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Abstract: Inhibitory activities of monocyclic nitroimidazoles against Mycobacterium 

tuberculosis (Mtb) deazaflavin-dependent nitroreductase (DDN) were modeled by using 

docking, pharmacophore alignment and comparative molecular similarity indices analysis 

(CoMSIA) methods. A statistically significant model obtained from CoMSIA was 

established based on a training set using pharmacophore-based molecular alignment. The 

leave-one out cross-validation correlation coefficients q2 (CoMSIA) were 0.681. The 
CoMSIA model had a good correlation ( /CoMSIA = 0.611) between the predicted and 

experimental activities against excluded test sets. The generated model suggests that 

electrostatic, hydrophobic and hydrogen bonding interactions all play important roles for 

interaction between ligands and receptors. The predicted cell wall permeability (logPapp) 

for substrates with high inhibitory activity against Mtb were investigated. The distribution 

coefficient (logD) range was 2.41 < logD < 2.89 for the Mtb cell wall membrane 

permeability. The larger the polar surface area is, the better the permeability is. A larger 

radius of gyration (rgry) and a small fraction of rotatable bonds (frtob) of these molecules 

leads to higher cell wall penetration ability. The information obtained from the in silico 

OPEN ACCESS



Molecules 2013, 18 13871 

 

tools might be useful in the design of more potent compounds that are active against Mtb. 

Keywords: antitubercular activity; monocyclic nitroimidazoles; Mycobacterium tuberculosis; 

3D-QSAR; cell wall permeability 
 

1. Introduction 

Tuberculosis (TB) is the World’s second most common cause of death by infectious disease [1]. In 

2012, 8.6 million people fell ill with TB and 1.3 million died from [2], which makes TB one of the 

most dangerous diseases for humans. 

It has been estimated that one third of the World’s population is infected with Mycobacterium 

tuberculosis (Mtb), and 10% of these people will become active TB patients during their lifetime [3]. 

Although first-line and second-line drugs are available in clinics, the emergence of resistant strains of 

Mtb make TB treatment far more difficult. In fact, it is estimated that half a million cases of new 

multi-drug resistant (MDR) TB occur every year [2]. 

The first aerobic antitubercular activity of bicyclic nitroimidazoles was reported from a series of 4- 

and 5-nitroimidazole[2,1-b]oxazoles [4]. Nitroimidazole compounds such as PA-824 currently are in 

clinical phase II trials [5]. Several studies have identified spontaneously generated PA-824 resistant 

mutants as a means to understand the cellular machinery involved in its activation [6–10]. The bicyclic 

nitroimidazole drug sensitivity related to the hypothetical respiratory protein deazaflavin-dependent 

nitroreductase (DDN) was confirmed, and loss of deazaflavin cofactor F420 biosynthesis ability was 

reported [11,12], thus the F420 series by glucose-6-phosphate dehydrogenase enzyme (FGD1) 

activities are dependent [13]. It was known form a series of papers that the F420 dependent glucose-6-

phosphate dehydrogenase (FGD1) was sensitive for resistance in isolates and lost the ability to 

biosynthesize the deazaflavin cofactor F420 [8–10]. Rv3547 was essential for susceptibility to the 

compound and a conserved hypothetical protein encoded by it was identified [12]. FGD1 promotes the 

oxidation of glucose 6-phosphate to phosphogluconolactone that reduces F420 to F420H2 that is the 

active form of the cofactor that is utilized by a protein encoded by Rv3547, an enzyme henceforth 

referred to as a deazaflavin dependent nitroreductase (Ddn) whose physiological role is unknown. 

