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Abstract: Black cumin (Nigella sativa L., Ranunculaceae) is an annual herb commonly 

used in the Middle East, India and nowadays gaining worldwide acceptance. Historical and 

traditional uses are extensively documented in ancient texts and historical documents. 

Black cumin seeds and oil are commonly used as a traditional tonic and remedy for many 

ailments as well as in confectionery and bakery. Little is known however about the 

mechanisms that allow the accumulation and localization of its active components in the 

seed. Chemical and anatomical evidence indicates the presence of active compounds in 

seed coats. Seed volatiles consist largely of olefinic and oxygenated monoterpenes, mainly 

p-cymene, thymohydroquinone, thymoquinone, γ-terpinene and α-thujene, with lower levels 
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of sesquiterpenes, mainly longifolene. Monoterpene composition changes during seed 

maturation. γ-Terpinene and α-thujene are the major monoterpenes accumulated in immature 

seeds, and the former is gradually replaced by p-cymene, carvacrol, thymo-hydroquinone 

and thymoquinone upon seed development. These compounds, as well as the indazole 

alkaloids nigellidine and nigellicine, are almost exclusively accumulated in the seed coat. 

In contrast, organic and amino acids are primarily accumulated in the inner seed tissues. 

Sugars and sugar alcohols, as well as the amino alkaloid dopamine and the saponin  

α-hederin accumulate both in the seed coats and the inner seed tissues at different ratios. 

Chemical analyses shed light to the ample traditional and historical uses of this plant. 

Keywords: black cumin; Nigella sativa; Ranunculaceae; thymoquinone; p-cymene; 

monoterpenes; nigellidine; nigellicine; Cairo’s Genizah 

 

1. Introduction 

Nigella sativa L. seed (also called black cumin, or black seed) is an annual herb of the 

Ranunculaceae family. Black cumin is native to southern Europe, North Africa, south and southwest 

Asia and has been traditionally used since ancient times as an important medicinal plant and spice [1]. 

N. sativa is one of the most ancient known domesticated plants and its seeds were reportedly found in 

Tutankhamon’s tomb [2]. Black cumin is referred by its Hebrew name “Ketzah” in the Bible in the 

book of Isaiah 28:25-27 and known for its curative properties. Black cumin seeds have been used as 

condiment and for medicine in many cultures along history [3]. In ancient Babylonia the plant was 

used externally to treat swelling, the hair, and bruises, and internally to cure stomach problems [4]. 

Classical physicians such as Hippocrates and Galen described the use of black cumin to treat various 

maladies, including infections in the nose, while Dioscorides described the plant and its black seeds 

with their pungent smell, and reports their use as food and for curative purposes to treat headaches and 

toothache, to cure diseases of the eyes and skin and leprosy, to eliminate intestinal worms, to 

accelerate menstruation, to increase urine flow and milk flow, and to repel snakes [1,5]. The physician 

Assaf sets out medical uses, for example, to treat colds in the head, chest and body, to kill intestinal 

worms, to increase semen and increase virility; to cure leprosy, bright skin spots, infections in the 

nose, and to enrich hair growth. It also served as a component in a medication against poisons and the 

stings of venomous creatures [6,7]. 

Muslim medicine regarded black cumin seeds as a medicine for colds and many other diseases [8,9]. 

For example, the holy Sahih al-Bukhari book mentions black cumin as “a cure for every disease except 

death” [10]. Avicenna referred to black seed in his Canon of Medicine as the seed that stimulates the 

body’s energy and helps recovery from fatigue and dispiritedness [11]. al-Kindī describes the use of 

the seeds in a preparation against skin irritations and in a medication against insanity [4,12].  

Ibn al-Baytar cites al-Tamimi, who relates the use of black cumin oil against paralysis and facial 

spasms [13]. al-Qazwini cites various physicians who describe the use of the plant to eliminate fleas 

and mosquitoes, to remove face freckles, to straighten the hair, to expel crawling insects, to remove 

skin moles, and to treat leukodermia albinum, leprosy, colds, and toothache [14,15].  
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Maimonides notes the use of cumin to prepare a sneezing powder, to reduce facial swellings, to 

prepare a medication against bites, and to treat the bite of a poisonous spider [7,16]. Black cumin 

figures twice in a list of materia medica dating from the middle ages, found in the Genizah of Cairo’s 

old synagogue [17]; and in two prescriptions as an emmenagogue and as an abortifacient (Figure 1). It 

