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Abstract:



A series of 2-arylquinazolines have been synthesized in moderate to excellent yields by one-pot tandem reaction of (2-aminophenyl)methanols, aldehydes and ceric ammonium nitrate (CAN). The utility of this transformation was demonstrated by its compatibility with a wide range of functional groups. Thus, the method represents a simple and practical procedure to access 2-arylquinazolines.
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1. Introduction


Quinazolines and derivatives thereof are ubiquitous structural motifs that frequently occur in a wide variety of bioactive natural products such as prazosin [1], lapatinib [2], icotinib [3], etc. They possess a wide range of biological and pharmacological activities, including antibacterial [4], anti-inflammatory [5], antiplasmodial [6], antitumor [7], antimicrobial and antioxidant properties [8]. In addition, they have also been used as photochemotherapeutic agents [9], DNA-gyrase, JAK2, PDE5, and EGFR tyrosine kinase inhibitors [10] as well as CB2 receptor agonists [11]. Recently, Yang reported that substituted quinazolines possess novel potent and selective FLT3 inhibitory and anti-acute myeloid leukemia activities [12]. Consequently, in the past few years a number of synthetic methods to prepare these compounds have been described. Fu and co-workers reported that copper-catalyzed cascade reactions provide attractive and valuable routes for the construction of quinazoline derivatives via sequential Ullmann-type coupling and intramolecular cyclization [13]. Walton reported a microwave-promoted syntheses of quinazolines by the reaction of 2-(aminoaryl)alkanone O-phenyl oximes with aldehydes [14]. Tandem reaction of 2-aminobenzophenones with benzylic amines followed by C–H functionalization has also been reported [15,16,17,18]. Zhang reported a three-component synthesis of quinazoline derivatives using a low melting sugar–urea–salt mixture as a solvent [19]. In 2012, Beifuss and co-workers developed a copper-catalyzed coupling reaction of o-bromobenzylbromides and benzamidines for the synthesis of quinazolines in an aqueous medium [20]. The condensation reactions of 2-aminobenzylamines with aldehydes followed by subsequent oxidation with strong oxidants (e.g., 2,3-dichloro-5,6-dicyano-l,4-benzoquinone (DDQ) [21], MnO2 [22], and NaClO [23]) provide a conventional but simple method to synthesize quinazolines (Scheme 1(a)). However, these methods are hampered by the need to use a stoichiometric amount of a nonrenewable oxidant and the yields have not always been satisfactory. Recently, three improved methods have been reported for constructing quinazolines: (i) copper-catalyzed aerobic oxidative cyclization reaction of 2-(aminomethyl)benzenamines with aldehydes [24]; (ii) aerobic oxidative cyclization reaction of 2-(aminomethyl)benzenamines with aldehydes by a cooperative catalytic system of platinum/iridium alloyed nanoclusters and a dimeric catechol derivative [25]; (iii) iridium-catalyzed hydrogen transfer reaction of 2-(aminomethyl)benzenamines with aldehydes using styrene as a hydrogen acceptor [26].
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Scheme 1. Reaction of (2-aminophenyl)methanols with aldehydes under different conditions. 






Scheme 1. Reaction of (2-aminophenyl)methanols with aldehydes under different conditions.
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Herein, we wish to report a new method for the synthesis of quinazolines by using a one-pot tandem reaction of (2-aminophenyl)methanols, aldehydes and ceric ammonium nitrate (CAN) (Scheme 1(b)).




2. Results and Discussion


We began our study by examining the reaction between (2-aminophenyl)methanol (1a) and benzaldehyde (2a) to obtain 2-phenyl-4H-benzo[d][1,3]oxazine (4a) and screen the optimal reaction conditions. Surprisingly, a trace amount of unexpected 2-phenylquinazoline (3a) was detected by GC/MS (EI) analysis during the process of performing the above condensation reaction in the presence of ceric ammonium nitrate (CAN). To the best of our knowledge, the synthesis of quinazolines using a one-pot tandem reaction of (2-aminophenyl)methanols, aldehydes and ceric ammonium nitrate has never been investigated before. In the present study, this unexpected reaction was thoroughly investigated. To realize the selective generation of 3a, we initially ran a series of trial experiments in the presence of palladium catalysts by adjusting the reaction parameters. However, little-to-no product 3a was detected. To our delight, after the catalyst was switched to a copper catalyst such as CuOTf, the desired product 3a was isolated in 19% yield when the combination of KF and CH3CN was employed (Table 1, entry 1). Encouraged by this promising result, we further adjusted reaction parameters including copper catalysts, bases, and solvents.



