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Abstract: Asymmetric conjugate additions of branched aldehydes to vinyl sulfones 

promoted by sulfonamide organocatalyst 6 or 7 have been developed, allowing facile 

synthesis of the corresponding adducts with all-carbon quaternary stereocenters in 

excellent yields with up to 95% ee. 
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1. Introduction 

All-carbon quaternary stereocenters are one of the most important motifs in many natural products 

and bioactive compounds; however, relatively harsh reaction conditions are required to construct these 

stereocenters due to their steric hindrance. In addition, combinations of electrophile and nucleophile 

are limited, and the stereoselective construction of all-carbon quaternary stereocenters is not generally 

straightforward. Therefore, development of efficient synthetic methods to stereoselectively construct 

all-carbon quaternary stereocenters under mild reaction conditions is highly desirable in organic 

synthesis [1–13]. Among various methodologies to construct these centers, organocatalysis is one of 

the most effective processes that can be performed under mild conditions. The synthetic methods for 

compounds with quaternary stereogenic centers using organocatalysts have received considerable 
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attention, particularly in the field of green chemistry [14,15]. Michael additions of various carbonyl 

compounds to 1,1-bis(benzenesulfonyl)ethylene (11) using organocatalysts are efficient synthetic 

methods, and several research groups have reported findings in this area [16–33]; however, successful 

conjugate additions of α-branched aldehydes and 11 for the construction of such all-carbon quaternary 

stereocenters have been rarely reported [34–38]. Alexakis and coworkers reported that L-proline 

derivatives catalyze the reaction of 11 with α-branched aldehyde 12a to give the corresponding adduct 

13a with up to 73% ee [34,35]. Lu and coworkers reported that the sulfonamide organocatalyst derived 

from L-threonine promotes the conjugate addition of 12a to 11 in the unusual reaction solvent  

p-fluorotoluene to afford the corresponding adduct 13a in high yield with high enantioselectivity (up to 

83% ee) [36]. Furthermore, Maruoka and coworkers reported efficient conjugate additions of  

α-heterosubstituted aldehydes with 11 using a sulfonamide organocatalyst with a dihydroanthracene 

framework (up to 95% ee) [37]. Recently, we also reported that a diaminomethylenemalononitrile 

organocatalyst catalyzes similar conjugate additions to afford 13a with high enantioselectivity (up to 

89% ee) [38]. 

On the other hand, fluorous compounds with a perfluoroalkyl group can be easily separated from 

nonfluorous compounds by fluorous organic solvent extraction or fluorous solid phase extraction 

(FSPE) using fluorous silica gel [39]. Several research groups have reported asymmetric reactions in 

which fluorous organocatalysts are recyclable [40]. We have also reported a direct aldol reaction in 

water using fluorous sulfonamide organocatalyst 3 and related catalysts [41–43], Michael addition 

reactions using a fluorous thiourea organocatalyst [44], and an oxidation reaction using fluorous  

IBX [45]. In addition, we have reported a method for the synthesis of both enantiomeric aldol products 

in water using sulfonamide organocatalysts 1 [46] and 2 [47,48], prepared from L-phenylalanine.  

Very recently, we reported in a preliminary communication that perfluoroalkanesulfonamides 5 and 6 

catalyze the conjugate additions of branched aldehydes to vinyl sulfone 11 to give the corresponding 

adducts with excellent stereoselectivities [49]; however, development of a protocol for recovery and 

reuse of 5 and 6 is yet to be reported. Herein, we describe the full details of the conjugate additions of 

branched aldehydes to vinyl sulfone using 6 and novel fluorous sulfonamide 7 (Figure 1). 

Figure 1. Structure of organocatalysts. 

 

2. Results and Discussion 

We initially examined the sulfonamide organocatalysts 1–7 for the conjugate addition of 12a to 11 

as a test reactant (Table 1). Sulfonamide organocatalysts 1–4 derived from L-phenylalanine were 

superior to catalyst 5 derived from L-valine for the direct aldol reactions in water [37,46,48]; however, 

5 bearing the valine skeleton resulted more suitable for the conjugate addition with vinyl sulfone 11 

(entries 1–5). Furthermore, to develop a more powerful organocatalyst, we synthesized 6, which 



Molecules 2013, 18 14531 

 

 

enhanced the acidity of the sulfonamide group by the introduction of the perfluorobutyl group. 