F420H2 produces the three stable metabolites from the reduction of the imidazole ring at C-3 in the 

aerobic state [14]. One of them is the reduced NO, subsequent to the release of nitrous acid DES-nitro-

reduced metabolites with antibacterial F420H2 that change to NO from NO2 [15]. NO has less  

M. tuberculosis activity than NO2, therefore it can easily stay alive in the macrophage [8]. 

In this study, the structure-activity relationship of monocyclic nitroimidazole analogues against Mtb 

was investigated by using docking and 3D-QSAR methods. CoMFA and CoMSIA models were 

obtained based on the pharmacophore alignment. We have predicted the correlation of the Mtb cell 

wall permeability and their activities in order to understand the cell wall permeability and the Mtb 

potency properties of nitroimidazole. 
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2. Result and Disscussion 

2.1. Binding Site and Docking Results 

The solvent-accessible region between DDN and the flavin ring of F420 was predicted by SiteID 

Pocket Finder. The predicted binding site volume was 11 Å3 and the residues were Ser78, Lys79, 

Gly80, Tyr130, Tyr133 and Tyr136. The docking scores of the binding site inhibitors are listed in 

Table 1 and represented in Figure 1A. The results of nitroimidazoles docked in the binding site are 

shown in Figure 1B. A correlation could not be found between docking scores and inhibitory activity 

(Obs.pI50). In this result, because the docking scores were often highly correlated with molecular 

weight, the most significant contributors for scores were nonspecific interactions [16]. Moreover, 

inhibitory activity for the target was very complicated and affected by some other factors. As a whole 

the docked forms of the nitroimidazole skeleton into the binding sites were adequately configured and 

the orientations were similar. 

Table 1. Observed activities (Obs.pI50), predicted activities (Pred.pI50) and docking scores 

of the Mtb inhibitory activities of nitroimidazoles. 

No. R1 R2 R3 Obs.pI50
a Pred.pI50

b Dev. c DS d 

1 2,4-Cl H  3.98 4.013 −0.033 −7.1 
2 f 2,4-Cl Br  5.28 4.710 0.570 −7.3 
3 f 2,4-F H  3.02 4.164 −1.144 −7.2 
4 2,4-F Br  3.74 3.749 −0.009 −7.6 
5 4-F Br  3.41 3.381 0.029 −7.6 
6 f 4-Cl Br  3.73 3.663 0.067 −7.5 
7 4-NO2 Br  3.75 3.772 −0.022 −7.1 
8 H Br  3.99 3.950 0.040 −7.2 
9 f 2,4-CH3 Br  3.42 3.980 −0.560 −7.7 

10 e 2,4-Cl O  5.82 5.886 −0.066 −7.3 
11 e 2,4-Cl O  4.87 4.776 0.094 −7.3 
12 4-F O  4.24 4.266 −0.026 −7.6 
13 4-Cl O  4.27 4.362 −0.092 −7.1 
14 4-NO2 O  4.29 4.281 0.009 −7.3 

15 e 4-Phenyl O  5.83 5.784 0.046 −7.2 
16 f 2,4-Cl S  4.34 5.380 −1.040 −6.9 
17 e H O  4.52 4.447 0.073 −7.4 
18 2,4-CH3 O  4.39 4.429 −0.039 −7.2 

19 e 2,4-F  4-Cl 4.42 4.403 0.017 −7.0 
20 2,4-F  4-F 4.10 4.121 −0.021 −8.2 

21 f,g    6.44 6.020 0.420 −7.6 
a Observed inhibitory activity value; b Predicted inhibitory activity value; c difference between the observed 

inhibitory activity and the predicted inhibitory activity; d Docking score(kcal/mol); e Template; f Test set; g PA-824. 
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Figure 1. Predicted active site and docked pose for the DDN (PDB 3R5R) of Mtb;  

(A) Predicted active site between DDN and flavine ring of F420, green; F420, sphere; binding 

site; (B) Binding conformations of 21 docked compounds at the active site; (C) The 

interactions between the active binding site and compound 15. 

 

To further explain the interaction among inhibitors, DDN and flavin ring of F420, the most active 

monocyclic nitroimidazole compound 15 was selected to perform the docking analysis and its ternary 

complex binding model is displayed in Figure 1C. Hydrogen bond interactions were observed between 

the O atoms of the NO2 group with the NH (2.74 Å) backbone of Ser78 and the OH (1.88 Å) the side 

chain of Lys79, and between the OH (2.55 Å, 2.69 Å) group of 15 and the OH group of Tyr130. 