is also mentioned in medical books on ophthalmology, paediatrics, fevers, and poisons. In present  

day traditional medicine, ripe N. sativa seeds are used to treat many ailments such as respiratory 

difficulties, hepatic and digestive disorders, diarrhea, cold, heartache and inflammatory disorders, 

conjunctivitis, chest congestion, asthma, flatulence and polio [1,10,11,18–20]. The seeds are 

considered a general immunostimulant and therefore the fixed oil extraction of black cumin is 

traditionally taken orally as a tonic on a daily basis [20]. Traditionally, mature seeds are employed and 

used in infusions, pomades or by inhalation. Black cumin seeds are also commonly used as a spice and 

added to pastries, dairy products and salads. 

Figure 1. Medieval practical medical prescriptions, found in the Cairo Genizah. The 

documents are written in Arabic on paper (A) Exhibit T-S NS 297.17 showing two 

practical medical prescriptions. The first (top) prescription mentions among other 

substances seeds of black cumin (3rd row); the second prescription is for the preparation of 

an eye powder using myrrh, opium, saffron and various minerals; (B) Another practical 

medical prescription, probably for the treatment of hemorrhoids (Exhibit T-S Ar.40.53) 

mentioning seeds of black cumin. 
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The vast therapeutic characteristics of N. sativa seeds are due to their unique phytochemical 

composition [1,19,21]. The seeds contain about 35 to 41% fixed oil, mainly composed by the  

non-saturated linoleic, oleic and palmitic acids. Seeds also contain 11,14-cis,cis-eicosadienoic acid  

(a unique ω-6 fatty acid) [22,23]. The volatile oil of the seed (0.5–1.6%) is composed mainly of the 

monoterpenes p-cymene, γ-terpinene, α-pinene, β-pinene, α-thujene, carvacrol and thymoquinone [24,25]. 

Thymoquinone is considered the major active compound of N. sativa [1]. Thymoquinone has 

antioxidant activity [25], and has been shown to induce apoptosis and adversely affect cell division in 

cancer cells [11,26,27]. Thymoquinone blocked angiogenesis in vivo, and inhibited the growth of 

prostate and colon tumors implanted in nude mice with no noticeable side effects. Overall, results 

indicate that thymoquinone effectively inhibits tumor angiogenesis and tumor growth and could be 

used as a promising potential drug candidate for cancer therapy [28]. Indazole alkaloids such as 

nigellicine and nigellidine, as well as the isoquinoline alkaloids nigellimine and nigellimine N-oxide, 

together with dolabellane-type diterpene alkaloids have been isolated from seeds [19,29–33]. The 

saponin α-hederin, that has pharmacoactive properties and is also present in common ivy (Hedera helix L.), 

is also a constituent of N. sativa seeds [34,35]. 

The unique volatile oil of Nigella sativa seeds imparts its special aroma and contributes to its taste. 

In spite of the culinary and accepted pharmacological importance of N. sativa, little is known about the 

mechanisms that allow the accumulation and localization of its active components in the seed. Here we 

describe changes in the volatile oil composition of N. sativa seed during seed development and the 

distribution of primary and specialized metabolites in N. sativa seed. 

2. Results and Discussion 

2.1. Volatile Oil Characterization in Mature N. sativa Seeds 

The volatile composition of N. sativa mature seeds is shown in Table 1. Twenty five compounds 

were identified in N. sativa seeds from both sources with no significant differences between the two. 

The major fraction (90% w/w) of the volatile oil of the mature seeds consisted of monoterpenes and 

the remaining compounds were mainly sesquiterpenes, being longifolene the most abundant one 

present. Monoterpenes present in mature seeds included p-cymene, thymohydroquinone, α-thujene, 

thymoquinone, γ-terpinene and carvacrol. Other components included α-pinene, β-pinene and  

trans 4-methoxythujane. These compositions are reportedly similar in seeds cultivated in other parts of 

the world such as Austria, India, Algeria and Poland [24,25,36,37]. Interestingly, the volatiles of  

N. sativa seed resemble qualitatively the compositions of other monoterpene-phenol-rich Lamiaceae 

aromatic plants, such as Thymus, Satureja and Origanum [38–40], although the levels of thymoquinone 

in these Lamiaceae spp. are very low (less than a few %) as compared to N. sativa (Table 1). 

