores, thereby eliminating all directional 

information while retaining all other spatial information. We found that by training our model without 

directional information, the predictive capabilities for the steroid affinities decreased to a    of 0.65 

and a    of 0.41, reinforcing our original design to capture stereochemistry. We also compared the 

model employing EMAS with one created with a traditional RDF. This model performed worse than 

any of our three methods giving a    of 0.75 and a    of 0.56. Weighting the RDF’s with the same 

properties used to weight EMAS did not produce any significant improvement in the model (data not 

shown). Cross-validated predictions for all variations of EMAS as well as the experimental affinities 

can be found in Table 1. 
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Table 1. Experimental and predicted binding affinities for the 31 Cramer’s steroids using 

novel stereoselective descriptor to train ANN models. Spatial predictions utilize the novel 

descriptor without any atom property weighting. Multiply properties utilize the novel 

descriptor weighted by the product of atom properties. Sum properties utilize the novel 

descriptor weighted by the sum of atom properties. 

Molecule 

Observed 

CBG affinity 

(pKa) 

Predicted 

[spatial] 

Predicted 

[multiply 

properties] 

Predicted [sum 

properties] 

Predicted [no 

stereochemistry] 

aldosterone −6.28 −7.47 −7.31 −7.25 −7.22 

androstanediol −5.00 −5.47 −5.46 −5.33 −5.56 

5-androstenediol −5.00 −5.47 −5.43 −5.36 −5.75 

4-androstenedione −5.76 −5.64 −5.60 −5.79 −6.36 

androsterone −5.61 −5.78 −5.81 −5.55 −5.42 

corticosterone −7.88 −7.30 −7.37 −7.32 −7.34 

cortisol −7.88 −7.63 −7.58 −7.64 −7.33 

cortisone −6.89 −7.22 −6.83 −7.39 −7.07 

dehydroepiandrosterone −5.00 −5.39 −5.13 −5.46 −5.80 

11-deoxycorticosterone −7.65 −7.48 −7.47 −7.50 −6.85 

11-deoxycortisol −7.88 −7.66 −7.53 −7.59 −7.52 

dihydrotestosterone −5.92 −5.38 −5.70 −5.43 −5.96 

estradiol −5.00 −5.40 −5.36 −5.32 −5.21 

estriol −5.00 −5.25 −5.26 −5.43 −6.10 

estrone −5.00 −5.30 −5.21 −5.54 −5.42 

etiocholanolone −5.23 −6.42 −6.44 −6.22 −6.27 

pregnenolone −5.23 −5.30 −5.25 −5.37 −6.37 

17a-hydroxypregnenolone −5.00 −5.20 −5.28 −5.29 −6.65 

progesterone −7.38 −7.17 −7.27 −7.13 −6.46 

17a-hydroxyprogesterone −7.74 −7.42 −7.39 −6.97 −6.70 

testosterone −6.72 −6.08 −6.36 −6.19 −5.94 

prednisolone −7.51 −7.61 −7.36 −7.65 −7.03 

cortisolacetat −7.55 −6.74 −6.90 −7.63 −6.00 

4-pregnene-3,11,20-trione −6.78 −6.40 −6.83 −6.09 −6.46 

epicorticosterone −7.20 −5.98 −6.00 −7.03 −7.15 

19-nortestosterone −6.14 −5.58 −5.86 −5.54 −5.45 

16a,17a-dihydroxy-

progesterone 
−6.25 −7.25 −7.04 −7.46 −7.36 

16a-methylprogesterone −7.12 −6.69 −6.39 −6.78 −6.60 

19-norprogesterone −6.82 −6.01 −6.30 −7.25 −6.19 

2a-methylcortisol −7.69 −6.62 −7.22 −7.68 −6.57 

2a-methyl-9a-

fluorocortisol 
−5.80 −7.56 −6.97 −6.22 −6.74 

 
   0.78 0.86 0.89 0.65 

 
   0.60 0.74 0.78 0.42 
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Since this dataset is well-established across similar descriptors in the literature, we compared our 

predictive power to other methods and found that our best    fell at the average    of all of these 

methods (0.63 <    < 0.94). This result is somewhat difficult to interpret for several reasons:  

(a) different statistical models are utilized; (b) different degrees of cross validation were employed, and 

(c) our descriptor solely describes stereochemistry and is meant to be complemented by other 

descriptors (read below). Most of the competing descriptors include more information on molecule 

size, shape, and property distribution. However, it is important to note that while EMAS does not 

require any molecular alignment or pre-annotated stereocenters, it is capable of performing well with a 

dataset that contains a great deal of stereochemistry. Additionally, the inclusion of directional 

information outperforms a similar implementation lacking directional information as well as the 

similar RDF descriptor weighted with or without atom properties. For a comparison of our   with 

other documented tests against Cramer’s steroids, see Table 2. 