2.2. Pharmacophore and Alignments 

Pharmacophore models were generated by using the five active ligands in the training set in a 

GALAHAD run. Twenty pharmacophore models were obtained. Among the twenty generated models, 

there were 17 Pareto rank 0 models and three 3 Pareto rank 1 models. The Pareto rank 0 is given 

priority over Pareto rank 1, therefore the Pareto rank 1 models 18, 19 and 20 were excluded from this 

analysis. All of the 17 models were Pareto rank 0, which means no one model is superior to any other, 

so we selected one model that met the demands to maximize SO consensus, maximize PhS consensus 

and minimize low SE. Only the pharmacophore models derived from all five ligands of the training set 

were compared according to Pareto ranking. Table 2 presents SE, SO and PhS values for models with 

all five of the ligands. Minimum and maximum values for each characteristic between all the seventy 

obtained models are also represented in this table. Model 10 had much higher energy than the other 

nine models, so it is not included in the statistics. A small value of SE, high values of SO and PhS are 

desired for the best model. SE of the models containing all five ligands (substrates) had a narrow 

variation value between the minimum (0.33) and the maximum (4.62). SO values varied between the 

minimum (160.70) and the maximum (710.43), and PhS had a small variation between the minimum 

(89.40) and the maximum (199.10). With the intention of selecting the optimal model, we represented 

a 3D and 2D scatter plot to visualize the Pareto Rank in Figure 2. To select the optimal model, a 3D 

scatter plot was built for the Pareto rank 0 models in Figure 2A. Considering only the SE and SO 

criteria, the best model lies in the upper left hand corner of the graph in Figure 3B, where the SE is low 

and the SO is high. In terms of PhS and SE criteria, the best model lies in the lower right hand corner 

of the graph in Figure 2C, where the SE is low and PhS is high. In terms of PhS and SO, some of the 

best models lie at the upper right corner, where E as well as PhS are high in Figure 2D. According to 
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Figure 2, there is only one model (M_02), which fulfilled all three requirements described above and it was 

selected for the subsequent study. This model is represented in Figure 3A. The M_02 model has low SE, 

and higher SO with high PhS values. Two hydrophobic moieties of the pharmacophore for the monocyclic 

nitroimidazole analogues were reflected in the presence of hydrophobic structure from the skeleton. 

Table 2. Strain energy (SE), steric overlap (SO) and pharmacophoric similarity (PhS) values 

for GALAHAD models with all five ligands with contribution to the consensus feature. 

Model FEATS SE SO PhS 

M_01 9 1.93 642.6 199.1 
M_02 8 1.65 641.6 191.5 
M_03 8 3.62 671.7 191.5 
M_04 9 4.39 684 191.5 
M_05 8 4.19 710.3 193.1 
M_06 8 4.62 671 192.3 
M_09 8 1.37 310.4 124.1 
M_10 8 1.61 327.4 120.7 
M_13 7 1.14 280.9 119.2 
M_17 7 0.64 160.7 102.7 

Min a 0.64 160.7 102.7 
Max b 4.62 710.3 199.1 

a Minimum and b maximum values between all the obtained 17 models. 

Figure 2. Plot of the strain energy (SE), steric overlap (SO) and pharmacophoric similarity 

(PhS) values for GALAHAD models with all five ligands with contribution to the 

consensus feature; (A) 3D plot; (B) plot of SO vs. SE; (C) plot of SE vs. PhS; (D) plot of 

PhS vs. SO. 
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The HB acceptor moieties represent the importance of these positions in the monocyclic 

nitroimidazole scaffold for MTB inhibitory activity. Cyan, green and magenta spheres indicate 

hydrophobes (HY_7, HY_8), HB acceptors (AA_2, AA_3, AA_4, AA_5 and AA_6) and HB donor 

(DA_1), respectively. It would be possible for us to reduce the number of these pharmacophoric points 

if we wished to retrieve chemical compounds more distant from the monocyclic nitroimidazole 

analogues. All conformers aligned represent low-energy conformations of the molecules, and it can be 

seen that the final alignment shows a satisfactory superimposition of the pharmacophoric points. 

