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Abstract: There is a compelling need to discover type II inhibitors targeting the unique 

DFG-out inactive kinase conformation since they are likely to possess greater potency and 

selectivity relative to traditional type I inhibitors. Using a known inhibitor, such as a 

currently available and approved drug or inhibitor, as a template to design new drugs via 

computational de novo design is helpful when working with known ligand-receptor 

interactions. This study proposes a new template-based de novo design protocol to discover 

new inhibitors that preserve and also optimize the binding interactions of the type II kinase 

template. First, sorafenib (Nexavar®) and nilotinib (Tasigna®), two type II inhibitors  

with different ligand-receptor interactions, were selected as the template compounds. The 

five-step protocol can reassemble each drug from a large fragment library. Our procedure 

demonstrates that the selected template compounds can be successfully reassembled while 

the key ligand-receptor interactions are preserved. Furthermore, to demonstrate that the 

algorithm is able to construct more potent compounds, we considered kinase inhibitors and 

other protein dataset, acetylcholinesterase (AChE) inhibitors. The de novo optimization 

was initiated using a template compound possessing a less than optimal activity from a 
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series of aminoisoquinoline and TAK-285 inhibiting type II kinases, and E2020 derivatives 

inhibiting AChE respectively. Three compounds with greater potency than the template 

compound were discovered that were also included in the original congeneric series. This 

template-based lead optimization protocol with the fragment library can help to design 

compounds with preferred binding interactions of known inhibitors automatically and 

further optimize the compounds in the binding pockets. 

Keywords: template-based; de novo design; group efficiency; type II kinase inhibitors; 

lead optimization; AChE inhibitors 

 

1. Introduction 

De novo drug design usually approaches the creation of new drug-like compounds using a library  

of building blocks; the library consists of single atoms, functional groups, and small molecular 

fragments [1]. Instead of evaluating each individual compound, the de novo design methodology 

normally relies on two global optimization algorithms—evolutionary (genetic algorithms [2–5]) and 

Monte Carlo-based [6–8] methods—to avoid the exhaustive searches. Genetic algorithms evolve an 

ensemble of potential solutions based on the mutation and crossover principles derived from the 

concept of natural selection [9]. The Monte Carlo strategy employs the Metropolis criterion [10] to 

assess whether the resulting change should be probabilistically accepted or rejected in the search for 

the optimal solutions. 

However, de novo design methods have typically encountered three main obstacles that have 

limited their applicability and acceptance within experimental drug discovery programs [4]. The first 

barrier relates to the synthetic difficulties often associated with the proposed compounds. The second 

problem is the lack of an efficient search strategy to identify likely fragments to interact within the 

“druggable space” (binding site). The third and most detrimental drawback is the proposal of 

compounds with less drug-like properties and/or lower bioactivities than the current collection of 

compounds. The approaches to improve the synthesizability of suggested compounds can be partially 

resolved by pre-defined connection rules when assembling new compounds derived from existing 

drugs or collected from the known organic reaction libraries [11–13]. To efficiently search for likely 

and diverse compounds, evolutionary algorithms [4,14,15] and computational intelligence  

methods—such as artificial neural networks [16] and fuzzy logic [17]—have been adopted to 

automatically select features and increase the performance of the compound search. Lastly, to address 

the issue of low bioactivity, Boda and Johnson [14] assess a compound’s local structure motifs by their 

occurrence in existing drugs database thus enhancing the drug-likeness of proposed compounds. The 

overall dogma asserts that if a compound is composed of or contains structural motifs common in 

known drugs the new compound should also be drug-like. 

With a good strategy to identify fragments to possess drug-like properties can greatly improve the 

lead optimization process. Group efficiency (GE) is a convenient method to assess the relationship 

between potency and molecular weight. GE estimates the contribution of an individual fragment 

toward to overall binding energy and assess whether the replacement of fragments are effective in lead 
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optimization process and increasing the bioactivity [18]. GE is derived from the ligand efficiency (LE) 

that was first presented by Kuntz et al. [19] LE is defined as the binding energy per unit of mass 

(molecular weight) of a given compound [20]. The potency of a ligand to the target is often a key 

criterion for lead selection. Very often an increase in the molecular weight of a compound corresponds 

to an increase in its potency [19,21] while unfavorably changing the compound’s drug-like properties 

such as solubility, metabolic stability, and oral bioavailability [22,23]. Therefore, the balance between 

potency and molecular weight is important. Empirically, having GE values greater than or equal to 0.3 

contributes positively to the ligand’s potency [24] (druggability). Ligand efficiency is routinely used to 

evaluate potential drug-like compounds due to its ability to effectively balance a compounds potency 

(bioactivity) and molecular weight [25–27]. 

In this study, we first initiated our method on designing type II kinase inhibitors. Kinase inhibitors 

are divided into type I and II inhibitors: type I inhibitors bind to the active form of the kinase binding 

site near the adenine ring of ATP while type II inhibitors bind to a hydrophobic pocket formed by the 

rearrangement of the DFG-out activation loop—other than the ATP binding site—as is the case with 

the inactive form of kinase. Due to high structural similarities in the ATP binding pocket, designing 

highly selective type I inhibitors is difficult [28,29]. On the contrary, the inactive state of kinases are 

more structurally diverse. By exploring the dissimilarities among the DFG-out conformations [28] 

structural information can be gathered to help improve compound selectivity with respect to type I and 

type II kinase inhibitors. Therefore, protocols to de novo design selective type II kinase inhibitors are 

implemented in this study. 