Table 1. Optimization of the reaction conditions a.  [image: Molecules 18 13860 i001]







	
Entry

	
Cu sources

	
Base

	
Solvent

	
Yield (%) b






	
1

	
CuOTf

	
KF

	
CH3CN

	
19




	
2

	
CuOTf

	
Li2CO3

	
CH3CN

	
32




	
3

	
CuOTf

	
CsOAc

	
CH3CN

	
17




	
4

	
CuOTf

	
K2CO3

	
CH3CN

	
45




	
5

	
CuOTf

	
K3PO4

	
CH3CN

	
14




	
6

	
CuOTf

	
t-BuOK

	
CH3CN

	
33




	
7

	
CuOTf

	
LiOH

	
CH3CN

	
42




	
8

	
CuOTf

	
NaOH

	
CH3CN

	
48




	
9

	
CuOTf

	
KOH

	
CH3CN

	
64




	
10

	
CuOTf

	
CsOH

	
CH3CN

	
68




	
11

	
CuBr

	
CsOH

	
CH3CN

	
82




	
12

	
CuCl

	
CsOH

	
CH3CN

	
91




	
13

	
Cu(OTf)2

	
CsOH

	
CH3CN

	
67




	
14

	
Cu(OAc)2

	
CsOH

	
CH3CN

	
56




	
15

	
CuBr2

	
CsOH

	
CH3CN

	
51




	
16

	
CuCl2

	
CsOH

	
CH3CN

	
57




	
17

	
CuO

	
CsOH

	
CH3CN

	
34




	
18

	
none

	
CsOH

	
CH3CN

	
0




	
19

	
CuCl

	
CsOH

	
Toluene

	
31




	
20

	
CuCl

	
CsOH

	
THF

	
65




	
21

	
CuCl

	
CsOH

	
PhCl

	
36




	
22

	
CuCl

	
CsOH

	
DMF

	
22








a Reaction conditions: 1a (0.2 mmol), 2a (0.3 mmol), CAN (0.3 mmol), Cu source (10 mol%), 2,2'-bipyridine (10 mol%), TEMPO (10 mol%), base (0.5 mmol), and solvent (2 mL), O2, 30 °C, 24 h then 60 °C for 24 h. b Isolated yield of 3a.










Screening revealed that the use of CsOH or KOH as a base achieved the best results. Other bases, including KF, Li2CO3, CsOAc, K2CO3, K3PO4, t-BuOK, LiOH, and NaOH, were less efficient (Table 1, entries 2–10). Among the copper sources used (e.g., CuOTf, CuBr, CuCl, Cu(OTf)2, Cu(OAc)2, CuBr2, CuCl2, and CuO), CuCl exhibited the highest catalytic reactivity (91% yield, Table 1, entries 10–17). No reaction occurred when the procedure was carried out in the absence of copper catalyst (Table 1, entry 18). Finally, we studied the solvent effect and found that CH3CN was superior to toluene, THF, PhCl, and DMF (Table 1, entries 12, 19–22). In addition, the reaction failed to give the desired product when the procedure was carried out under a N2 atmosphere.



With the optimized reaction conditions in hand, we next explored the substrate scope of (2-aminophenyl)methanols 1 and aldehydes 2 for the one-pot tandem multicomponent cyclization reaction (Table 2). First, the reaction of (2-aminophenyl)methanol (1a) with various aldehydes 2a−k in the presence of CAN was investigated under the standard conditions. The results disclosed that a variety of aldehydes are suitable substrates, and the cyclization reactions provide the corresponding products in moderate to good yields (Table 2, entries 1−11).