All compound datasets were aligned for template M_02 model using the “Align Molecules to 

Template Individually” option and the other parameters for calculation were set to default values on 

the GALAHAD run in Figure 3B. 

Figure 3. Selected pharmacophore model M_02 (A) and molecular alignment (B) of the 

nitroimidazole compounds used to elaborate the model: Cyan, hydrophobes; Green, HB 

acceptors; Magenta, HB donors. 

 

2.3. 3D-QSAR 

The 3D-QSAR models from CoMFA and CoMSIA analyses were generated and their statistical 

values are presented in Table 3. For reliable predictive models the cross-validated coefficient q2 > 0.5, 
external predictive ( ) > 0.6 was verified by statistical criteria [17]. 

The CoMFA model had a cross-validated q2 (0.521), a high non cross-validated  (0.999) and F 

(1049.253) as well as small SEE (0.032), but it had a high deviation Scv (0.629) and a low external 
prediction  (0.446) which indicates that the CoMFA model was a non-reliable. Therefore we did 

not consider the CoMFA model. 

CoMSIA model analyses using different combinations of Steric (S), Electrostatic (E), Hydrophobic 

(H), Hydrogen bond Donor (HD), and Acceptor (HA) fields are represented in Table 3. A more 

statistically meaningful model was obtained from the CoMSIA analyses and these six CoMSIA models 

all show good correlative and predictive ability. Among the six models, model ID (q2 = 0.749, 

 = 0.995) was better than other models for internal CoMSIA statistical values, but the external test 
set predictive value indicated that the model IC  (0.611) was better than ID  (0.554), in the 

above criteria with CoMSIA analyses thus the best model IC was selected. The best CoMSIA model 
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included S·E·H·HA fields and had a q2 (0.681),  (0.995), F (243.308) and a small SEE (0.067) 

using six components. 

Table 3. Summary of statistical results for COMFA and COMSIA models. 

Parameters COMFA 
COMSIA 

IA IB IC ID IE IF 

Component 6 6 6 6 6 6 6 

q2 a 0.521 0.694 0.736 0.681 0.749 0.714 0.671 

Scv
b 0.629 0.503 0.467 0.514 0.455 0.487 0.522 

rcv 
c 0.488 0.655 0.702 0.687 0.722 0.707 0.758 

rncv
2 d 0.999 0.992 0.992 0.995 0.995 0.992 0.994 

F e 1049.253 174.433 163.561 243.308 291.917 174.561 214.532 

SEE f 0.032 0.079 0.082 0.067 0.061 0.079 0.071 

Fraction        

Steric 0.466 0.084 0.095 0.087 0.119  0.096 

Electrostatic 0.534 0.425 0.503 0.553 0.708 0.484 0.488 

Hydrophobic  0.130 0.147 0.152 0.173 0.143  

Donor  0.199 0.255   0.193 0.233 

Acceptor  0.157  0.209  0.180 0.192 	g 0.446 0.516 0.435 0.611 0.554 0.548 0.477 
a Leave-one-out cross validated correlation coefficient; b Leave-one-out cross-validated standard error;  
c Conventional correlation of group cross-validation; d Non-cross-validated correlation coefficient;  
e F-test value; f Standard error of estimate of non-cross-validated correlation coefficient; g External predictivity. 

The CoMSIA model IC indicated a contributions percentage (%) of S (8.7), E (55.3), H (15.1), and 

HA (20.9), respectively. The E field of the substrate molecule had the highest contribution values of 

Mtb inhibitory activity. The correlations between the predicted activity values and experimental values 

are plotted in Figure 4. 