2.2. Changes in the N. sativa Seed Volatiles during Seed Maturation 

The ripening process of N. sativa seeds can be divided into six characteristic stages (Figure 2A): 

During the first stage-anthesis-the petaloid sepals are yellow and flowering starts (day 0). In the second 

stage–the flower is fully open and the petaloid sepals are white in color (day 10).  
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Table 1. Volatiles of mature Nigella sativa seeds from two seed sources. The volatiles 

were extracted with MTBE and identified by GC-MS as described in Materials and 

Methods. Means are average of 3 replicates ± SE. 

Seed source   Ein-Harod Naan 

Compound   µg/g F.W. % (W/W) µg/g F.W. % (W/W) 

Monoterpene hydrocarbons I.M. * R.I.     

α-thujene MS,RI,AS 925 43.8 ± 6.8 9.7 ± 0.3 51.7 ± 11.4 10.4 ± 0.3 

α-pinene MS,RI,AS 940 21.9 ± 4.2 4.8 ± 0.2 24.3 ± 4.5 4.9 ± 0.2 

sabinene MS,RI,AS 970 3.9 ± 0.7 0.9 ± 0.04 4.7 ± 1.1 1 ± 0.04 

β-pinene MS,RI,AS 975 11 ± 2 2.4 ± 0.1 12.7 ± 2.8 2.6 ± 0.1 

myrcene MS,RI,AS 985 2.1 ± 0.2 0.5 ± 0.1 1.9 ± 0.5 0.4 ± 0.04 

α-terpinene MS,RI,AS 1014 5.5 ± 1.8 1.2 ± 0.4 1.5 ± 0.3 0.3 ± 0.1 

p-cymene MS,RI,AS 1024 113 ± 17.3 25 ± 0.5 128 ± 25.9 25.9 ± 0.02 

limonene MS,RI,AS 1030 3.1 ± 0.6 0.7 ± 0.03 3.1 ± 0.6 0.6 ± 0.04 

γ-terpinene MS,RI,AS 1055 52.1 ± 22.4 11.6 ± 5.5 4.5 ± 0.2 0.9 ± 0.2 

terpinolene MS,RI,AS 1086 1.3 ± 0.1 0.3 ± 0.1 1 ± 0.2 0.2 ± 0.02 

total   257 57.1 233.33 47.3 

Monoterpene alcohols       

terpinene 4-ol MS,RI,AS 1181 2 ± 0.4 0.4 ± 0.01 2.6 ± 0.7 0.5 ± 0.1 

carvacrol MS,RI,AS 1298 26.1 ± 3.9 5.8 ± 1 16.9 ± 4.1 3.4 ± 0.9 

thymohydroquinone MS,RI 1550 73.0 ± 15.7 16.2 ± 1.9 114.5 ± 15.1 23.2 ± 2.4 

total   101.1 22.5 134 27.1 

Monoterpene ethers       

cis-4-methoxythujane MS,RI 1094 3 ± 0.6 0.7 ± 0.04 3.5 ± 0.9 0.7 ± 0.04 

trans-4-methoxythujane MS,RI 1118 17 ± 3 3.8 ± 0.2 19.9 ± 4.6 4 ± 0.1 

4,5-epoxy-1-isopropyl-4-methyl-1-cyclohexene MS 1201 4.1 ± 0.9 0.9 ± 0.1 4.7 ± 1.5 0.9 ± 0.1 