Using a known inhibitor or an approved FDA drug as a template to design new inhibitors as part of 

the lead optimization is helpful since known ligand-receptor interactions can be used as guidance. This 

study proposes a new template-based de novo design protocol to discover new inhibitors that preserve 

and also optimize the binding interactions of the known type II kinase template. We implement a novel 

template-based de novo design method that incorporates specific binding modes of proven type II 

kinase inhibitors to construct compounds from large fragments libraries. To demonstrate this method 

can work for different binding interactions even among Type II inhibitors, two type II inhibitors, 

sorafenib (Nexavar®) [30] and nilotinib (Tasigna®) [31], were selected as the first and second 

templates for the development and validation of our protocol and were specifically selected due to  

the publicly available crystal structures. The presented five-step protocol is able to reassemble 

(reconstruct) sorafenib and nilotinib by selecting molecular fragments from a large fragments library. 

Our procedure demonstrates the ability to reconstruct the two template compounds on different type II 

inhibitors while keeping their binding interactions with the target. 

Furthermore, to demonstrate that the algorithm and associated protocols are able to generate more 

potent compounds and use in a general lead optimization process, by starting the de novo optimization 

from a known inhibitor, a compound with a lower activity was selected from a series of aminoisoquinoline 

derivatives, TAK-285 analogues and E2020 analogues [32–34] and used as the third, fourth, and  

fifth template. The aminoisoquinoline derivatives were designed for inhibiting type II kinases B-Raf. 

TAK-285 analogues and E2020 analogues were designed for inhibiting Human Epidermal Growth 

Factor Receptor 2 (HER2) and inhibiting AChE. TAK-285 analogues and E2020 analogues were 

selected as two demo cases that the protocols can also work with protein targets other than the type II 

kinase. The protocols resulted in the construction of the compounds that are more potent than the 
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starting compound along with being part of the original aminoisoquinoline derivatives, TAK-285 

analogues and E2020 analogues collection [32–34]. It should also be noted that the creation of these 

compounds demonstrates the ability of the synthetic feasibility component of the methodology since 

these compounds were successfully regenerated from a similar starting point (the template). 

2. Procedure 

In this five-step procedure there are three main steps for generation of new compounds (Figure 1) 

and two last steps for verification of newly constructed compounds. The first step was the selection of 

a type II inhibitor for the template and the dissection of the binding site according to ligand-receptor 

interactions. The binding site was dissected into three regions: (i) the allosteric site; (ii) the linker 

space; and (iii) the ATP binding site. In this study, sorafenib (Nexavar®), nilotinib (Tasigna®) and a 

series of aminoisoquinoline inhibitors were chosen as the template compounds. Second, each building 

block from our in-house fragment library was docked to the ATP binding and allosteric sites, 

respectively, and evaluated with the group efficiency scores. Third, combining the selected building 

blocks from the previous steps with all of the possible linkers generated the new collection of 

compounds. No synthetic accessibility or priorities were considered in this five-step procedure. 

However, compounds with unstable chemical bonds (synthetically improbable) were removed using a 

set of molecular filters in the fourth step, and these compounds were then ranked in the last step. These 

steps resulted in three unique sets of compounds; those based on sorafenib, another set based on 

nilotinib, and a third group based on a moderately active aminoisoquinoline inhibitor. 

Figure 1. Illustration of the first three steps to generate new compounds based on  

template molecule. 
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2.1. Step 1: Indicate the Space (Regions) for Structural Substitution 

The first step is to divide the binding site into three regions for the tyrosinase kinase examples of this 

study: the ATP binding site, the linker, and the allosteric site, according to the molecule interactions 

present in the DFG-out conformation. The ATP binding site is near the hinge region and the allosteric 

binding site is defined by the DFG-out motif, while the region joining these two binding site features is 

defined as the linker. Fragments in the ATP binding space are considered the first fragment and 

fragments in the allosteric space are defined as the second fragment. According to the Liu and Gray’s 

study [28], the 4-pyridin-3-ylpyrimidin-2-amine of nilotinib was defined as a region binding to the ATP 

site of receptor (blue in Figure 2(b)) and the 3-(4-methylimidazol-1-yl)-5-(trifluoromethyl)aniline of 

nilotinib was defined as another region binding to the allosteric site (red in Figure 2(b)). The benzene 

liking the fragment 1 and fragment 2 of nilotinib was then defined as linker fragment in our study. 

Because the binding modes of kinase inhibitors are similar, the first fragment of the another example, 

sorafenib, was defined by a N-methylpyridine-2-carboxamide that binds to the ATP site, and the 

second fragment of the sorafenib is a 4-4-[4-chloro-3-(trifluoromethyl)phenyl] carbamoylamino that 

binds to the allosteric site depicted in Figure 1. Figure 2(a) displays each fragments of sorafenib with 

different colors (blue for fragment 1, yellow for the linker, and red for the fragment 2). The ATP 

binding region of receptor was then defined by the grid box of 10 Angstroms centered in the 

geometrical center of the first fragment, and the allosteric region was then defined by the grid box of 

10 Angstroms centered in the geometrical center of the second fragment. 

Figure 2. The divided portions of the compounds (a) sorafenib and (b) nilotinib and their 

binding structure with B-RAF. The fragment 1 (blue ellipsoid and sticks) in each 

compound was the ATP site. The fragment 2 (red ellipsoid and sticks) in each compound 

was the allosteric site. The linker connecting both fragments in each compound was 

marked as yellow ellipsoid and sticks. 