Table 2. Comparison of novel stereoselective descriptor predictability with other published 

QSAR methods against the Cramer’s steroid set. Calculation of    can be found in the 

methods section. Statistical model generation method is indicated as well as QSAR method 

employed are indicated for each reference. 

QSAR Method Model Creation q
2
 Reference 

Purely Spatial RDF-like stereochemistry Artificial Neural Network 0.56  

Property weight RDF-like stereochemistry (product) Artificial Neural Network 0.74  

Property weight RDF-like stereochemistry (sum) Artificial Neural Network 0.78  

Stochastic 3D-chiral linear indices Multiple Linear Regression 0.87 [13] 

Chiral Topological Indices Stepwise Regression Analysis 0.85 [10] 

Chiral Graph Kernels Support Vector Machine 0.78 [11] 

Chirality Correction and Topological Descriptors K-nearest neighbor 0.83 [9] 

Molecular Quantum Similarity Measures Multilinear Regression 0.84 [24] 

Shape and Electrostatic Similarity Matrixes Non-linear Neural Network 0.94 [25] 

Comparative Molecular Moment Analysis Partial Least Squares (PLS) 0.83 [23] 

Comparative Molecular Similarity Indices Analysis PLS 0.67 [26] 

Comparative Molecular Field Analysis PLS 0.65 [20] 

E-state Descriptors PLS 0.62 [27] 

Molecular Electronegativity Distance Vector Genetic Algorithm PLS 0.78 [28] 

Molecular Quantum Similarity Measures Multilinear Regression and PLS 0.80 [29] 

2.4.2. vHTS Utility and Enrichment Benchmarking: PUBMED AID891 

We provide the above analysis for comparison. However, realistically the steroid dataset is too 

small to provide a good benchmark for EMAS as often the number of features (24 features) is in the 

same order of magnitude as the number of data points (31 molecules). Therefore we tested the 

descriptor in a virtual high-throughput screening (vHTS) endeavor. For the benchmark dataset, we 

used the publicly available results of a conformational screen for inhibitors and substrates of 

cytochrome P450 2D6 (AID 891). This dataset is of moderate size (approximately 10,000 molecules) 

and contains both active (18%) and inactive (82%) compounds. We employed a forward-feature 

selection (FFS) analysis that selects optimal descriptors from RDF’s, 3D Autocorrelations (3DA), and 



Molecules 2012, 17 9981 

 

 

2D Autocorrelations (2DA) functions labeled with atom properties including charge, electronegativity,  

and effective polarizability (see Experimental section). For a complete list of features tested in  

forward-feature selections, please see supplemental Table S1. ANN 3D-QSAR models were trained 

with and without inclusion of the EMAS descriptors in the list of descriptors for FFS to choose from. 

Hence the utility of the EMAS descriptor can be evaluated in two ways: (a) are the EMAS descriptors 

chosen by the FFS procedure? and (b) has the final model that includes EMAS descriptors an increased 

predictive power? The FFS with the default set of initial features resulted in a best descriptor set of 9 

features distributed evenly across RDF’s, 3D Autocorrelations (3DA), and 2D Autocorrelations (2DA).  

Cross-validated predictions from the ANN model constructed with this feature set produced an 

enrichment of 3.94 and a receiver operating characteristic (ROC) curve with an area under the curve 

(AUC) of 0.826.  

An identical FFS analysis was performed by combining the default set of features with 34 EMAS 

features including all three variations of EMAS (spatial, property weighting via sum, and property 

weighting via product) weighted with the same list of properties used to test RDFs, 3DAs, and 2DAs. 