total   24.1 5.4 28.2 5.7 

Monoterpene ketones       

carvone MS,RI,AS 1245 0.2 ± 0.1 0.04 ± 0.01 0.3 ± 0.1 0.1 

thymoquinone MS,RI,AS 1253 35.2 ± 17.5 7.8 ± 3.7 67.7 ± 23.7 13.7 ± 2.3 

total   35.4 7.9 68 13.8 

Monoterpene ester       

bornyl acetate MS,RI,AS 1286 0.4 ± 0.1 0.1 ± 0.01 0.5 ± 0.1 0.1 ± 0.01 

total   0.4 0.1 0.5 0.1 

Aldehydes       

2E,4Z- decadienal MS,RI 1295 0.3 ± 0.02 0.1 ± 0.01 0.3 ± 0.03 0.1 ± 0.01 

2E,4E- decadienal MS,RI 1319 0.5 ± 0.1 0.1 ± 0.01 0.7 ± 0.1 0.1 ± 0.01 

total   0.8 0.2 0.9 0.2 

Sesquiterpenes       

longipinene MS,RI 1355 3.4 ± 0.5 0.8 ± 0.04 2.7 ± 1.3 0.5 ± 0.2 

longifolene MS,RI 1415 17.1 ± 1.8 3.8 ± 0.2 

0.04 ± 0.01 

13.3 ± 5.8 2.7 ± 1 

trans-caryophyllene MS,RI,AS 1423 0.2 ± 0.1 0.2 ± 0.03 0.03 

zonarene MS,RI 1523 0.6 ± 0.2 0.1 ± 0.04 0.6 ± 0.1 0.1 

total   21.3 4.7 16.7 3.4 

Unidentified   14.1 ± 3.4 2.4 16.7 ± 5.3 2.3 

Total essential oil   450.3 ± 69.5 100 493.7 ± 99.5 100 

* I.M.: Identification method: comparison with: MS: Mass spectrum from computerized library; RI: Retention Index;  

AS: Authentic standard. 
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The third stage—as a result of fertilization—the seeds are apparent and a green seed coat is clear, 

developing inside a green follicle fruit (day 30). During the fourth stage–black spots appear on the seed 

coat (day 50). During the fifth stage the seed coat is entirely black in color and partially hardens (day 

60). Finally during the sixth “mature” stage (day 75) the ripe seed is fully swollen and hard. 

Figure 2. Changes in volatile levels during N. sativa seed maturation. (A) Developmental 

stages of N. sativa seed. (B) Major components. (C) Minor components. Means and SE of 

three replicates of samples from Ein Harod source are shown.  

 

Interestingly, monoterpene levels and their composition changed dramatically during seed 

maturation. Extracts from flowers contained mainly 2E-hexanal, 2E-hexenol and the sesquiterpene  

t-caryophyllene (not shown). Except of this latter compound, there was practically no accumulation of 

any of the characteristic compounds of the N. sativa mature seed volatile oil (Table 1) in flowers  

(not shown) or in immature seeds before 30 days after anthesis (DAA, Figure 2). The accumulation of 

the major volatiles (more than 5% of the total volatile fraction of the mature seed) during seed 

development is shown in Figure 2B. The first monoterpene detected in developing seeds was  
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γ-terpinene, that was first discernible at 30 DAA and dramatically increasing up to a level of 170 µg/g 

FW by 40 DAA (Figure 2B). Then, after 55 DAA there was a marked decrease in the level of  

γ-terpinene reaching 30 µg/g FW at 60 DAA and its level continued to decrease till the end of seed 

maturation to 15 µg/g FW (Figure 2B). In addition to γ-terpinene accumulation, there was a lower 

constant accumulation trend of α-thujene during seed maturation, reaching 80 µg/g FW at 65 DAA 

(Figure 2B). Other components showing a constant accumulation trend during seed maturation 

included α-pinene, β-pinene, trans-4-methoxythujane, cis-4-methoxythujane and sabinene, but their 

levels were minor (Figure 2C). Interestingly, the accumulation of p-cymene starts markedly after  

γ-terpinene accumulation, at 55 DAA, together with the observed decreases in γ-terpinene levels 

(Figure 2B). p-Cymene is the major component of mature N. sativa seed volatile oil (Table 1, Figure 2B, 

75 DAA). Thymohydroquinone and carvacrol also display constant accumulation trends starting at  

50 DAA and peaking upon seed maturation. Thymoquinone apparently starts to accumulate 5 days 

thereafter, being discernible at 50 DAA, reaching its maximal levels at 65 (Figure 2B), and decreasing 

again towards the end of seed maturation (Figure 2B). The sesquiterpene longifolene follows a steady 

accumulation pattern being apparent at 30 DAA reaching its maximal level at the completion of the 

seed maturation process (Figure 2C). Similar trends were observed when examining developing 

"Na'an" seeds (not shown). 

Like other aromatic plants, the volatile oil of N. sativa is mainly composed of olefinic and 

oxygenated monoterpenes. The volatile oils of oregano (Origanum vulgare L.) and thyme  

(Thymus vulgaris L., both Lamiaceae) bear a strong resemblance to the composition of N. sativa 

volatiles (Table 1) but they are accumulated in glandular trichomes present on leaf surfaces [40]. 