(a) Sorafenib (b) Nilotinib

 

2.2. Step 2: Evaluate Each Building Block 

Each building block is docked into the designated regions for molecular fragment exploration using 

AutoDock Vina [35] using the default settings. The size of the grid box is set to 10 Å and centered on the 
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geometrical center of the allocated space. The numbers of docked poses is user specified but for the 

presented examples, the number was set to eight for each building block (molecular fragment). To 

sufficiently sample the region of interest, fragments are retained based on maximum energy difference 

between the best binding modes for each fragment. Each fragment undergoes evaluation using group 

efficiency (GE) scoring. GE was designed to evaluate and probe binding site “hot spots” for increasing 

affinity and also retained druggability in lead optimization [19,36]. The GE is defined as the change in 

∆G (ΔΔG) per non-hydrogen (heavy) atom: 

atomhydrogen -non of numbers

G
GE

ΔΔ=  (1)

In this study, the GE scores of each docked fragment were calculated by dividing their respective 

binding free energy by the numbers of non-hydrogen atoms. In this step, the docked fragment poses 

having larger or equal (more positive) GE scores and a more negative docking energies or equal than 

the original fragments of template were selected to construct new compounds. All selected docked 

fragment poses should fit both conditions of GE scores and docking energies. 

2.3. Step 3: Assemble to Form New Structures 

Linking the docked fragments, from Step 2, to the core (scaffold, building block) of the template 

with linker fragments assists in the construction of synthetically plausible compounds. Linkers are 

inserted into the space between the two attachment sites through a series of the geometry 

transformation. Each linker contains at least two attachment points (denoted as linkingpoint1 and 

linkingpoint2). All combinations of each two (or more) possible linker attachment points are attempted 

when performing the geometric transformation to connect linker to the two fragments defined in step 1 

(denoted as fragment1 and fragment2). In the first step of the transformation procedure, the linker is 

translated from linkingpoint1 to the nearest atom of fragment1. The next step is to calculate two 

vectors originating at linkingpoint1—one directed to the atom of fragment2 which is nearest to 

linkingpoint2 (called vector1) and the second to linkingpoint2 (called vector2). The linked structure is 

then rotated from vector2 to vector1. When the distance between the endpoints of vector1 and vector2 

is acceptable, a new structure is generated from the linker’s rotated combination of the two docked 

fragments. To reduce the amount of time spent trying to determine the optimal linker orientation, 

linkers are only included when the distance between attachment points is less than 0.1 Angstroms. The 

distance limitation can be adjusted to include more molecules. All of these generated structures are 

then collected as a structure pool for step 4 and step 5. 

2.4. Step 4: Apply Drug-Likeness Filters 

A modified version of Lipinski’s Rule-of-Five [37] is applied to the newly constructed compounds 

to reduce the number of potential compounds returned to the user for consideration. The modified 

criteria increase the molecular weight threshold to a maximum of 550 grams per mole (g/mol). 
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2.5. Step 5: Prioritize the New Structures 

After generating a collection of new compounds, they are ranked by the summing the GE scores of 

the replacement fragments calculated in Step 2. A more positive GE score implies better binding 

affinity to the target whereas lower GE scores results in a new compound being ranked lower for 

further development. 

3. Results and Discussion 

3.1. Sorafenib Reassembly 

The sorafenib-B-RAF complex was used to test the algorithm’s ability to rebuild the ligand-receptor 

molecular interactions of the initial template given a library of fragments. The methodology and protocol 

of the algorithm would be considered sound if it is able to reconstruct the template molecule—along 

with other combinations of fragments resulting in other known compounds—since favorable 

interactions are selected. Each building block was docked into the ATP binding and allosteric site of 

B-RAF and a total of eight docked poses were selected for each building block to be evaluated. The 

GE score for each docked fragment was calculated by dividing the docking energy of each pose with 

the number of non-hydrogen atoms. The docking energy of the fragment 1 (ATP binding site) and the 

fragment 2 (allosteric binding site) of sorafenib are −5.1 and −6.1 kcal/mol, respectively, with the GE 

scores being 0.46 and 0.40 for fragments 1 and 2, respectively (Table 1). 

Table 1. GE scores and docking energies of sorafenib and nilotinib. 