Table 2. Substrate scope of (2-aminophenyl)methanols and aldehydes a.  [image: Molecules 18 13860 i002]







	
Entry

	
(2-Aminophenyl)methanols (1)

	
Aldehydes (2)

	
Product (3)

	
Yield (%) b






	
1

	
 [image: Molecules 18 13860 i003]

	
 [image: Molecules 18 13860 i008]

	
3a

	
91




	
2

	
 [image: Molecules 18 13860 i003]

	
 [image: Molecules 18 13860 i009]

	
3b

	
84




	
3

	
 [image: Molecules 18 13860 i003]

	
 [image: Molecules 18 13860 i010]

	
3c

	
66




	
4

	
 [image: Molecules 18 13860 i003]

	
 [image: Molecules 18 13860 i011]

	
3d

	
82




	
5

	
 [image: Molecules 18 13860 i003]

	
 [image: Molecules 18 13860 i012]

	
3e

	
93




	
6

	
 [image: Molecules 18 13860 i003]

	
 [image: Molecules 18 13860 i013]

	
3f

	
86




	
7

	
 [image: Molecules 18 13860 i003]

	
 [image: Molecules 18 13860 i014]

	
3g

	
84




	
8

	
 [image: Molecules 18 13860 i003]

	
 [image: Molecules 18 13860 i015]

	
3h

	
71




	
9

	
 [image: Molecules 18 13860 i003]

	
 [image: Molecules 18 13860 i016]

	
3i

	
78




	
10

	
 [image: Molecules 18 13860 i003]

	
 [image: Molecules 18 13860 i017]

	
3j

	
87




	
11

	
 [image: Molecules 18 13860 i003]

	
 [image: Molecules 18 13860 i018]

	
3k

	
89




	
12

	
 [image: Molecules 18 13860 i004]

	
 [image: Molecules 18 13860 i008]

	
3l

	
87




	
13

	
 [image: Molecules 18 13860 i005]

	
 [image: Molecules 18 13860 i008]

	
3m

	
81




	
14

	
 [image: Molecules 18 13860 i006]

	
 [image: Molecules 18 13860 i008]

	
3n

	
80




	
15

	
 [image: Molecules 18 13860 i007]
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3o

	
67








a Reaction conditions: 1 (0.2 mmol), 2 (0.3 mmol), CAN (0.3 mmol), CuCl (10 mol%), 2,2'-bipyridine (10 mol%), TEMPO (10 mol%), CsOH (0.5 mmol), and CH3CN (2 mL), O2, 30 °C, 24 h then 60 °C for 24 h. b Isolated yield.










First, the mono-substituent positions at the aryl moiety of aldehydes were evaluated, and the results demonstrated that steric effects of substituents had some effects on the reaction. For example, when the cyclization reaction of 1a with para-, and ortho-methylbenzaldehyde was examined, 84% of 3b was isolated, while the yield of 3c decreased to 66% (Table 2, entries 2–3). The electronic properties of the substituents on the phenyl ring of the aldehydes also affected the yields of the reaction to some extent. Generally, the aldehydes bearing an electron-withdrawing substituent (e.g., –F, –Cl and –Br, Table 2, entries 5–7) afforded a slightly higher yield of cyclization products than those analogues bearing an electron-donating substituent (e.g., –Me and –OMe, Table 2, entries 2–4). However, aldehydes bearing a strong electron-withdrawing substituent (e.g.,–CF3) at the para position afforded a slightly lower yield of product 3h (Table 2, entry 8). A moderate yield of 2-(naphthalen-2-yl)quinazoline (3i) was observed using 1-naphthaldehyde (2i) as substrate (Table 2, entry 9). In addition, heterocyclic aldehydes, such as 2-furylaldehyde (2j) and 2-thienylaldehyde (2k) could also be used as the substrates, leading to the corresponding desired products 2-(furan-2-yl)quinazoline (3j) and 2-(thiophen-2-yl)quinazoline (3k) in 87% and 89% yields, respectively (Table 2, entries 10–11).



Subsequently, several (2-aminophenyl)methanols 1b–e, which bear different substituents at the aryl moiety, were evaluated (Table 2, entries 12−15). The results showed that different functional groups, including methyl, fluoro, chloro, and nitro, were well tolerated under the standard conditions. In general, the (2-aminophenyl)methanols bearing an electron-donating substituent produced a slightly higher yield of cyclization products than those analogues bearing an electron-withdrawing substituent. For example, substrates 1b and 1e, bearing a methyl or nitro group, reacted with substrate 2a to give the corresponding products 3l and 3o in 87% and 67% yields, respectively (Table 2, entries 12 and 15). It is noteworthy that halogen-containing substrates 1c and 1d produced the desired products 3m and 3n in 80% and 81% yields, respectively (Table 2, entries 13–14).