Moreover, γ-terpinene is a precursor of p-cymene in both thyme and oregano [40,41]. Based on their 

findings we hypothesize that γ-terpinene may also serve as a precursor of p-cymene in N. sativa seed 

(Figure 2). This assumption is supported by the observed strong decrease in γ-terpinene levels  

at 55 DAA in parallel to the marked increase in p-cymene (Figure 2B), the major component of  

N. sativa seed. In addition, we hypothesize that p-cymene is a precursor of carvacrol in N. sativa as it 

is for thymol in thyme and in oregano [41,42]. Most of the N. sativa seeds characterized have been 

shown to accumulate carvacrol, but some accessions apparently accumulate thymol instead of 

carvarcrol [43,44] or in addition to it [24,25,36,37]. Interestingly, other plant species that accumulate 

carvacrol in their volatile oils also have chemotypes that accumulate thymol [38]. Considering the 

structural similarity between the different monoterpene components of N. sativa volatile oil and their 

presence in species that accumulate similar compounds we suggest that the biosynthetic pathway to 

carvacrol and thymoquinone follows a similar pattern to the much better studied pathway to thymol in 

the Lamiaceae (Figure 3). Our suggested model is supported by the succession in the accumulation of 

such compounds in developing N. sativa seeds. 

Due to the taxonomical divergence between the Lamiaceae and Ranunculaceae we speculate that 

the presence of similar volatile oil compositions based mainly on phenolic monoterpene alcohols and 

their derivatives, as well as the seemingly similar biosynthetic pathway is another example of 

convergent evolution, a well documented phenomenon in plant specialized metabolism [45]. Further 

biochemical studies and the availability of the genes coding for the key enzymes catalyzing 

thymoquinone biosynthesis will contribute to our understanding of phyllogenetic origin and the 

metabolic pathways to phenolic monoterpene alcohols and thymoquinone in N. sativa. 
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Figure 3. Proposed biosynthetic pathway to thymoquinone in N. sativa seed. The pathway 

is based on the better-studied pathways in the Lamiaceae [40,41] and the accumulation of 

the putative precursors in developing N. sativa seed (Figure 2). Geranyl diphosphate is 

probably cyclized to γ-terpinene, aromatized into p-cymene and then followed by 

hydroxylations to carvacrol and thymohydroquinone and oxidation to thymoquinone 

(upper solid arrows). In species and chemotypes accumulating thymol instead of carvacrol, 

hydroxylation to thymol as an alternative biosynthetic pathway is proposed (broken arrows). 

 

2.3. Distribution of Specialized and Other Metabolites within N. sativa Seed 

To study the distribution of specialized and central metabolites between the seed coat and the seed 

inner parts (endosperm and embryo), the seed-coat was separated from the endosperm and the two 

tissues were analyzed independently. The volatile mono- and sesquiterpenes of N. sativa seeds could 

not be extracted from intact seeds (Figure 4A), but were readily extracted after the seed coats were 

crushed prior to the extraction (Figure 4B). No volatile terpenes were detected in the inner endosperm 

and embryo tissues (Figure 4C), leaves, shoots or roots (data not shown). Still, the seed coats extracts 

displayed high levels of mono- and sesquiterpenes (Figure 4D). The inability to readily extract the 

volatile oil components from intact seeds (Figure 4A), but its facile extraction from isolated seed coats 

indicates that the volatile oil does not accumulate on the surface of the seed coat, but likely 

accumulates in inside layers. Conversely, the volatiles of okra seed (Abelmoschus esculentus, 

Malvaceae) can readily be extracted by gently shaking the whole intact seeds in hexane, indicating that 

in okra seed the volatiles accumulate in the outer epidermis layer [46].  

Specialized metabolites [45] often accumulate in anatomically distinct structures such as oil ducts, 

cavities, idioblasts, glandular epidermis or glandular trichomes, that compartmentalize these often 

toxic components from other metabolically active cells [47–50]. The mericarps of many plants of  

the family Apiaceae such as fennel (Foeniculum vulgare), caraway (Carum carvi) and anise  

(Pimpinella anisum) are commonly referred as seed spices, although anatomically they are fruits. 

These tissues accumulate their volatile oil in special cavities named oil ducts [51]. We failed to 

observe such structures in N. sativa seeds.  
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Figure 4. Distribution of mono-and sesquiterpene volatiles in N. sativa mature seed. The 

volatiles were solvent extracted and analyzed by GC-MS as described in Materials and 

Methods. 1: α-thujene; 2: p-cymene; 3: γ-terpinene; 4: thymoquinone; 5: carvacrol;  

6: longifolene; 7: thymohydroquinone; i.s. internal standard (isobutyl benzene). (A) Mature 

intact seed. (B) Ground complete seed. (C) Inner seed tissues (endosperm and embryo). 