Compound 
GE score of 
fragment 1 

GE score of 
fragment 2 

Docking energy of 
fragment 1 (kcal/mol) 

Docking energy of 
fragment 2 (kcal/mol) 

Sorafenib 0.46 0.40 −5.1 −6.1 
Nilotinib 0.60 0.39 −7.8 −6.6 

The settings for our algorithm considered docked fragments possessing more positive GE scores 

and (negative) docking energies—than the original parts from the template—to construct new 

structures. The GE scores for the original sorafenib fragments become the filtering criteria  

for selecting docked fragments. A total of 5,831 docked fragments from the ATP binding site and 

15,055 docked fragments from the allosteric site (out of 27,400 possible poses) were retained. The 

selected poses of the molecular fragments docked to the ATP binding and allosteric sites along with  

38 linkers were used to build the new compounds. Connecting the two docked fragments from  

each site with linkers to the scaffold, satisfying the required bonding angles and length, generated 

101,427 new compounds. The summations of GE scores for the two docked fragments for each  

new compound were used to rank the compounds. The results demonstrate that sorafenib could  

be reassembled while retaining the template specified intermolecular interactions, the original 

sorafenib-B-RAF molecular interactions. Since only fragments possessing better or equal GE and a 

more negative docking energies or equal than the fragments of sorafenib were used to generate the new 

compounds, sorafenib is the lowest ranked (least active compound) among the newly generated 
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compounds. Moreover, those newly generated compounds were compounds considered to have better 

sorafenib-like binding ability. 

Figure 3. The comparison of regenerated sorafenib to the sorafenib from the crystal 

structure (in purple) with B-RAF; three hydrophobic interactions within the (a) ATP 

binding pocket, (b) allosteric site, (c) linker space, and (d) two hydrogen bond interactions. 

 

To determine if the regenerated sorafenib could adopt and retain the same binding mode and 

interactions as shown in the literature [38], the regenerated sorafenib was docked into the B-RAF 

crystal structure and subjected to molecular dynamics simulation (MDS). Regenerated sorafenib 

positioned itself between the ATP binding site and the allosteric site and showed high similarity 

(RMSD: 1.5 Å) with the crystal structure of sorafenib from PDB ID: 1 uwh (Figure 3 in purple). The 

bound pose of our regenerated sorafenib and receptor of a snapshot in our MDS taken from the last 

picosecond interval (1,000th step) was shown in Figure 3. Figure 3(a–c) depict the three hydrophobic 

interactions of the generated sorafenib-B-RAF complex, the same three key hydrophobic interactions 

reported in the literature [38]. Figure 3a shows the distal pyridyl ring of sorafenib’s fragment 1 located 

in/near the ATP binding pocket and interacting with three aromatic residues (W530, F582, and F594). 

Figure 3(b) illustrates that the lipophilic trifluoromethyl phenyl ring at the end of fragment 2, for the 

regenerated sorafenib, binds to a hydrophobic cavity formed between the αC and αE helices, the  

N-terminal regions of the DFG motif and the catalytic loop. Figure 3(c) shows the central phenyl ring 

of our reconstituted sorafenib contacts three aliphatic side chains K482, L513, and T528 and interacts 

with F594. In addition to the hydrophobic interactions, the two hydrogen bonds—one between an 

amide nitrogen and the carboxylate side chain of E500 and the other a carbonyl moiety (of the ligand) 

to the backbone nitrogen of D59—are also seen from our regenerated sorafenib-B-RAF complex and 

these computationally observed interactions are consistant with the experimentially derived interaction 
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seen in the crystal complex and literature (Figure 3(d)). From these observation, the algorithm was able 

to reconstruct the interactions of the original template ligand with the receptor and suggest potentially 

better inhibitors that possess similar ligand-receptor interactions. 

3.2. Nilotinib Reassembly 

To further probe the abilities of the algorithm, nilotinib a different type II inhibitor and known ABL 

inhibitor was investigated. Similar to the sorafenib experiment, each building block was docked into 

the ATP binding and allosteric sites of ABL. A total of eight poses at each site were selected for 3,425 

building blocks. As reported in the literature, the 4-pyridin-3-ylpyrimidin-2-amine of silotinib binds to 

the ATP site (blue in Figure 2(b)) and the 3-(4-methylimidazol-1-yl)-5-(trifluoromethyl)aniline of 

nilotinib binds to the allosteric site (red in Figure 2(b)). These functional groups (building blocks) were 

selected as fragment 1 and fragment 2 in this example. The next step was calculating the binding 

energy and GE scores for each docked fragment. The calculated (predicted) energies of fragments 1 

and 2 of nilotinib docked to ABL were −7.8 and −6.6 kcal/mol, respectively, while the GE scores of 

nilotinib fragments 1 and 2 were 0.60 and 0.39, respectively (Table 1). Of the 27,400 docked 

fragments, 2,468 fragments at the ATP binding site and 278 fragments at the allosteric site were 

selected as candidates for the generation of new potential ABL inhibitors. The new compounds were 

constructed from the two sets of docked fragments using the 38 linker-fragments that satisfied the 

geometrical constraints; resulting in 2,953 new compounds. The initial template compound of nilotinib 

was successfully re-generated by linking fragments 1 and 2 with 4-methylbenzaldehyde  

(a linker). Again, since only fragments having better or equal GE and a more or equal negative docking 

energies than the fragments of nilotinib were used to generate the new compounds, the reassembled 

nilotinib is the lowest ranked as in the case of sorafenib. Based on the ability of our algorithm to 

reconstruct nilotinib in the ABL binding site, it is postulated that this method should be able to aid in 

the design of kinase specific type II inhibitors. Both the nilotinib and sorafenib examples were used to 

demonstrate how the method works, none of the other assembled inhibitors in these two examples 

were tested for their therapeutic effects. 