Treatment of compound 8 [50] with perfluorobutanesulfonyl fluoride in presence of triethylamine in 

dichloromethane provided the intermediate 9 in 79% yield. The Boc protective group was removed by 

treatment of hydrogen chloride in ethyl acetate to give the desired perfluorobutanesulfonamide 6 in 

90% yield (Scheme 1). Organocatalyst 6 was more effective for conjugate additions with vinyl sulfone 

11, resulting in the highest enantioselectivity (91% ee) and excellent yield (entry 6). Furthermore, to 

develop an organocatalyst that can be recovered and reused, 7 was synthesized by a similar procedure 

(Scheme 2). The stereoselectivity was slightly reduced in the reaction using 7 (entry 7). 

Table 1. Selection of organocatalyst. 

 

Entry Catalyst Time (h) Yield a (%) ee b (%)
1 1 1 95 −2 
2 2 1.5 99 80 
3 3 2 88 86 
4 4 2 97 79 
5 5 2 95 88 
6 6 2 100 91 
7 7 2 99 89 

a isolated yield; b determined by HPLC analysis. 

Scheme 1. Preparation of organocatalyst 6. 

 

Scheme 2. Preparation of organocatalyst 7. 

 

We investigated the optimal reaction conditions for the enantioselective conjugate additions using 

6, various solvents, and additives (Table 2). Conjugate additions were performed with vinyl sulfone 11 

and 2-methylphenylethanal (12a) as test reactants in the presence of a catalytic amount of 6 and 

trifluoroacetic acid (TFA) at room temperature. A slight reduction in enantioselectivity and much 

longer reaction time were observed without TFA (entries 1 and 2). Aprotic solvents such as 

dichloromethane, diethyl ether, ethyl acetate, acetonitrile, chloroform, 1,2-dichloroethane, and p, m, and 

o-xylene were accepted well in this conjugate addition with good enantioselectivity (entries 3 and 5–12). 

A protic polar solvent such as methanol is a poor solvent for this reaction and provided low yield and 

enantioselectivity (entry 4). Among the solvents probed, the best results (95% yield and 93% ee) were 

C4F9SO2F, Et3N

CH2Cl2, rt, 46 h
79%

HCl, EtOAc

rt, 2.5 h
90% 68

NH2BocHN NHSO2C4F9BocHN
9

NHSO2C4F9H2N
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achieved when the reaction was performed in m-xylene (entry 11). We also examined the effects 

associated with the presence of other protic acids, including benzoic acid, p-nitrobenzoic acid, and 

trifluoromethanesulfonic acid; however, TFA was found to be the most suitable additive (entries 13–15). 

Additions of 0.2 or 0.05 equiv of TFA resulted in a slight reduction in stereoselectivity (entries 16 and 

17). The highest enantioselectivity (95% ee) was obtained when the reaction was performed at 0 °C or 

−10 °C, although longer reaction time (21 h or 72 h) was required (entries 18 and 19). Enantioselectivity 

was slightly reduced when the catalyst loading was lowered to 0.05 equiv (entry 20). Considering the 

reaction time, the optimal conditions were determined to be 0.1 equiv of 6 and 0.1 equiv of TFA in  

m-xylene at room temperature (entry 11). 

Table 2. Optimization of reaction conditions using organocatalyst 6. 

 

Entry Solvent Temp Additive (equiv) Time (h) Yield a (%) ee b (%)
1 toluene rt none 24 75 86 
2 toluene rt TFA (0.1) 2 100 91 
3 CH2Cl2 rt TFA (0.1) 2.5 97 91 
4 MeOH rt TFA (0.1) 24 33 32 
5 Et2O rt TFA (0.1) 5 87 82 
6 EtOAc rt TFA (0.1) 2.5 98 86 
7 MeCN rt TFA (0.1) 4 87 77 
8 CHCl3 rt TFA (0.1) 2 99 91 
9 ClCH2CH2Cl rt TFA (0.1) 2 98 92 