Two plausible reaction pathways for the formation of 2-arylquinazolines have been established and are shown in Scheme 2. First, aerobic alcohol oxidation reaction of (2-aminophenyl)methanols 1 generates 2-aminobenzaldehydes 4. An imine intermediate III is formed from intermediate I or intermediate II by two plausible reaction pathways, respectively. Then intramolecular cyclization of intermediate III affords dihydroquinazolines IV. Aromatization of intermediate IV gives 2-arylquinazolines 3 as the desired products. However, the mechanism in detail on the formation of the 2-arylquinazolines remains unclear in current stage.
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Scheme 2. Plausible reaction pathways. 






Scheme 2. Plausible reaction pathways.
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3. Experimental


3.1. General


Melting points are uncorrected. 1H-NMR and 13C-NMR spectra were measured on a 500 MHz or 300 MHz spectrometer using DMSO-d6 or CDCl3 as the solvent with tetramethylsilane (TMS) as an internal standard at room temperature. Chemical shifts are given n δ relative to TMS, and the coupling constants J are given in hertz. High-resolution mass spectra were recorded on an ESI-Q-TOF mass spectrometer. Other commercially obtained reagents were used without further purification. All reactions under nitrogen atmosphere were conducted using standard Schlenk techniques. Column chromatography was performed using EM silica gel 60 (300−400 mesh).




3.2. General Procedure for the Synthesis of 2-Arylquinazolins


To a Schlenk tube were added (2-aminophenyl)methanols 1 (0.2 mmol), aldehydes 2 (0.3 mmol), CAN (0.3 mmol), CuCl (0.02 mmol), 2,2'-bipyridine (0.02 mmol), TEMPO (0.02 mmol), CsOH (0.5 mmol), and CH3CN (2 mL). Next the tube was charged with O2 (1 atm), and was stirred constantly at 30 °C for 24 h, then at 60 °C for 24 h. After the completion of the reaction, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, and washed with brine. After the aqueous layer was extracted with ethyl acetate, the combined organic layers were dried over anhydrous MgSO4 and evaporated under reduced pressure. The residue was purified by flash column chromatography (hexane/ethyl acetate) to afford the desired products 3.



2-Phenylquinazoline (3a) [24]. Pale yellow solid (91% yield), mp 98–99 °C (Lit. 97–98 °C); 1H-NMR (DMSO-d6, 300 MHz): δ 9.70 (s, 1H), 8.55–8.59 (m, 2H), 8.17 (d, J = 8.1 Hz, 1H), 8.00–8.08 (m, 2H), 7.71–7.76 (m, 1H), 7.55–7.59 (m, 3H); 13C-NMR (DMSO-d6, 75 MHz): δ 161.3, 159.8, 149.8, 137.4, 134.8, 130.8, 128.7, 128.1, 127.9, 127.8, 123.3.



2-p-Tolylquinazoline (3b) [24]. Yellow solid (84% yield), mp 109–111 °C (Lit. 107–109 °C); 1H-NMR (CDCl3, 500 MHz): δ 9.44 (s, 1H), 8.52 (d, J = 8.0 Hz, 2H), 8.07 (d, J = 8.0 Hz, 1H), 7.87–7.90 (m, 2H), 7.56–7.60 (m, 1H), 7.35 (d, J = 8.0 Hz, 2H), 2.45 (s, 3H); 13C-NMR (CDCl3, 125 MHz): δ 161.1, 160.4, 150.8, 140.8, 135.3, 134.0, 129.4, 128.52, 128.50, 127.1, 127.0, 123.5, 21.5.



2-o-Tolylquinazoline (3c) [25]. Colorless oil (66% yield); 1H-NMR (CDCl3, 500 MHz): δ 9.49 (s, 1H), 8.11 (d, J = 8.5 Hz, 1H), 7.89–7.95 (m, 2H), 7.77 (d, J = 7.5 Hz, 1H), 7.63 (t, J = 7.5 Hz, 1H), 7.44 (t, J = 7.5 Hz, 1H), 7.05–7.11 (m, 2H), 3.87 (s, 3 H); 13C-NMR (CDCl3, 125 MHz): δ 162.4, 160.0, 157.7, 150.6, 134.0, 131.7, 130.8, 129.0, 128.5, 127.5, 127.0, 123.1, 120.7, 111.9, 56.0.