To validate that the reassembled nilotinib retains the same ligand-receptor interactions as those 

shown in the solved X-ray structure, the regenerated nilotinib was docked to the ABL crystal structure 

and the best scoring poses was subjected to 1 ns of MDS. The bound pose of our regenerated nilotinib 

and receptor of a snapshot in our MDS taken from the last picosecond interval (1,000th step) was 

shown in Figure 4. Figure 4 indicates that fragment 1 interacts with the glycine-rich region of the  

P-loop fold (cyan sticks; ATP binding site) and fragment 2 approaches the activation loop of ABL 

(orange sticks; allosteric site). The reconstituted and docked nilotinib exhibits a highly similar bound 

conformation (RMSD: 1.4 Å) to that of the nilotinib found in the crystal (PDB ID: 3cs9; purple sticks). 

The four key hydrogen bonding interactions of the nilotinib-ABL complex are retained and include  

(i) the amino-NH of fragment 2 of and the sidechain carboxylate functional group of Glu286; (ii) the 

aniline-NH of fragment 1 and the hydroxyl group of Thr315; (iii) the pyridyl-N of fragment 1 

interacting with the amide of Met318’s backbone, and (iv) the amido-C=O of fragment 2 and the 

backbone amide of Asp381. In addition to the hydrogen bonds, an essential lipophilic interaction 

between the backbone carboxyl group of Asp381 and a fluorine atom in the trifluoromethyl group of the 
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reconstructed nilotinib (illustrated in yellow dotted lines in Figure 4) is preserved. This example 

demonstrates the successful reconstruction of nilotinib, a type II inhibitor, with our algorithm. 

Figure 4. Four hydrogen bonds and one liphophilic bond interactions between regenerated 

nilotinib and the Abl kinase structure. Fragment 1 of nilotinib is located in a glycine-rich  

P-loop (cyan color) and fragment 2 of nilotinib is positioned near the activation loop  

(orange color). 

 

3.3. Optimization on the Series of Aminoisoquinoline Derivatives 

The sorafenib and nilotinib examples demonstrate the ability to reassemble these different type II 

kinase inhibitors retaining the required ligand-receptor interactions. A third type II inhibitor  

was selected from a series of aminoisoquinoline derivatives consisting of ten compounds designed  

as mutant B-RAF type II inhibitors with IC50 values ranging from 1.6 to 110 nM; compound 13  

(IC50 = 56 nM) was selected as the template compound for this example [32]. Since the building block 

library includes the fragments contained in this series of compounds, our algorithm should be able  

to generate compounds that are more potent than Compound 13 in addition to Compound 13; see  

Table 2. The left portion (blue ellipsoid in Table 2) of the aminoisoquinoline was selected as fragment 

1 and the red ellipsoid denotes fragment 2 (also in Table 2). The docking energies of the original 

fragments—fragments 1 and 2 of Compound 13 (the template)—were −6.3 and −3.8 kcal/mol, 

respectively; with GE scores of 0.42 and 0.48. After selecting the docked fragments possessing the 

greatest positive GE scores and most negative docking energies (compared to the original fragments) 

for the ATP and allosteric binding sites, 1,429,973 new compounds were constructed. Three 

(Compounds 1, 12a and 15) of the seven compounds with better IC50 values from the original 

aminoisoquinoline derivatives [32] were identified and are listed in Table 2. The four compounds  

(out of seven) from the aminoisoquinoline set were not generated in our algorithm since their  

docked fragment cannot be assembled from the linkers according to our linking criterion described in 

Section 2.2. The total GE scores (and the ranking within generated compounds) of each fragment for 

compounds 1, 12a, 13, and 15 were 1.09 (23,490), 1.0 (239,623), 0.95 (620,424), and 1.0 (239,623), 

respectively. The compounds were ranked by their calculated binding energies and this order directly 

correlates with their IC50. This example demonstrates that our algorithm is able to suggest more potent 

compounds for the mutant B-RAF kinase when starting with a less potent template compound. 
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Table 2. Ranking of aminoisoquinoline series of compound after optimization. The ellipses 

define fragments of for each site in Compound 13; blue for fragment 1 and red for 

fragment 2. 

Rank 

B-RAF, 

IC50 

(nM) Structure 

Binding 

Energy 

(kCal/mol) 

Sum of 

GE Score 

Docking 

Energy 

(KCal/mol) 

1 1.6 
 

1 −33.0 1.09 −12.4 

2 17 
 

12a −27.2 1 −11.4 

3 56 
 

13 −27.0 0.95 −11.5 

4 18 
 

15 −26.7 1 −11.3 

3.4. Optimization on the Series of TAK-285 Analogues Inhibiting HER2 Kinase 

As an additional demonstration of type II kinase inhibitor assembly, TAK-285 was the fourth  

type-II kinase inhibitor selected for demonstrating our methods in optimization. The TAK-285 series 

were developed by Ishikawa et al. as the HER2/EGFR dual inhibitors [33]. However, we only 

demonstrated the optimization of HER2 inhibiting activity in order to present the ability of assembling 

compounds with better activity inhibiting a specific protein target. From Ishikawa’s study, there were 

39 compounds developed with pyrrolo[3,2-d]pyrimidine scaffolds, with HER2 inhibition IC50 values 

ranging from 2.2 nM to 720 nM [33]. 
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The template compound selected for this demonstration was compound 6n, which has HER2 

inhibition IC50 value of 26 nM. The docking scores of the template compound 6n were −4.4 kcal/mol 

for fragment 1 and −4.5 kcal/mol for fragment 2, which converted to GE scores of 0.44 for fragment 1 

and 0.46 for fragment 2. After the compound assembling and binding energy estimation using MDS, 

there were seven compounds in the original paper [33] within the assembled compounds which had 

higher HER2 inhibition activity than compound 6n (Table 3) 

Table 3. Ranking of TAK-285 analogues of compound after optimization. The ellipses 

define fragments of for each site in Compound 6n; blue for fragment 1 and red for 

fragment 2. 