Figure 4. Plot of observed activities (Obs.pI50) versus predicted activities (Pred.pI50) for 

the COMSIA model IC; (●) training set; (○) test set. 
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CoMSIA model IC contour maps are represented in Figure 5, using compound 15 as a reference 

(template) structure. The Steric field contour map in Figure 5A, is represented by green and yellow 

polyhedrons in which green polyhedrons indicate regions where a bulky group would be favorable, 

while the yellow polyhedrons represent regions where a bulky group would decrease the activity. The large 

yellow polyhedrons (contribution level 15%) are located around ring-A, but the C4-position is separated, 

indicating that a bulky group in the C2-, C3-positions has decreased inhibitory activity. A small green 

polyhedron (contribution level 75%) is located in the terminal of the R2 position, indicating that a 

small steric group has increased inhibitory activity. 

Figure 5. Contour plots with the combination of compound 15 for CoMSIA model IC;  

(A) Steric contour map. Green polyhedrons indicate regions where bulky groups increase 

activity; Yellow polyhedrons indicate regions where bulky groups decrease activity;  

(B) Electrostatic contour map. Red polyhedrons indicate regions where negative charges 

increase activity; Blue polyhedrons indicate regions where positive charges increase 

activity; (C) Hydrophobic contour map. Yellow polyhedrons indicate regions where 

hydrophobic substituent enhances activity; Gray polyhedrons indicate regions where 

hydrophobic groups decrease activity; (D) H-bond acceptor contour map. Magenta 

polyhedrons indicate regions where H-bond acceptor substituent increases activity. 

 

The electrostatic field contour map in Figure 5B is indicated by blue and red polyhedrons, which 

demonstrate the regions where an electron-donating group and an electron-withdrawing group would 

be favorable. A small blue polyhedron (contribution level 80%) is located in the R2-position and  

C4-position of ring-A, indicating that the electron-donating group has increased inhibitory activity. 

Also, the red polyhedrons (contribution level 20%) near the C2-positions of ring-A and OH group 

location, indicate that the electron-withdrawing group has increased inhibitory activity. In the 

hydrophobic contour map in Figure 5C, the yellow polyhedron (contribution level 80%) appear near 

the front of the substituent linking to the C4-position of ring-A in reference compound 15. Accordingly 

if a positively charged atom is substituented between the ring-A and phenyl group, it improves 
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inhibitory activity because electropositive groups usually exhibit hydrophobic properties. A gray 

polyhedron (contribution level 20%) enclosing the -O- position of R2 indicates that hydrophilic groups 

would be favored as a substituent for their activity level because electropositive groups usually exhibit 

hydrophilic properties. In the hydrogen bond acceptor contour map in Figure 5D, there are two 

magenta polyhedrons close to the –NO2 substituent and the C3-position of ring-A, which indicates that 

hydrogen bond acceptor groups will increase activity. 

2.4. Mtb Cell Wall Permeability Prediction 

Organic molecules have different ionizable states according to different pH values. When molecules are 

absorbed into cell membranes, molecule hydrophoicity determines the process rate for membrane 

permeation. Therefore molecule hydrophoicity is widely used as a predictor of membrane  

permeability [18]. The influence of ionization on hydrophobicity for a molecule means that the 

distribution coefficient (logD) should be considered rather than the partition coefficient (logP). The 

permeation of drugs through the membrane can occur via hydrogen bond cleavage in an aqueous 

environment. Potentially, molecules can make more hydrogen bonds and it takes more energy to 

perform these hydrogen bond cleavages, so a high hydrogen bonding potential is an unfavorable 

property that is often related to low permeability and absorption. Generally, oxygen and nitrogen 

atoms are molecules that possess high charge density and are electronegative. If the charge density of 

these atoms is very low, it may have weak hydrogen bonds and electrostatic interactions with other 

polar atoms. Therefore polar surface area (PSA) is a very significant descriptor for drug transport 

properties such as membrane permeation and barrier penetration [19]. Molecular weight (MW) and 

volume are important factors that influence diffusion in biological membranes and continuous fluid 

media [20]. But the volume and the area of molecular shape are more suitable to describe than MW. 

The correlation coefficient between reference HCPSA and calculated PSA are represented in Table 4. 