(D) Seed coats. 

 

Longitudinal sections of mature N. sativa seeds were examined under the fluorescent microscope. 

Histological examination indicated that fluorescent material accumulates in the subepidermal layer of 

the seed coats, in the form of droplets distributed evenly throughout this layer (Figures 5A–C). The 

anatomy N. sativa and other Nigella spp seed was previously described [52], but the patterns of 

accumulation of specialized metabolites were previously unknown. The typical fluorescence of the 

droplets under UV and blue light excitation may be attributed to the presence of phenolic and other 

aromatic compounds such as thymohydroquinone and thymoquinone. Indeed, a similar fluorescence 

hue was typical to that of authentic thymoquinone observed under the same conditions (not shown). 

Using the reagent Fluorol Yellow 088, the droplets stained and fluoresced in a characteristic yellow 

color typical to lipophilic material (Figure 5C). Still, other lipophilic material present in the endosperm 

and other seed tissues and clearly not associated with the volatile oil, also fluoresced following this 

staining. Moreover, the dye solvent (ethanol) seems to have dispersed much of the lipophilic material, 

though not in intact cells. This problem rendered fluorol yellow 088 of only partial value for the 

specific localization of monoterpenes in N. sativa seed sections. Our histological results are however 

consistent with the assumption that the volatile oil of N. sativa is accumulated in the inner layers of the 

outer seed coat, but further experimental proof is needed to unequivocally determine the composition 

of the fluorescent material observed.  
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Figure 5. Fluorescence micrographs of longitudinal sections of mature N. sativa seed.  

(A) Autofluorescence under UV light excitation. Pink-fluorescent droplets are observed in 

the subepidermal layer (SE) of the seed coat. (B) Blue light excitation fluorescence. The 

lipophilic droplets display a red fluorescence indicated by white arrows. (C) The same 

section under blue light excitation after staining with fluorol yellow 088, the droplets 

display a yellow fluorescence typical to lipophilic material (white arrows). Legend:  

EN–Endosperm tissue; EP–Epidermal cells; SE–Subepidermal layer. 

 

Other specialized and pharmacoactive metabolites are distinctively unevenly distributed within the 

seed tissues of N. sativa. The alkaloids nigellidine and nigellicine accumulate almost exclusively in the 

seed coats (Figure 6). In contrast, the phenylethylamino alkaloid dopamine is present mainly in the 

inner seed tissues, but lower levels of dopamine are also prominent in the seed coats. Dopamine has 

never been reported to occur in N. sativa seeds, but is present in banana and is a known precursor to 

other alkaloids [53]. In contrast, the saponin α-hederin is present in both seed tissues at comparable 

levels (Figure 6).  
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Figure 6. Distribution of alkaloids and α-hederin in seed coats and inner seed tissues.of  

N. sativa. Analyses were performed on a UPLC-Q-TOF-MS, except for dopamine, that 

was detected by GC-MS. Relative content is given as the metabolite response (metabolite 

peak intensity/internal standard peak intensity/FW). The error bars in graphs refer to the 

mean values ± SE of four replicates. In all cases significant differences were noted between 

the metabolite levels in seed coats as compared to the endosperm tissues (t test, p < 0.05).  

 

Expectedly, intermediates of the central metabolism (including mainly amino and organic acids) 

were most prominently present in the inner tissues of the seed, and to a much lesser extent represented 

in the seed coats (Figure 7). These metabolites are involved in seed germination and seedling 

establishment, providing carbon and nitrogen to the reorganization of the metabolism in the embryo 

supporting root elongation and later seedlings establishment [54]. The absence of central metabolic 

processes in the seed coat suggests that this tissue bears a functional role of volatile oil storage and 

possible defense. The presence of dedicated transport mechanisms of precursors of volatile compounds 

from the inner parts of the seed to the seed coats is therefore hypothesized. That said, the distribution 

of the sugars and sugar alcohols within N. sativa seed followed a seemingly inconsistent pattern 

(Figure 7). Some compounds such as glucose and its cyclic isoform glucopyranose, galactose, glycerol 

and fructose, are present in both tissues but their levels are higher in the seed coats. These metabolites 

are mainly components of cell walls, or precursors of storage compounds such as starch and 

triacylglycerols (TAGs). Their presence in the seed coat is likely related to the presence of lipid and 

extensive cell wall structures in this tissue. Other compounds such as raffinose, erythritol, sucrose and 

myo-inositol, although present in both tissues, are higher in the inner parts of the seed. The question 

whether active metabolism exists in the seed coat and if the metabolites identified are involved in 

volatile biosynthesis is standing.  
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Figure 7. Distribution of central metabolites in the seed coat and inner seed tissues of  