Rank HER2, IC50(nM) Structure Binding Energy (kCal/mol) 

1 20 
 

6c −21.1 

2 4.1 

Cl

O Cl

HN

N

N
N

HO

 
10e −21.0 

3 4.6 
 

6m −20.9 

4 26 
 

6n −19.4 

5 8.3 

 
6e 

−19.2 
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Table 3. Cont. 

Rank HER2, IC50(nM) Structure Binding Energy (kCal/mol)

6 17 

 
8l

−17.0 

7 12 

 
10j

−16.7 

8 3.3 

 
8e

−15.3 

In the following docking demonstration, we selected compound 6m as an example. The docking 

scores for each fragment of compound 6m were both −4.4 kcal/mol; but the GE scores were 0.44 and 

0.55 respectively because of the difference of the atom counts. For the analysis of the interaction 

between the compound 6m and the HER2 kinase, we performed a docking study with the structure of 

compound 6m and the HER2 crystal structure (PDB ID: 3RCD). The best docking pose of compound 

6m which has docking score of −9.9 kcal/mol, as shown in Figure 5. Moreover, we also compared the 

docking pose and the TAK-285 (compound 34e, HER2 IC50: 17 nM) structure, which was crystallized 

with HER2 kinase in the 3RCD (Figure 6). Within the ATP site, the compound 6m only had the 

interaction with the phenylalanine of the P-loop because it does not have extending chain on the 

pyrrole ring, compared to TAK-285. On the other side, within the allosteric site, the fragment 2 of 

compound 6m still had hydrophobic interaction with DFG motif. 
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Figure 5. The compound 6m from the TAK-285 series docked with HER2 kinase  

(PDB ID: 3RCD). The ellipsoids define the portion of the compounds that interact with the 

HER2 binding site—ATP site (blue ellipsoid; fragment 1) and allosteric site (red ellipsoid; 

fragment 2)—while the linker is denoted with the orange ellipsoid. The cavity of HER2 is 

depicted as a gray surface with a bound inhibitor (tube). The inhibitor is represented in a 

similar fashion as the depicted compounds. The portions of the compound that interacts 

with the different regions of the binding site are color-coded. The portion that interacts 

with the ATP binding site is blue (fragment 1), the linker is yellow, and the allosteric site 

portion is red (fragment 2). 

TAK-285

 

Figure 6. The docked compound 6m (purple) compared to the TAK-285 (green) within the 

HER2 crystal structure (PDB ID: 3RCD). The kinase P-loop (cyan) and DFG-motif 

(orange) were indicated. 

 

To sum up in this case, we have demonstrate that the compound 6n, which is the compound has  

the lower HER2 inhibiting activity, can be optimized into compounds with better activity using our  
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de novo fragment assembling methods. We also demonstrated the potential binding interaction 

between one of the assembled compounds and the HER2 kinase using the docking analysis. 

3.5. Optimization on the Series of E2020 Analogues 

The acetylcholinesterase (AChE) inhibitor was selected from a series of E2020 analogues consisting 

of thirteen compounds with IC50 values ranging from 0.9 to 4,400 nM; compound 22 (IC50 = 4,400 nM) 

was selected as the template compound for this example [34]. Since the building block library includes 

the fragments contained in this series of compounds, our algorithm should be able to generate 

compounds that are more potent than Compound 22 in addition to Compound 22; see Table 4. The  

left portion (blue ellipsoid in Table 4) of the dihydronaphthalene was selected as fragment 1 and  

the red ellipsoid denotes fragment 2 (also in Table 4). The docking energies of the original 

fragments—fragments 1 and 2 of Compound 22 (the template)—were −5.0 and −4.1 kcal/mol, 

respectively; with GE scores of 0.69 and 0.59. After selecting the docked fragments possessing the 

greatest positive GE scores and most negative docking energies (compared to the original fragments) 

for the binding sites, and about one hundred thousand new compounds were constructed. Three 

(Compounds 18B, 25 and 26) of the twelve compounds with better IC50 values than the template, 

compound 22, from the E2020 analogues were identified and are listed in Table 4. The eight 

compounds from the E2020 series set were not generated in our algorithm since their docked fragment 

cannot be assembled from the linkers according to our linking criteria. The total GE scores of each 

fragment for compounds 18B, 22, 25, and 26 were 1.28, 1.15, 1.2, and 1.17, respectively. The 

compounds were ranked by their calculated binding energies, but the ranking of the binding energies 

for the compounds 18B and 26 were not as expected. However, the experimental IC50 values for the 

two compounds were close. This was an acceptable error. 