It did not list the reference data set descriptors. In the case of model IIB and IIC, an individual 

correlation coefficient had better PSA (model IIB, r2 = 0.497, r = 0.704) than HCPSA (model IIC,  

r2 = 0.463, r = 0.680), and in the case of model IID and IIE, the model IIE had better HCPSA (model IID, 

r2 = 0.624, r = 0.789) than PSA (IIE, r2 = 0.609, r = 0.780) in association with logD. However, a 

correlation coefficient with a very small deviation showed between the multi regression equation of 

PSA (model IIF, r2 = 0.645, r = 0.803) and HCPSA (model IIG, r2 = 0.648, r = 0.804) in combination 

with logD, rgry and frtob. 

Calculated cell wall permeability (logPeff) and their descriptors of nitroimidazoles are presented in 

Table 5. The predicted logPeff of high inhibitory activity compounds (056, 034, 029, and 003) for the 

MTB was −4.59 < logPeff < −4.54. From the equation of model IIG, descriptors affecting of logPeff 

were as follows: frtob > logD > PSA > rgry. The frtob value range was 0.2222 < frtob < 0.2272 and the 

logD value range was 2.41 < logD < 2.67 against the membrane logPeff of the high inhibitory activity 

compounds (056, 034, 029, and 003). However, the range of PSA (127 < PSA < 152) and rgyr  

(3.9282 < rgry < 4.8307) showed a large variation. 
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Table 4. Prediction regression model of reference data set. 

Parameters IIA IIB IIC IID IIE IIF IIG 

n a 77 77 77 77 77 77 77 
q2 b 0.475 0.468 0.436 0.594 0.583 0.597 0.598 
r2 c 0.497 0.497 0.463 0.624 0.609 0.645 0.648 
r 0.704 0.704 0.680 0.789 0.780 0.803 0.804 

F d 73.98 74.03 64.68 61.29 57.51 67.20 67.98 
SEE e 0.537 0.537 0.554 0.467 0.477 0.454 0.450 
logD f 0.313   0.212 0.192 0.225 0.200 
PSA g  −0.006   −0.004  −0.004 

HCPSA h   −0.011 −0.007  −0.007  
rgyr i      −0.082 −0.130 
frtob 

j      0.431 0.362 
c k −5.261 −4.313 −4.278 −4.685 −4.707 −4.497 −4.313 

a Number of compounds for reference data set; b Leave-one-out cross validated correlation coefficient;  
c Non-cross-validated correlation coefficient; d F-test value; e Standard error estimate of non-cross-validated 

correlation coefficient; f Distribution coefficient; g Polar surface area; h High charged polar surface area;  
i Radius of gyration; j Fraction of rotatable bonds; k Constant. 

Table 5. Molecule descriptors and predicted nitroimidazoles logPeff. for Mtb cell walls. 

No. logPeff a rgyr b frtob 
c logD d PSA e 

1 −4.6116343 4.0313 0.2000 2.46 149.838 

2 −4.5404066 3.9282 0.1904 2.67 147.268 

3 −4.8524414 3.8254 0.2000 1.39 152.410 

4 −4.7692208 3.6884 0.1904 1.59 145.796 

5 −4.7926759 3.7089 0.2000 1.50 147.788 

6 −4.7023681 3.9511 0.2000 2.05 150.179 

7 −5.0909159 4.0777 0.2272 1.24 239.008 

8 −4.7872804 3.4399 0.2105 1.31 150.507 

9 −4.6492473 3.6979 0.1904 2.15 156.862 

10 −4.5570507 4.0205 0.2272 2.41 127.883 

11 −4.8030476 3.8244 0.2272 1.33 130.829 

12 −4.8236766 3.8606 0.2380 1.24 130.382 

13 −4.7282331 4.0861 0.2380 1.79 131.800 

14 −5.1202633 4.2235 0.2608 0.98 219.603 

15 −4.5974279 4.8307 0.2222 2.89 130.405 

16 −4.4095507 4.0205 0.2272 3.09 141.513 

17 −4.8078457 3.5847 0.2500 1.05 129.134 

18 −4.6659152 3.8600 0.2272 1.89 130.823 

19 −4.0633268 4.0268 0.2580 4.05 103.310 

20 −4.1658948 4.2228 0.2580 3.79 102.466 

21 −4.5433115 4.2727 0.2222 2.86 152.777 
a Predicted Mtb cell wall permeability; b Radius of gyration; c Fraction of rotatable bonds; d Distribution 