10 p-xylene rt TFA (0.1) 2 94 92 
11 m-xylene rt TFA (0.1) 2 95 93 
12 o-xylene rt TFA (0.1) 2 97 89 
13 m-xylene rt PhCO2H (0.1) 5.5 46 80 
14 m-xylene rt 4-NO2C6H4CO2H (0.1) 24 85 82 
15 m-xylene rt TfOH (0.1) 24 24 83 
16 m-xylene rt TFA (0.2) 2 97 91 
17 m-xylene rt TFA (0.05) 2 98 91 
18 m-xylene 0 °C TFA (0.1) 21 99 95 
19 m-xylene −10 °C TFA (0.1) 72 94 95 

20 c m-xylene rt TFA (0.05) 3 99 90 
21 d m-xylene rt TFA (0.01) 20 96 89 

a Isolated yield; b Determined by HPLC analysis; c Catalyst (0.05 equiv) was used; d Catalyst (0.01 equiv) was used. 

In order to identify the scope and limitations of aldehyde substrates, we investigated substituent effects 

of the branched aromatic aldehydes on the conjugate additions (Table 3). A range of electron-withdrawing 

substituents such as bromo and fluoro moieties, and electron-donating substituents such as methyl and 

methoxy groups on the aromatic ring of branched aldehydes 12b–g provided the corresponding 

adducts in excellent yields with good enantioselectivities (83%–92% ee) (entries 2–7). The additions 

of branched aldehydes possessing a naphthalene motif, 12h and 12i, to vinyl sulfone 11 proceeded 

smoothly in the presence of a catalytic amount of 6 to afford the corresponding adducts 13h and 13i in 
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excellent yields with 92% ee, respectively (entries 8 and 9). Interestingly, 2-methoxy-2-phenylacetaldehyde 

(12j) was also applicable and gave the corresponding adduct 13j in high yield, albeit with reduced 

enantioselectivity (entry 10). In addition, 6 promoted the reaction of N-Boc α-aminophenylacetaldehyde 

(12k) with 11 to yield the corresponding adduct 13k in 68% yield with 60% ee (entry 11). 

Table 3. Conjugate additions using organocatalyst 6. 

 

Entry Aldehyde Product Time (h) Yield a (%) ee b (%)

1 
 

2 95 93 

2 

 

3 97 89 

3 

 

2 95 91 

4 

CHO

Me 12d  

2 99 92 

5 

 

4 99 92 

6 

 

10 98 83 

7 

 

4 99 91 

8 

  
3 99 92 

9 

 

4 97 92 

10 
 

77 88 68 

11 
 

6 68 60 

a Isolated yield; b Determined by HPLC analysis. 
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Based on the optimal conditions for conjugate additions using 6, the reaction conditions were 

optimized for the enantioselective conjugate additions using 7 (Table 4). 1,2-Dichloroethane was the 

most suitable solvent among those examined in the presence of 0.1 equiv of TFA at room temperature. 

The reaction in 1,2-dichloroethane provided high yield and enantioselectivity (entry 8). It should be 

noted that 7 can promote the conjugate additions in brine because the perfluoroalkyl chain of 7 

functions as the hydrophobic reaction field in water as described in our previous report [42,43]. 

Table 4. Optimization of reaction conditions using organocatalyst 7. 

 

Entry Solvent Additive (Equiv) Time (h) Yield a (%) ee b (%) 

1 toluene none 24 85 83 
2 toluene TFA (0.1) 2 99 89 
3 CH2Cl2 TFA (0.1) 2 90 91 
4 hexane TFA (0.1) 2 91 86 
5 Et2O TFA (0.1) 2 85 89 
6 brine TFA (0.1) 24 68 78 
7 CHCl3 TFA (0.1) 2 100 91 
8 ClCH2CH2Cl TFA (0.1) 2 87 92 
9 m-xylene TFA (0.1) 2 84 91 

a Isolated yield; b Determined by HPLC analysis. 

The generality and substrate scope were probed for the optimal conditions (Table 5). The tendency 

of reactivities using 7 was quite similar to that using 6; however, aldehydes 12e, 12i, and 12j were 

poor substrates and gave low to moderate yields (entries 5, 9, and 10). Interestingly, the stereoselectivity 

with 12g was improved up to 94% ee (entry 7). In addition, the yield in the reaction with 12k was 

improved up to 100% yield (entry 11). 

The recyclability of 7 was evaluated. After use of 7 in the conjugate addition of 12a to 11 under the 

optimal conditions, it was readily recovered by the FSPE technique using fluorous silica gel. 