In the compound 25, the isoindole-1,3-dione was the region binding to the peripheral site of 

receptor (blue in Figure 7) and the 1,4-dimethylpiperidine of compound 25 was the region binding to 

the catalytic site (red in Figure 7). The ethane liking the fragment 1 and fragment 2 of compound was 

then defined as linker fragment in our study. To demonstrate the interactions between the binding sites 

and the regenerated compound 25, the ligand was bound to the receptor, AChE, crystal structure (PDB 

ID: 1b41) as shown in Figure 8. Figures 8(a) and 6(b,c) depict the hydrophobic interactions between 

the two cavities and the linker region and the generated compound 25-AChE complex. Figure 8(a) 

shows the fragment 1 of the compound 25 bound to a hydrophobic peripheral cavity and interacting 

with two aromatic residues (W286 and Y72). Figure 8(b) illustrates that the fragment 2, for the regenerated 

compound 25, located in/near the catalytic site and interact with two residues, W86 and F338. Figure 8(c) 

shows the linker contacts interact with D74. In addition to the hydrophobic interactions, the one 

hydrogen bond between an aldehyde group in compound 25 and the hydroxyl group of the side chain 

in Y124 (Figure 8(d)). 
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Table 4. Ranking of E2020 series after optimization. The ellipses define fragments of for 

each site in Compound 22; blue for fragment 1 and red for fragment 2. 

Rank AChE, IC50 (nM) Structure Binding Energy (kCal/mol) 

1 0.9 
 

25 −10.23 

3 7.7 

O

N
CH3

 
18B −9.65 

2 4.2 
 

26 −9.47 

4 4400 

N
CH3

 
22 −7.73 

Figure 7. The divided Compound 25 of E2020 series. The ellipsoids define the portion of 

the compound that interact with the AChE binding site –the peripheral site (blue ellipsoid 

and sticks; fragment 1) and catalytic site (red ellipsoid and sticks; fragment 2)—while the 

linker is denoted with the orange ellipsoid. The cavity of AChE is depicted as a gray 

surface with a bound inhibitor (tube). 

Compound 25
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Figure 8. The regenerated compound 25 of E2020 series and bound to AChE crystal 

structure; three hydrophobic interactions within the (a) peripheral pocket, (b) catalytic site, 

(c) linker space, and (d) hydrogen bond interaction. 

Compound 25

 

4. Experimental  

4.1. Datasets 

Sorafenib is a potent type II kinase inhibitor that binds to wild type and V599E mutant B-RAF as 

well as other tyrosine kinases such as VEGFR-2, VEGFR-3, PDGFR, Flt-3, and c-KIT [39–41]. The 

solved X-ray structure of sorafenib complexed to wildtype B-Raf was selected as the first example 

(PDB ID: 1uwh) [38]. Another potent type II inhibitor, nilotinib, is an aminopyrimidine inhibitor for 

the Bcr-Abl tyrosine kinase [42], an important kinase for the treatment of chronic myelogenous 

leukaemia (CML) and Philadelphia chromosome positive (Ph+) acute lymphoblastic leukaemia  

(ALL) [43–46] plus it is also a multi-kinase inhibitor for c-Kit and PDGFR [47]. Nilotinib is known to 

interact with the inactive DFG-out conformation of the ABL kinase domain, thus it is also a type II 

inhibitor [48]. The solved X-ray structure of Bcr-Abl complexed with nilotinib (PDB ID: 3cs9) [31] 

was used as the starting point for the second example. Using known, potent inhibitors to generate new 

compounds provides a method to determine if the compound selection protocol is able to adequately 

select a known inhibitor from a collection of compounds generated from similar building blocks. 

The third example is a series of aminoisoquinoline inhibitors that target the V600E B-Raf mutant [32]. 

More than 70% of melanomas and benign nevi contain a mutation at position 600 (V600E) of B-Raf [49]. 

This series of aminoisoquinolines are designed as type II inhibitor that binds to the ATP and allosteric sites 

of the mutant V600E B-RAF. For this example, compound 13 was selected as the template (starting 

compound) to demonstrate the optimization process (PDB ID: 3idp) [32]. 

The fourth example is for another type II kinase, Human Epidermal Growth Factor Receptor 2 

(HER2), as a demonstration for another type II kinase case. The TAK-285 analogues were designed as 

HER2/EGFR (Epidermal Growth Factor) dual kinase inhibitors [33]. In this case, we only use the 

HER2 (PDB ID: 3rcd, 3pp0) as the target for activity optimization. Compound 6n of the TAK-285 

analogues were selected as the template. 

The fifth case study is a series of E2020 analogues that inhibit the acetylcholinesterase (AChE) 

activity [34]. Inhibition of AChE could lead to the accumulation of acetylcholine, a neurotransmitter, 

and research has found that acetylcholine levels are related to many diseases, including Alzheimer’s 
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disease and Lewy body dementia [50,51]. In this case, compound 22 was selected as the template 

(starting compound) to demonstrate the optimization process (PDB ID: 1b41) [34,52]. 

The building block library contains 1,334 structural fragments from the SciFinder database  

that matched the query “amine” and 2,091 organic building blocks from the commercially available  

Sigma-Alderich Co. product library (Sigma-Alderich Chemie GmbH, Steinheim, Germany). These 

building blocks include the typical building blocks in a chemical synthesis such as various nitrogen 

compounds (amines, isocyanides) and carbonyl compounds (amides, aldehydes, and ketones). Also 

added to the building block library were the molecular fragments of the selected templates and their 

analogues since the SciFinder collections did not cover the fragment-space of the template molecules. 