The best set of features contained 20 total features distributed across RDF’s, 3DA’s, 2DA’s, number of 

hydrogen bond donors, and several EMAS features. There were a total of seven EMAS features 

represented in the best feature set. Therefore, almost one third of the total features in the best feature 

set generated through this analysis were EMAS features. This set of seven features contained a spatial 

EMAS weighted by van der Waals surface areas, three EMAS features weighted via the product 

method and three EMAS features weighted via the sum method. This substantial representation of 

EMAS in the best feature set suggests that EMAS successfully provides useful information for the 

model development that may not be represented in any other feature in the original set. Cross-validated 

predictions from the ANN model constructed from this EMAS-inclusive feature set produced an 

enrichment of 4.38 and a ROC curve with an area under the curve of 0.837. Positive predictive value 

(PPV) is a related measure of a model’s predictive capability which tracks predictive precision as more 

and more positive predictions are made. By comparing the average PPV precision over a range of the 

fraction of total predictions made (fraction positive predictions, FPP) of interest, it is possible to 

compare predictive capabilities for two models. Over the FPP range of 0.005 to 0.05, we find that our 

model trained with the EMAS features performed significantly better than the model trained without 

EMAS features (0.727 PPV precision compared with 0.651). A paired t-test for the cross-validated 

models comparing precisions in this FPP range showed that this is a statistically significant 

improvement (p < 0.005) over the analysis completed without EMAS features. For a complete list of 

the best features determined from both forward feature analyses, please see the supplemental Table S2. 

Comparative ROC and PPV curves from the forward feature analyses for the control set of features 

and the control set combined with EMAS features are shown in Figure 4. 
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Figure 4. ROC and PPV results for the feature forward analysis with the control set of 

features compared with the control set combined with EMAS features (A) AID891 

prediction ROC curves generated from the ANN models trained with the best descriptor set 

generated from the forward feature analysis beginning with the control set of features 

combined with the novel EMAS features (red) show improved performance when 

compared with ROC curves generated from the ANN models trained with the best 

descriptor set generated from the forward feature analysis beginning with the control set of 

features (blue) (B) PPV curves for models trained with the best descriptor set of control 

features combined with the EMAS features (red) shows improved performance over those 

models trained with the best descriptor set of control features only (blue). Dashed lines of 

corresponding colors show the average PPV values over the FPP region from which the 

models were optimized (0.005 to 0.05 fraction positive predicted values).  

 

3. Experimental  

3.1. Generation of Numerical Descriptors for QSAR Model Creation 

3D models of all small molecules were generated using the CORINA software package unless 

already defined. For feature selection analysis, a set of 2,100 numerical descriptors was generated 

using the BioChemical Library (BCL) software created in our lab. The descriptors can be classified 

into five categories, including six scalar descriptors (molecular weight, number of hydrogen bond 

donors, number of hydrogen bond acceptors, logP, total charge, and topological surface area),  
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18 2-dimensional auto-correlation functions, 18 3-dimensional autocorrelation functions, 18 radial 

distribution functions, and 34 novel molecular asymmetry descriptors. These 34 descriptors included 

spatially-based asymmetry functions with and without van der Waals (VDW) surface area scaling, 16 

property-weighted asymmetry functions based on the multiplicative scheme, and 16 property-weighted 

asymmetry functions based on the additive scheme. These properties included sigma charge [30–32], 

pi charge [33–35], Vcharge [36], total charge [30–35], sigma electronegativity [30–32], pi 

electronegativity [33–35], effective polarizability [37–39], and lone pair electronegativity [33–35] with 

and without VDW surface area scaling. The control comparison forward feature selection analysis was 

performed with a feature set that included all features listed above except the novel stereochemistry 

features. This feature set contains 1,284 features. For steroid binding predictions, descriptor sets were 

created using only one novel stereochemistry method and those including property weighted used the 

same properties listed. 

3.2. Training, Monitoring, and Independent Dataset Generation 

3.2.1. Cramer’s Steroids 

The dataset was split for ANN training into three subsets: training, monitoring, and independent. 

The monitoring dataset is necessary to prevent over-training. Because of the small size of the dataset, 

only one molecule was labeled independent. Five molecules were used as the monitoring dataset, 25 

for training. The set of five molecules was incremented through the entire dataset for a total of 6 

different monitoring sets. Leave-one-out cross validation was performed where each molecule was 

used as the independent molecule while the remaining 30 molecules were used for training and 

monitoring. The predictions were averaged across the different monitoring sets to yield the final 

activity predictions for the entire set of 31 molecules. 