Furthermore, the recovered catalyst 7 can be reused without further purification, and its catalytic 

activity was retained for the first reuse. Unfortunately, the catalytic activity of the recovered catalyst 7 

decreased significantly for the second reuse. 

We infer that the conjugate additions of aldehydes 12 to vinyl sulfone 11 using 6 or 7 proceed via a 

plausible transition state (Scheme 3) based on the stereochemistry of addition products 13a–i. The 

primary amino group of 6 or 7 condenses with aldehydes 12 to generate the corresponding imine 

intermediate. The imine intermediate is subsequently isomerized to the E-enamine intermediate 

because of the resonance stabilizing effect of the aromatic ring. Then, the acidic proton of the 

sulfonamide group, which coordinates intramolecularly to nitrogen in the enamine transition state, 

successfully interacts with the oxygen of vinyl sulfone to control the approach direction of vinyl 

sulfone to the Re face of the enamine intermediate. This ultimately affords the corresponding addition 
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products with high stereoselectivities. We believe that the acidity of 6 and 7 is enhanced by the 

powerful electron-withdrawing effect of the perfluoroalkyl chains, enabling strong coordination to 

vinyl sulfone and stabilizing the rigid transition states during conjugate additions. Moreover, the 

addition of TFA to the conjugate additions might accelerate the formation of the imine and enamine 

intermediates as well as reinforce the rigid transition state of the conjugate additions. 

Table 5. Conjugate additions using organocatalyst 7. 

 
Entry Aldehyde Product Time (h) Yield a (%) ee b (%) 

1 
 

2 87 92 

2 

CHO

Br 12b  

4 90 90 

3 

 

6 100 92 

4 

 

2 92 82 

5 

 

3 13 80 

6 

 

5 100 83 

7 

 

4 81 94 

8 

 

3 76 92 

9 

 

24 45 89 

10 
 

24 64 68 

11 
 

6 100 64 

a Isolated yield; b Determined by HPLC analysis. 
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Scheme 3. Plausible mechanism and transition state model of reaction. 

 

3. Experimental 

3.1. General 

1H-NMR and 13C-NMR spectra were measured with a JEOL AL 400 spectrometer (400 MHz for 
1H-NMR and 100 MHz for 13C-NMR), or JEOL ECA-500 spectrometer (500 MHz for 1H-NMR and 

125 MHz for 13C-NMR). The chemical shifts are expressed in ppm downfield from tetramethylsilane 

(δ = 0.00) as an internal standard. For thin layer chromatographic (TLC) analyses, Merck precoated TLC 

plates (silica gel 60 F254, Art 5715) were used. The products were isolated by flash column chromatography 

on silica gel (Kanto Chemical, Tokyo, Japan, silica gel 60N, spherical, neutral, 40–50 µm). 

3.2. Preparation of Organocatalyst 6 

(S)-tert-Butyl 3-methyl-1-(perfluorobutanesulfonamido)butan-2-ylcarbamate (9). To a solution of  

(S)-tert-butyl 1-amino-3-methylbutan-2-ylcarbamate (8, 300 mg, 1.48 mmol) [50] in dry CH2Cl2  

(5 mL) was added triethylamine (0.46 mL, 3.06 mmol) at room temperature under an argon 

atmosphere. After stirring for 5 min, perfluorobutanesulfonyl fluoride (0.87 mL, 4.45 mmol) was 

added to the reaction mixture at 0 °C. After stirring for 1 h at 0 °C, the reaction mixture was 

additionally stirred for 45 h at room temperature. The reaction mixture was added to water and 

extracted three times with EtOAc. The EtOAc layers were combined, washed with brine, dried over 

anhydrous MgSO4, and evaporated. The residue was purified by flash column chromatography on 

silica gel with a 7:1 mixture of hexane and EtOAc to give the pure 9 (566 mg, 79%) as a colorless 

powder. Mp = 74–75 °C; [α]24 
D  = −5.4° (c = 0.62 in MeOH); 1H-NMR (400 MHz, CD3OD): δ = 0.81 (d, 

J = 6.8 Hz, 3H), 0.85 (d, J = 6.8 Hz, 3H), 1.35 (s, 9H), 1.65–1.71 (m, 1H), 3.08 (dd, J = 8.1, 13.5 Hz, 

1H), 3.28 (dd, J = 4.5, 13.5 Hz, 1H), 3.31–3.37 (m, 1H); 13C-NMR (125 MHz, CD3OD): δ = 18.2, 

19.9, 28.8, 31.0, 47.1, 57.6, 80.2, 110.2–121.0 (complex signals of –CF2 and –CF3), 158.5; HRMS  

(ESI-TOF): calcd for C14H21F9N2O4SNa (M+Na)+: 507.0976, Found: 507.0991. 