N. sativa. Analyses were performed by GC-MS after derivatization with methoxyamine 

hydrochloride (20 mg/mL in pyridine). Relative content is given as the metabolite response 

(metabolite peak intensity/internal standard peak intensity/FW). The error bars in graphs 

refer to the mean values ± SE of four replicates. All the metabolites shown displayed 

significantly differences between seed coats and inner seed tissues (t test, p < 0.05).  

(A) Organic acids; (B) Amino acids; (C) Sugars and sugar alcohols. 
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Figure 7. Cont. 

 

2.4. Ecological Relevance to the Distribution of Metabolites within Black Cumin Seed  

Although the pharmacological activity and the acceptance of N. sativa as a natural drug is 

unquestionable, the actual ecological role of the terpenoids and alkaloids in N. sativa seed is a matter 

of speculation. The accumulation of the volatile terpenes in the inside layer of the seed coat layer 

allows for the storage of the metabolites and their release only after a relatively strong injury, either 

mechanical or mediated by insects or microorganisms, as well as following significant periods of time, 

likely including the rinsing action of rainfall. The volatile oil of N. sativa has antibacterial [19] 

antifungal [55,56] and insecticidal [57] activities and therefore, such compounds may play an 

important role in keeping the seed competitive for germination. Some components present in the seed 

coats of N. sativa such as carvacrol, thymohydroquinone and thymoquinone inhibit seed germination 

and might be allelopathic [58,59] or might regulate Nigella germination.  

Although the medicinal properties of N. sativa have been known for centuries, we have only 

recently gained knowledge regarding the chemistry and the pharmacology of many of its active 

principles, as is the case with many commonly used spice plants and natural medicinals. Metabolomics 

and other genomic oriented studies will certainly enrich our knowledge on the biology of the 

accumulation patterns of such important plant constituents, as well as the enzymatic and genetic 

machinery that control their production.  

3. Experimental  

3.1. Chemicals 

α-Pinene, β-pinene, carvone, sabinene, p-cymene, γ-terpinene, carvacrol, thymoquinone and Fluorol 

Yellow 088 were from Fluka- Sigma-Alldrich (St. Louis, MO, USA). Bornyl acetate and terpinolene 
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were from Carl Roth GmbH (Karlsruhe, Germany). Myrcene and α-terpinene were from SCM Chem 

(Phoenix, AZ, USA); tert-butyl methyl ether and glycerol were from Bio-lab (Jerusalem, Israel). 

3.2. Plant Material 

N. sativa seeds were collected from farmers in two locations in Israel: Ein-Harod (Jezre'el Valley, 

Lower Galilee, 32°33'37"N, 35°23"27"E) and Na'an (Sharon Plain, Central Israel, 31°52'51"N, 

34°51'34"E). Voucher specimens have been deposited in the Newe Ya'ar Research Center herbarium 

(NSEH001, NSNAAN001 and NSLEW001. Seeds were sown in an open-air plot located at the Newe 

Ya'ar Research Center in Northern Israel (32°42'00"N, 35°11'00"E). Plants were irrigated and 

fertilized mimicking a commercial regime. Flowers were marked on day 0 when the yellow petaloids 

(just before anthesis) were apparent in the apical flower. The apical flowers and their fruits were then 

sampled every three to five days as indicated.  

3.3. Separation of Seed Coat from Inner Seed Tissues 

Mature N. sativa seeds of commercial origin (200 mg) were soaked in deionised distilled water 

(DDW) for two to six hours. Then, the seed coat was easily separated from the inner seed tissues 

(containing the embryo and endosperm) with a pair of tweezers and analyzed separately for extraction 

of volatiles and non volatile components (see below).  

3.4. Extraction and Analysis of Volatile Compounds  

N. sativa seeds (“Ein Harod”, 0.5 to 1 g) at different developmental stages and originating from 

three separate plants were frozen in liquid N2 and ground with a mortar and pestle (unless mentioned 

differently). Extraction of the volatile fraction was made by adding a 3 to 1 ratio (v/w) of tert-butyl 

methyl ether containing 1 ppm of isobutylbenzene as an internal standard. After a short vortex, the 

ground seeds were shaken for 2 h at room temperature and the extract was passed through a sodium 

sulfate (Merck, Darmstadt, Germany) column (Pasteur pipette) to remove excess water [60].  