coefficient; e Polar surface area. 
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Recently, qualitative physochemical properties of preclinical and clinical development anti-TB 

drugs have been predicted with regard to the cell wall permeability using an in silico method [21]. The 

predicted average parameter values were clogP (3.5), MW (431.4), HA (6), HD (1) and rotatable bonds 

(RB) (6). The high activity monocyclic nitroimidazole compound 15 also has logD (2.89), MW (339), 

HA (6), HD (1) and RB (7) values. We thus found that the cell wall permeability prediction average 

parameter values were very similar to those of the high activity compound 15. 

3. Experimental 

3.1. Data Set 

3D QSAR studies were performed on the Mtb inhibition of monocyclic nitroimidazole analogues, 

where the observed inhibitory activity (Obs.pI50) values were calculated from previously reported data [22]. 

The minimum inhibition concentration (MIC) values of some molecules were qualitatively (they do 

not have exact activity quantities) higher than 256 μM. These molecules were removed from the data 

set. For the QSAR analysis the MIC values were converted to 50% inhibitory molar concentrations and 

were expressed in negative logarithmic units. The Obs.pI50 was calculated from following equation (1): 

Obs.pI50 = −log ( . × , ) (1)

The inhibitory activities (Obs. pI50) against Mtb with substituent changes in the nitroimidazole 

derivatives 1–21 (Figure 6) were determined. The chemical structures and corresponding Obs.pI50 values 

are listed in Table 1. 

Figure 6. General structures of the monocyclic nitroimidazoles and PA-824(21). 

 

3.2. Predicted Binding Sites and Docking Simulation of DDN 

The crystal structure of DDN (PDB 3R5R) was taken from the Protein Data Bank (PDB). The 

unidentified ternary complex of DDN with F420 was found but none with inhibitor [23]. The binding 

site was predicted from the generated solvent accessible region by the Sybyl module SiteID [24] and 

the cavity centroid, determined as an appropriate distance from C5 of the flavin ring for hydride 

transfer [23,25]. AutoDock (Ver. 4.2) [26] was used for the active site of the protein and was defined 

by a centered grid of 60 × 60 × 60 points with a grid spacing of 0.35 Å. The Lamarckian Genetic 

Algorithm (LGA) was used with 30 runs, and a clustering of docked poses was applied according to 

the RMSD. The best pose with the lowest AutoDock score on the top cluster was retained for  

each compound. 
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3.3. Pharmacophore Model and Molecular Alignment  

All structures obtained from docking were imported into SYBYL-X2.0 [24] as mol2 files and 

assigned Gasteiger-Huckel atomic partial charges. Pharmacophore models 10, 11, 15, 17 and 19 from 

the template data set compounds were selected by the distribution for biological activities and 

structural diversity that were generated using a genetic algorithm with a linear assignment for the 

hypermolecular alignment of datasets (GALAHAD) module. GALAHAD was run for 100 generations 

with a population size of 70 and a tournament pool size of 250. Default values were used for other 

settings, and the best model from a low strain energy (SE), steric overlap (SO), and pharmacophoric 

similarity (PS) in the Pareto ranking of the generated models was selected. All compounds were 

aligned to the best pharmacophore model using the Align Molecules to Template Individually method.  

3.4. 3D-QSAR Models 

The CoMFA and CoMSIA models that were generated from the analytical correlation results 

between descriptors of the structural character of inhibitors and their Mtb inhibitory activities were 

derived using partial least square (PLS) analysis [27]. The set of inhibitors were divided into a training 

and test set. Training set compounds (n = 15) were derived from all data set compounds (n = 21) and 

test set compounds (n = 6), then predictabilities of each model using a test set were discussed. 