2-(4-Methoxyphenyl)quinazoline (3d) [24]. White solid (82% yield), mp 93–94 °C (Lit. 91–93 °C); 1H-NMR (CDCl3, 500 MHz): δ 9.40 (s, 1H), 8.57–8.59 (m, 2H), 8.03 (d, J = 8.9 Hz, 1H), 7.86 (t, J = 9.7 Hz, 2H), 7.55 (t, J = 8.0 Hz, 1H), 7.04 (d, J = 9.0 Hz, 2H), 3.89 (s, 3H); 13C-NMR (CDCl3, 125 MHz): δ 161.9, 160.9, 160.4, 150.9, 134.0, 130.9 130.2, 128.4, 127.1, 126.8, 123.3, 114.0, 55.4.



2-(4-Fluorophenyl)quinazoline (3e) [24]. White solid (93% yield), mp 138–139 °C (Lit. 135–137 °C); 1H-NMR (CDCl3, 500 MHz): δ 9.42 (s, 1H), 8.61–8.64 (m, 2H), 8.06 (d, J = 8.5 Hz, 1H), 7.89 (t, J = 8.0 Hz, 2H), 7.60 (t, J = 7.0 Hz, 1H), 7.20 (t, J = 8.5 Hz, 2H); 13C-NMR (CDCl3, 125 MHz): δ 165.6, 163.7, 160.5, 160.1, 150.7, 134.1, 130.7, 130.6, 128.5, 127.2, 127.1, 123.5, 115.6, 115.4.



2-(4-Chlorophenyl)-quinazoline (3f) [24]. White solid (86% yield), mp 135–137 °C (Lit. 133–135 °C); 1H-NMR (DMSO-d6, 500 MHz): δ 9.72 (s, 1H), 8.57 (d, J = 8.5 Hz, 2H), 8.19 (d, J = 8.0 Hz, 1H), 8.04–8.08 (m, 2H), 7.75–7.78 (m, 1H ), 7.64 (d, J = 8.5 Hz, 2H); 13C-NMR (DMSO-d6, 125 MHz): δ 161.5, 158.8, 149.8, 136.3, 135.8, 135.1, 129.9, 128.9, 127.93, 127.90, 123.4.



2-(4-Bromophenyl)quinazoline (3g) [23]. White solid (84% yield), mp 121–123 °C (Lit. 120–121 °C); 1H-NMR (CDCl3, 500 MHz): δ 9.43 (s, 1H), 8.50 (d, J = 8.5 Hz, 2H), 8.06 (d, J = 9.0 Hz, 1H), 7.89–7.92 (m, 2H), 7.60–7.66 (m, 3H); 13C-NMR (CDCl3, 125 MHz): δ 160.5, 160.1, 150.7, 137.0, 134.2, 131.8, 130.2, 128.6, 127.4, 127.1, 125.4, 123.6.



2-(4-(Trifluoromethyl)phenyl)quinazoline (3h) [23]. White solid (71% yield), mp 144–146 °C (Lit. not reported); 1H-NMR (DMSO-d6, 500 MHz): δ 9.76 (s, 1H), 8.75 (d, J = 8.5 Hz, 2H), 8.21 (d, J = 8.0 Hz, 1H), 8.06–8.12 (m, 2H), 7.93 (d, J = 8.5 Hz, 2H), 7.78–7.81 (m, 1H); 13C-NMR (DMSO-d6, 125 MHz): δ 161.6, 158.4, 149.7, 141.2, 135.1, 130.7, 150.5, 128.7, 128.4, 128.0, 127.9, 125.8, 125.7, 125.3, 123.6, 123.1.



2-(Naphthalene-1-yl)quinazoline (3i) [25]. white solid (78% yield), mp 121–123 °C (Lit. 120–121 °C); 1H-NMR (CDCl3, 500 MHz): δ 9.60 (s, 1H), 8.70 (d, J = 8.0 Hz, 1H), 8.17–8.19 (m, 2H), 7.93–8.03 (m, 4H), 7.70 (t, J = 7.5 Hz, 1H), 7.64 (t, J = 7.5 Hz, 1H), 7.52-7.58 (m, 2H); 13C-NMR (CDCl3, 125 MHz): δ 163.5, 160.4, 150.6, 136.3, 134.3, 134.2, 131.2, 130.4, 129.6, 128.7, 128.5, 127.7, 127.1, 126.8, 125.89, 125.87, 125.3, 123.1.