After sample concentration one μL of the extract was injected into a GC-MS (Agilent Technologies 

Palo Alto, CA, USA) equipped with a Restek Rtx-5 sil MS capillary column (30 m × 0.25mm × 0.25 μm). 

The inlet was set to 250 °C in splitless mode. Helium at a flow rate of 0.8 mL/min was used as carrier 

phase. The initial temperature was 50 °C and temperature gradient was programmed to 5 °C/min. till 

190 °C and then 15 °C/min. to 300 °C and held for 10 min. The quadrupole detector temperature was 

set to 280 °C and scanning range was between 41–350 m/z [60].  

3.5. Extraction and Analysis of Non-Volatile Compounds  

Collected material was extracted and analyzed by GC-MS after derivatization using a protocol 

optimized for Arabidopsis seeds [54,61]. Relative metabolite content was calculated as described in 

Roessner et al. [62], following peak identification using TagFinder [63]. Substances were identified by 

comparison to mass spectral tags represented in our in-house database [64–66]. α-Herderin, nigellidine 

and nigellicine were identified in the positive ion mode by UPLC-Q-TOF-MS (Waters Corp., 

Manchester, UK) based analysis. A 500 μL volume of the methanol-water phase was filtered and 5 μL 



Molecules 2012, 17 10173 

 

were injected in a UPLC-Q-TOF-MS system equipped with an ESI interface (LC: Waters Acquity 

UPLC system; MS: Xevo™ Q-TOF/MS (Waters Corp., Manchester, UK) operated under the following 

conditions. The MS conditions were as follows: Capillary voltage: +3.0 keV; Sampling cone voltage: 

27 V; Extraction cone voltage 4 source temperature: 120 °C; desolvation temperature: 300 °C;  

cone gas flow: 50 L/h; desolvation gas flow: 650 L/h; collision energy: 6 eV; detection mode: scan  

(m/z 100–2,000; scan time 0.15 s; interscan delay: 0.05 s, centroid); dynamic range enhancement 

mode: off. During sample running the mobile phase consisted of 95% water: 5% acetonitrile: 0.1% 

formic acid (phase A), and 0.1% formic acid in acetonitrile (phase B). The solvent gradient was:  

100–60% phase A over the first 8 min, 60–0% phase A over 1 min and return to the initial 100% A in 

3.5 min, and conditioning for 2.5 min at 100% A. The scans were repeated for 15 min in a single run. 

The raw data were recorded with the aid of MassLynx version 4.1 software (Waters). Metabolites were 

identified by using MassLynx software and searched against the Chemspider metabolite database 

(http://www.chemspider.com/). The quantification of the compounds is based on the relative peak 

response area of each mass signal after Pareto scaling in the chromatograms and normalized to the 

tissue dry weight).  

3.6. Hystochemistry 

Mature seeds were hand-cut into longitudinal sections with a razor blade. Observations were made 

with an OlympusX61 epifluorescence microscope (Olympus, Tokyo, Japan) using excitation UV light 

360 nm or blue light 430 nm. The fluorol yellow 088 reagent stock solution [67,68] contained 0.005% 

(w/v) Fluorol Yellow 088 (Sigma) dissolved in 50% (v/v) PEG 400 and 45% (v/v) glycerol and DDW. The 

sections were stained between 1 to 10 min in a solution of the reagent diluted 1,000 fold.  

4. Conclusions  

Black cumin is a revered medicinal plant since antiquity in Muslim and many other cultures. 

Monoterpene composition changes upon seed maturation, in a pattern that reflects the proposed 

biosynthetic pathway to thymoquinone, the major active ingredient of black cumin seeds and oil. 

Volatile oil components and nigellidine and nigellicine alkaloids are exclusively present in seed coats. 

Other compounds such as dopamine are present in the inner seed tissues, while other important 

metabolites are distributed in the inner seed tissues and seed coat tissues at various ratios. Black cumin 

is a good example of a valued and traditionally used plant that is still commonly used but whose 

chemical composition is little known. With the advent of modern metabolomic and genomic 

methodologies, we are not only beginning to understand the distribution and nature of the active 

principles of this seed, but also the biosynthetic pathways and their regulation.  
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