3.2.2. PUBMED AID891 

AID891 is a publically available dataset that can be found at http://pubchem.ncbi.nlm.nih.gov/.  

It contains 1,623 active compounds and 7,756 inactive compounds tested for inhibition of cytochrome 

P450 2D6. This dataset was split into 10 clusters distributed into a training set of eight clusters, a 

monitoring set of one cluster, and an independent set of one cluster. For cross validation, the 

monitoring and independent datasets are iterated and then the resulting independent predictions are 

averaged to give the final list of predicted activities that spans the entire dataset. In order to maximize 

model performance, the dataset was balanced through oversampling. In other words, the active 

compounds were represented multiple times so that the number of active compounds roughly equals 

the number of inactive compounds. This method of balancing has been used to maximize QSAR 

models in other datasets where the number of active compounds is significantly less than the number 

of inactive compounds [40].  

The pIC50 values of each compound within AID891 and the steroid binding data for the Cramer 

dataset were used as output for the ANN models. For the AID891 dataset, inactive compounds were 

set to a pIC50 value of 3. The root-mean-square deviation (RMSD) between predicted and experimental 

activities was used as the objective function for training the ANN. 
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3.3. Artifical Neural Network (ANN) Architecture and Training 

For the AID891 dataset, the ANN was trained using back propagation and a sigmoid transfer 

function with a simple weight update of eta = 0.1 and alpha = 0.5. The hidden layer contained eight 

neurons. For the steroid dataset, the ANN was trained using the same protocol as the AID891 dataset 

but the number of hidden neurons was reduced to 4 due to the smaller size of the dataset. 

3.4. Forward-Feature Selection for Optimal Descriptor Set Selection 

Descriptor selection was performed to test the novel descriptor against all other implemented 

descriptors to see if it provided an increase to enrichment over any of the other descriptors. The 

approach begins with a single descriptor, trains a model with only that descriptor, and then 

continuously adds more descriptors one at a time, training a new model each round. At the completion 

of each round, the descriptor set that produced the lowest RMSD score was retained for the next round. 

All descriptors not present in the retained list of descriptors are then added individually to that retained 

list of descriptors and the descriptor set producing the best RMSD score is retained for the next round, 

and so on. At the completion of these iterations, the round that produced the best RMSD score overall 

is recalled as the top descriptor set. If a descriptor appears in this list of best descriptors, then it 

suggests that significant information had been gleaned from that descriptor during the ANN training.  

3.5. Model Evaluation 

ANN models using the AID891 datasets were analyzed using receiver operation characteristic 

(ROC) curves to assess their predictive power. These curves plot the rate of true positives versus the 

rate of false positives as a fraction of the total number of positives. Therefore, a slope of 1 would 

reflect random guesses as each true positive would be statistically likely to be followed by a false 

positive. An increase in slope and area under the curve would indicate an increase in predictive power. 

The initial section of the ROC curve is often most important because it represents compounds with the 

highest predicted activity. Therefore, enrichment values are determined based on the slope of the ROC 

curve comprising the first subset of molecules. Increases in enrichment is often the most important 

measure for application of virtual screening in drug discovery as it reflects the expected factor at which 

the fraction of actives will be increased over an unbiased dataset. 

Positive predictive value (PPV) is a measure related to enrichment which tracks the model’s 

predictive precision as the fraction of predicted positives (FPP) increases from highest predicted 

activity to lowest. A model is likely to become less precise as the predicted activities approach the 

cutoff point and therefore it is common to specify a range of FPP of interest when measuring a PPV. 

FPP is calculated as the number of true positive predictions plus the number of false positive 

predictions divided by the size of the dataset. PPV is calculated as the number of true positive 

predictions divided by the total number of positive predictions (true and false positive). 

To determine the statistical significance for the average PPV improvement over the FPP range of 

0.005 to 0.05, we compared the average PPV within this FPP range for each combination of training 

and modeling datasets that went into the cross-validated model. By aligning these datasets between the 
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two models, we were able to perform a two-tailed paired t-test to show a significant improvement for the 

cross validated model including EMAS features over the cross-validated model without EMAS features.  

To evaluate the utility of models trained with the steroid dataset in a way which could be comparable 

with published methods, the conventional correlation coefficient    of the predicted activities against 

actual activities and cross validated   , also known as    were calculated for each descriptor set.  