(S)-N-(2-Amino-3-methylbutyl)-perfluorobutanesulfonamide (6). To a solution of 9 (300 mg, 0.619 mmol) 

in EtOAc (2.5 mL) was added a 4 M solution of hydrochloric acid in EtOAc (2.5 mL) at 0 °C.  

After stirring for 2.5 h at room temperature, the reaction mixture was evaporated. The residue was 

added to saturated aqueous NaHCO3 and extracted three times with EtOAc. The EtOAc layers were 
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combined, washed with brine, dried over anhydrous MgSO4, and evaporated. The residue was purified 

by flash column chromatography on silica gel with a 20:1 mixture of CHCl3 and MeOH to give the 

pure 6 (214 mg, 90%) as a colorless powder. Mp = 134–136 °C; [α]20 
D  = +7.9° (c = 1.01 in MeOH);  

1H-NMR (500 MHz, CD3OD): δ = 1.01 (d, J = 6.9 Hz, 3H), 1.02 (d, J = 6.9 Hz, 3H), 1.90–1.97  

(m, 1H), 2.82–2.86 (m, 1H), 3.14 (dd, J = 8.6, 13.1 Hz, 1H), 3.41 (dd, J = 3.5, 13.1 Hz, 1H); 13C-NMR 

(125 MHz, CD3OD): δ = 18.9, 19.0, 30.1, 47.4, 60.7, 110.2–120.4 (complex signals of –CF2 and  

–CF3); Anal. Calcd for C9H13F9N2O2S: C, 28.13; H, 3.41; N, 7.29. Found: C, 28.07; H, 3.39; N, 7.26. 

3.3. Preparation of Organocatalyst 7 

(S)-tert-Butyl 3-methyl-1-(perfluorooctanesulfonamido)butan-2-ylcarbamate (10). To a solution of  

(S)-tert-butyl 1-amino-3-methylbutan-2-ylcarbamate (8) [50] (385 mg, 1.90 mmol) in dry CH2Cl2 (20 mL) 

was added triethylamine (0.80 mL, 5.71 mmol) at room temperature under an argon atmosphere. After 

stirring for 5 min, perfluorooctanesulfonyl fluoride (1.57 mL, 5.71 mmol) was added to the reaction 

mixture at 0 °C. After stirring for 2 h at 0 °C, the reaction mixture was additionally stirred for 90 h at 

room temperature. The reaction mixture was added to water and extracted three times with EtOAc.  

The EtOAc layers were combined, washed with brine, dried over anhydrous MgSO4, and evaporated. 

The residue was purified by flash column chromatography on silica gel with a 6:1 mixture of hexane 

and EtOAc to give the pure 10 (602 mg, 46%) as a pale yellow oil. [α]24 
D  = −4.2° (c = 1.28 in MeOH);  

1H-NMR (500 MHz, CDCl3): δ = 0.95 (d, J = 7.4 Hz, 3H), 0.97 (d, J = 6.8 Hz, 3H), 1.44 (s, 9H),  

1.80–1.85 (m, 1H), 3.25 (m, 1H), 3.46 (brd, J = 12.6 Hz, 1H), 3.55 (m, 1H), 4.67 (brd, J = 8.0 Hz, 1H), 

7.13 (brs, 1H); 13C-NMR (125 MHz, CDCl3): δ = 18.0, 19.2, 28.2, 30.1, 48.4, 55.7, 80.8, 108.0–113.0 

(complex signals of –CF2 and –CF3), 157.6; HRMS (ESI-TOF): calcd for C18H21F17N2O4SNa 

(M+Na)+: 707.0848, Found: 707.0873. 

(S)-N-(2-Amino-3-methylbutyl)-perfluorooctanesulfonamide (7). To a solution of 10 (570 mg, 0.833 mmol) 

in EtOAc (3.5 mL) was added a 4M solution of hydrochloric acid in EtOAc (3.5 mL) at 0 °C.  

