Supplementary Materials

Figure S1. Comparison of the three different $\mathrm{Cu}(\mathrm{I})$ ligands for click chemistry. Related to Figure 3a; Triton-X-100 used for cell lysis. Cells were treated for 1 h with $5 \mu \mathrm{M}$ of probe 1, washed and lysed with 1% Triton-X-100 in 100 mM sodium phosphate pH 7.4 . Lysates (diluted to $1 \mathrm{mg} / \mathrm{mL}$ total protein and 0.1% Triton-X-100 final concentration) were incubated for 1 h with $1 \mathrm{mM} \mathrm{CuSO} 4,1 \mathrm{mM}$ sodium ascorbate, $50 \mu \mathrm{M}$ or 2 mM ligand and $50 \mu \mathrm{M}$ of the terminal alkyne tag 3. Lysates from DMSO treated cells were used as background controls.

Figure S2. Comparison of $\mathrm{Cu}(\mathrm{I})$-catalyzed and strain promoted click chemistry in lysates. Related to Figure $3 \mathrm{~b} ; 5 \mu \mathrm{M}$ alkyne tag used. Cells treated with probe 1 or DMSO were lysed with 1% NP-40 in 100 mM phosphate buffer (pH 7.4). Lysates (diluted to $1 \mathrm{mg} / \mathrm{mL}$ total protein and 0.1% NP-40 final concentration) were then subjected to click chemistry. For strain-promoted click chemistry, only reagent $\mathbf{2}$ was added and incubated for 1 h . For copper-catalyzed click chemistry (right two lanes), samples were incubated with 1 mM $\mathrm{CuSO}_{4}, 1 \mathrm{mM}$ sodium ascorbate, 2 mM THPTA and $5 \mu \mathrm{M}$ of reagent 3.

Figure S3. Comparison of the $\mathrm{Cu}(\mathrm{I})$ catalyzed click chemistry with azide and alkyne probes. Cells were treated for 1 h with $5 \mu \mathrm{M}$ of probe 1 , probe 7 or DMSO, washed and lysed with 1% NP-40 in 100 mM sodium phosphate (pH 7.4). Lysates (diluted to $1 \mathrm{mg} / \mathrm{mL}$ total protein; final concentration of NP-40 of 0.1%) were incubated for 1 h with 1 mM $\mathrm{CuSO}_{4}, 1 \mathrm{mM}$ sodium ascorbate, $50 \mu \mathrm{M}$ or 2 mM ligand and $50 \mu \mathrm{M}$ of the terminal alkyne tag 3 or azide tag 8 .

Compound 2

Figure S3. Cont.
Compound 3