2-(Furan-2-yl)quinazoline (3j) [26]. Brown solid (87% yield), mp 132–134 °C (Lit. 131–132 °C); 1H-NMR (CDCl3, 500 MHz): δ 9.36 (s, 1H), 8.08 (d, J = 9.0 Hz, 1H), 7.87–7.90 (m, 2H), 7.68 (s, 1H), 7.60 (t, J = 6.0 Hz, 1H), 7.44–7.45 (m, 1H), 6.60–6.61 (m, 1H); 13C-NMR (CDCl3, 125 MHz): δ 160.7, 154.1, 152.5, 150.4, 145.3, 134.5, 128.4, 127.2, 123.4, 114.1, 112.3.



2-(Thiophene-2-yl)quinazoline (3k) [13]. White solid (89% yield), mp 132–133 °C (Lit. 132–134 °C); 1H-NMR (CDCl3, 500 MHz): δ 9.34 (s, 1H), 8.14–8.15 (m, 1H), 8.00 (d, J = 9.0 Hz, 1H), 7.85–7.88 (m, 2H), 7.51–7.57 (m, 2H), 7.18–7.20 (m, 1H); 13C-NMR (CDCl3, 125 MHz): δ 160.5, 157.9, 150.6, 143.8, 134.3, 129.9, 129.2, 128.3, 128.2, 127.2, 127.0, 123.4.



6-Methyl-2-phenylquinazoline (3l) [27]. Pale yellow solid (87% yield), mp 131–132 °C (Lit. 130–132 °C); 1H-NMR (CDCl3, 500 MHz): δ 9.38 (s, 1H), 8.60 (d, J = 8.5 Hz, 2H), 7.98 (d, J = 8.5 Hz, 1H), 7.72–7.74 (m, 1H), 7.67 (s, 1H), 7.50–7.55 (m, 3H), 2.58 (s, 3H); 13C-NMR (CDCl3, 125 MHz): δ 160.4, 159.7, 149.4, 138.2, 137.4, 136.4, 130.4, 128.6, 128.4, 128.3, 125.8, 123.6, 21.6.



6-Fluoro-2-phenylquinazoline (3m) [14]. White solid (81% yield), mp 121–122 °C (Lit. 120–121 °C); 1H-NMR (CDCl3, 500 MHz): δ 9.43 (s, 1H), 8.59–8.61 (m, 2H), 8.09–8.11 (m, 1H), 7.65–7.70 (m, 1H), 7.51–7.55 (m, 4H); 13C-NMR (CDCl3, 125 MHz): δ 161.4, 160.7, 159.8, 159.7, 159.4, 148.0, 128.2, 137.7, 131.4, 131.3, 130.7, 128.7, 128.5, 124.6, 124.4, 124.0, 123.9, 110.2, 110.0.



6-Chloro-2-phenylquinazoline (3n) [17]. Pale yellow solid (80% yield), mp 158–159 °C (Lit. 157–159 °C); 1H-NMR (CDCl3, 500 MHz): δ 9.38 (s, 1H), 8.59–8.61 (m, 2H), 8.02 (d, J = 9.0 Hz, 1H), 7.89 (d, J = 2.5 Hz, 1H), 7.81–7.83 (m, 1H), 7.51–7.55 (m, 3H); 13C-NMR (CDCl3, 125 MHz): δ 161.3, 159.5, 149.2, 137.6, 135.0, 132.8, 130.9, 130.4, 128.7, 128.6, 125.8, 124.0.



7-Nitro-2-phenylquinazoline (3o). White solid (67% yield), mp 142–144 °C; IR (KBr) 2925, 1687, 1567, 1526, 1421, 1326, 1291, 927, 823, 740, 706, 686, 668 cm−1; 1H-NMR (CDCl3, 500 MHz): δ 9.62 (s, 1H), 8.97 (d, J = 2 Hz, 1H), 8.64–8.66 (m, 2H), 8.357–8.361 (m, 1H), 8.11 (d, J = 8.5 Hz, 1H), 7.56–7.58 (m, 3 H); 13C-NMR (CDCl3, 125 MHz): δ 162.9, 160.8, 151.2, 150.5, 136.9, 131.6, 129.0, 128.9, 128.8, 125.7, 124.9, 120.7. HRMS (ESI) m/z: [M+H]+ Calcd for C14H10N3O2 251.0695; Found: 251.0681.





4. Conclusions


In summary, we have successfully developed a new protocol for the copper-catalyzed cascade reaction of (2-aminophenyl)methanols, aldehydes, and ceric ammonium nitrate to afford a series of 2-arylquinazolines in moderate to excellent yields. Further efforts to extend this catalytic system to the preparation of other useful heterocyclic compounds are currently underway in our laboratories.
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