All predicted values used in these analyses were the average predicted activities from each of the 

leave-one-out models with the different monitoring datasets. The    is calculated from the equation:  

[   
        

  
] (6)  

Here,    is the sum of squared deviations of each biological property from their mean and       

(predictive residual sum of squares) is the sum of the squared differences between the actual biological 

property and the cross-validated predicted property. 

3.6. Implementation 

The descriptor generation and ANN algorithms were implemented in the BioChemistryLibrary 

(BCL) version 2.4. The BCL is a C++ library that includes classes to model small molecules as well as 

larger molecules such as proteins. It contains force-fields, optimization algorithms, and different 

prediction approaches such as neural networks and support vector machines to model molecular 

structures, interactions, and properties. This application will be made freely available for academic use 

at http://www.meilerlab.org/. The training method used is simple propagation, a supervised learning 

approach. All C++ ANN trainings were performed on a Dell T3500 workstation equipped with 12GB 

RAM and an Intel(R) Xeon(R) W3570@3.20GHz running 64-bit CentOS 5.2.  

4. Conclusions  

The goal of this project was to develop a 3D-QSAR descriptor that was capable of not only 

distinguishing between enantiomers, but also of describing the overall degree of asymmetry for a 

molecule. This was accomplished by developing an RDF-like curve that described the distribution of 

‘directional asymmetry scores (DAS)’ rather than inter-atomic distances. The DAS is designed to 

incorporate information regarding the degree and direction of asymmetry between each atom triplet in 

the molecule. The degree of asymmetry is calculated as a product of how asymmetrically the three 

atoms are distributed and the distance they lie from the center of the molecule. This asymmetry is 

related to the differences between their interatomic distances and the distance from the center of the 

molecule is related to the volume of the tetrahedron created by the three atom coordinates and the 

geometric center of the molecule. The direction of asymmetry is related to the distribution of the 

interatomic distances between these three atom coordinates from the point of view of the center of the 

molecule. If the sides of the triangle created by these three atoms are different, then identical triangles 

“pointing” in opposite directions will have a different ordering of sides depending on which direction 

they “point.” This is the key variable that allows the descriptor to distinguish between enantiomers.  

To exclude any influence that the order in which atoms are listed in the molecule may play on this 

directionality scheme, we offset this by incorporating the cross product of the two vectors created from 
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the three atoms. This cross product will swap signs when the atoms are ordered differently thereby 

eliminating the influence of the order of atoms. 

We tested the value of this descriptor by training ANN 3D-QSAR models. In order to provide a 

basis of comparison with other documented QSAR methods that address stereoselectivity, we used a 

small dataset of steroids that is commonly used as a benchmark for these types of descriptors. We 

found that the predictability of our descriptor performed comparably with other stereochemistry-based 

descriptors when evaluated with this set of 31 steroids (   = 0.89,    = 0.78). Additionally, we 

assessed the utility of the EMAS descriptor by running vHTS experiment on a publically available 

dataset (PUBCHEM AID 891). A forward-feature selection analysis that determines the most effective 

set of descriptors for this dataset was employed and the best set of features included several EMAS 

functions (seven EMAS of 20 total features). This set of features improved the performance of our 

models over those that were tested without EMAS functions (enrichment of 4.38 when including 

EMAS versus enrichment of 3.94 without EMAS).  

Although our descriptor performs well with the datasets tested, it is still outperformed by several 

techniques with the steroid dataset. One difficulty with this dataset is that its small size adds significant 

noise to the results. Additionally, the cross-validation methods used to analyze the performance of 

these methods vary and are often more forgiving than ours. Future development of EMAS, however, 

can provide superior predictions even with smaller datasets and extensions to the current 

implementation of EMAS are being pursued in our lab. Molecular flexibility is one major avenue in 

which we are improving our implementation. By design, EMAS currently considers single, static 

conformations when scoring molecules and this may fail to incorporate widely different conformations 

seen in highly flexible molecules. 

We conclude that the EMAS descriptor encodes stereochemistry thereby providing important 

information that is not captured in other 3D-QSAR descriptors. There are several published QSAR 

methods that performed better than ours in the steroid dataset but these methods often require some 

heuristic for describing the stereocenters within each of the molecules or aligning the 3D structures of 

these molecules. Our descriptor is not subject to either of these limitations and therefore can be 

extended to broader applications than those previously described. 

Supplementary Materials 

Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/17/8/9971/s1. 
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