Additionally, 18 commonly seen linkers were selected from our in-house library and another 20 most 

common used linkers from Molinspiration [53] were used. Each linker contained, on average, three 

possible bonding locations (attachment points). Although potential fragment space is infinite, the 

number of commonly commercial available fragments is limited especially only for lead optimization. 

In our study, 3,425 different structural diverse fragments and 38 commonly used linkers are selected to 

demonstrate the lead optimization of type II kinase inhibitors based on the known inhibitors. 

4.2. Molecular Dynamics Simulation 

To determine whether the compounds generated (suggested) by our algorithm exhibit similar 

intermolecular interaction compared to the selected template compound and refining strucures,  

1 nanosecond (ns) molecular dynamics simulation (MDS) were performed for each proposed 

compound-receptor complex. Because the bonds between the docked fragments and linker of our final 

generate structures might be in unstable angles, the bound pose of our generated structures were 

refined by geometry optimized with the MM+ force field in Hyperchem 7.0 [54] using Polak-Ribiere 

algorithm [55] in advance, and re-docked into their respective receptors in the geometric center of 

generated complex using AutoDock Vina in default settings. The best complex pose was selected with 

the favorable contacts between the docked pose of the energy-minimized constructed compounds and 

the residues within the binding site. The MD simulation was performed using Gromacs 4.03 [56] with 

the Gromos 53a6 force field. The molecular system was placed in a cubic box of simple point charge 

(SPC) [57] explicit water molecules and the distance between protein and each edge of the box was set 

as 0.9 nm. To maintain overall electrostatic neutrality and isotonic conditions, Na+ and Cl− ions  

were randomly positioned within this solvation box. The system was energy minimized using  

1,000 iterations of the steepest descent protocol with an energy minimization convergence criteria of  

a between-step difference smaller than 1,000 kJ mol−1 nm−1. After the energy minimization, the system 

was subjected to a 1,000 ps molecular dynamics simulation at constant temperature (300 K), pressure 

(1 atm), and a time step of 0.002 ps (2 fs) with the coordinates of the systems recorded every 500 steps. 

To estimate the ligand binding energies, the energy records of last 100 ps were extracted and binding 

energies were calculated with linear interaction energy method [58]. 

5. Conclusions  

In summary, we developed a template-based de novo design strategy to create novel type II 

inhibitors based on the known type II kinase inhibitors such as sorafenib (Nexavar®) and nilotinib 
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(Tasigna®). Type II kinase inhibitors not only bind to the ATP site but also strongly interact with an 

allosteric binding site that only occurs in the inactive form of the enzyme. In this study, we defined the 

ATP and allosteric binding sites along with the linker space, the region between these two sites, as the 

three key interaction groups. In this method, the five-step protocol was designed to first define the key 

interaction regions, then dock a library of building blocks (molecular fragments) into each interaction 

region, assemble the new compounds by linking each potential fragments with the retained core of  

the initial compound, retain compounds based on drug-likeness properties, and finally prioritize 

compounds using the calculated GE scores. To reduce calculation time and combinatorial-explosion, 

the GE scores were employed to rank the new compounds that were then filtered by Lipinski’s  

Rule-of-Five for drug-likeness. Our algorithm and the discussed protocol successfully rebuilt two 

different type II inhibitors—sorafenib and nilotinib—using an automated and systematic protocol. 

In our template based method, the influence of the original complex structure is embedded. First the 

compound-protein complex itself would affect the docking positions for the fragments and linkers and 

further affect the GE scores that determine the ranks of the final compounds. Since this method is a 

“template” based method, it does not work with apo structure although one could eventually modify 

the method to work with apo structure. 

In order to validate that our de novo design methods can be applied in other type II kinase cases, a 

series of aminoisoquinoline derived type II mutant B-RAF inhibitors with IC50 values varying from 1.6 

to 110 nM, and TAK-285 analogues inhibiting HER2 kinase, with IC50 values from 2.2 nM to 720 nM 

were selected to demonstrate how the our algorithm can discover compounds that are more potent than 

the provided template compound while possessing similar ligand-receptor interactions [32,33]. An 

aminoisoquinoline-based compound with an IC50 value of 56 nM and a pyrrolo[3,2-d]pyrimidine 

compound with an IC50 value of 26 nM were used as the templates, respectively. The algorithm 

identified these compounds from the original datasets [32,59] with more potent IC50 values than the 

template compounds. 

Furthermore, to test if our methods can be used for protein inhibitors other than type II kinases, 

E2020 series, the AChE inhibitors, with IC50 values varying from 0.9 to 4,400 nM, were selected for 

demonstrating the optimization of acetylcholine esterase inhibition activity [34]. We used an indanone-

benzylpiperidine based compound with an IC50 value of 4,400 nM as the initial compound. As a result, 

compounds with better AchE inhibition activity were assembled using our methods. 

Overall, this study demonstrates a novel template-based de novo design protocol to aid in the 

optimization of potent type II kinase inhibitors that preserved the original binding interactions of the 

template compound to the target and is capable of working with other protein targets. 
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