The CoMFA fields were generated using steric and electrostatic probes with standard  

30 kcal/mol cut-offs. In the CoMSIA analyses, similarity was expressed in terms of steric occupancy, 

electrostatic interactions, local hydrophobicity, and H-bond donor and acceptor properties, using a 0.3 

attenuation factor. 

The PLS method [28] was used to correlate the CoMFA and CoMSIA fields to Obs.pI50 of inhibitory 

activity values. The generated models were assessed using a leave-one-out (LOO) cross-validation 

procedure by the SAMPLS method as implied in the PLS module. The LOO is a method in which one 

compound is removed from the dataset and its activity is predicted using the model derived from the 

rest of the molecules in the dataset. A strict criterion for the selection of the optimal number of 

components was applied by selecting the lowest PRESS value and the less complex model was chosen 

with the corresponding cross-validation (CV) coefficient (q2) [29]. The q2 value resulted in a minimal 

number of components and the lowest CV standard error (SE, Scv) of estimate was accepted. The 

column filtering values (σmin) were set to 2.0 kcal/mol in order to speed up the analytical process and 

reduce noise. The optimal number of components were used to derive the final PLS model, with a  

non-cross-validation (ncv) method [30]. The higher correlation ( ) and predictability (q2 or ) among 

derived models was selected to test the utility of the model as a predictive tool. The prediction of the model 

between training sets (internal) and test sets (external) was calculated from according to equation (2): = 1 −  (2)

where PRESS is the sum of the squared deviations between predicted and actual pI50 values for the test 

set compounds. SD is the sum of the squared deviation between the actual pI50 values of the 

compounds from the test set and the mean pI50 value of the training set compounds. The best model from a 
correlation coefficient ( ) > 0.50, coefficient of determination ( ) > 0.60 [17] for the two statistical 
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criteria was selected. To analyze the visualized structural distinctions of inhibitors, information from the 

best model was expressed in three dimensional space on contour maps (steve*coeff). 

3.5. MTB Cell Wall Permeability Prediction 

The Caco-2 cell membrane permeability models were generated from descriptors of the structural 

characteristics of nitroimidazoles. The distribution coefficient (logD, CDLab ver 6.0) [31] of 

hydrophobicity at pH 7.4, MOLPROP_PSA (PSA) [24] of hydrophilicity, radius of gyration (rgyr)  

(E-Dragon) [32] and fraction of rotatable bonds (frotb) (JOELib) [33] of molecular bulkiness were 

calculated. A training data set of reference data was obtained from the literature [34,35]. The 

correlation between the reference data high charged polar surface area (HCPSA) and the calculated 

PSA was compared using Sybyl PLS analysis. The Caco-2 cell membrane permeability value of 

nitroimidazoles from this data set was calculated and Mtb cell wall permeability (logPeff) of inhibitors 

was predicted using this data. 

4. Conclusions 

In this study, the docking, pharmacophore model, 3D-QSAR and cell wall permeability properties 

were obtained to predict the Mtb inhibition activity of nitroimidazoles, which is important information 

to support the design of active compounds. The hypothetic binding orientations of compounds 

interacting with DDN and F420 were revealed by the docking studies, and a pharmacophore model 

obtained using GALAHAD is a useful molecular alignment tool for measuring Mtb inhibitory activity 

and was able to produce a good 3D-QSAR model. Pharmacophores consisted of one donor atom, five 

acceptor atoms, and two hydrophobic centers in a monocyclic nitroimidazole. The CoMSIA model 

was established using pharmacophore-based molecular alignment and the statistical significance of the 

model was evaluated. The CoMSIA model was stable and had statistically significant predictive 

ability. High correlation and predictability were established (  = 0.995, q2 = 0.681) and the 
predictive correlation coefficient (  = 0.611) for the test set determined. The Mtb cell wall 

permeability was predicted through Caco-2 cell permeability. The distribution coefficient ranges were  

2.41 < logD < 2.89 for the Mtb cell wall permeability. A combined docking, pharmacophore searching 

and 3D-QSAR study can thus effectively direct drug molecular design. 
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