After stirring for 2 h at room temperature, the reaction mixture was evaporated. The residue was added 

to saturated aqueous NaHCO3 and extracted three times with EtOAc. The EtOAc layers were 

combined, washed with brine, dried over anhydrous MgSO4, and evaporated. The residue was purified 

by flash column chromatography on silica gel with a 20:1 mixture of CHCl3 and MeOH to give the 

pure 7 (444 mg, 91%) as a colorless powder. Mp = 144–145 °C; [α]24 
D  = + 6.9° (c = 1.01 in MeOH); 

1H-NMR (500 MHz, CD3OD): δ = 1.01 (d, J = 6.8 Hz, 3H), 1.03 (d, J = 6.8 Hz, 3H), 1.90–1.97 (m, 

1H), 2.82–2.86 (m, 1H), 3.15 (dd, J = 8.5, 13.1 Hz, 1H), 3.41 (dd, J = 4.0, 13.1 Hz, 1H); 13C-NMR 

(125 MHz, CD3OD): δ = 18.9, 19.0, 30.1, 47.5, 60.7, 109.7–121.5 (complex signals of –CF2 and  

–CF3); Anal. Calcd for C13H13F17N2O2S: C, 26.72; H, 2.24; N, 4.79. Found: C, 26.75; H, 2.41; N, 4.86. 

3.4. Typical Procedure for Michael Addition (Table 3) 

A typical procedure of the Michael additions using 6 is as follows: To a solution of 11 (30.8 mg, 

0.100 mmol) and organocatalyst 6 (3.8 mg, 0.010 mmol) in m-xylene (1.0 mL) was added  

2-phenylpropanal (26.8 µL, 0.200 mmol) and trifluororacetic acid (0.7 µL, 0.010 mmol) at room 

temperature. After stirring at room temperature for 2 h, the reaction mixture was directly purified by 
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flash column chromatography on silica gel with a 3:1 mixture of hexane and EtOAc to afford the pure 

13a (42.0 mg, 95%) as a colorless powder. All the Michael addition products 13 in the paper are 

known compounds that exhibited spectroscopic data identical to those reported in the literature [36,37]. 

(R)-2-Methyl-2-phenyl-4,4-bis(phenylsulfonyl)butanal (13a). [α]18 
D  = −25.6° (c = 1.00, CHCl3); 95% ee; 

enantiomeric excess was determined by HPLC with Chiralpak AS-H column (hexane/2-propanol = 70:30), 

flow rate = 1.0 mL/min; λ = 220 nm; tmajor = 21.7 min, tminor = 25.9 min. 

(R)-2-(4-Bromophenyl)-2-methyl-4,4-bis(phenylsulfonyl)butanal (13b). [α] 22 
D  = −15.2° (c = 1.00, 

CHCl3); 89% ee; enantiomeric excess was determined by HPLC with Chiralpak AS-H column 

(hexane/2-propanol = 70:30), flow rate = 1.0 mL/min; λ = 220 nm; tmajor = 27.1 min, tminor = 38.5 min. 

(R)-2-(4-Fluorophenyl)-2-methyl-4,4-bis(phenylsulfonyl)butanal (13c). [α] 18 
D  = +23.5° (c = 1.00, 

CHCl3); 91% ee; enantiomeric excess was determined by HPLC with Chiralpak AS-H column 

(hexane/2-propanol = 70:30), flow rate = 1.0 mL/min; λ = 220 nm; tmajor = 25.5 min, tminor = 32.1 min. 

(R)-2-Methyl-4,4-bis(phenylsulfonyl)-2-p-tolylbutanal (13d). [α]18 
D  = +25.4° (c = 1.00, CHCl3); 92% ee; 

enantiomeric excess was determined by HPLC with Chiralpak AS-H column (hexane/2-propanol = 70:30), 

flow rate = 1.0 mL/min; λ = 220 nm; tmajor = 21.3 min, tminor = 29.7 min. 

(R)-2-(3-Methoxyphenyl)-2-methyl-4,4-bis(phenylsulfonyl)butanal (13e). [α] 19 
D  = +10.6° (c = 1.00, 

CHCl3); 92% ee; enantiomeric excess was determined by HPLC with Chiralcel AD-H column 

(hexane/2-propanol = 80:20), flow rate = 1.0 mL/min; λ = 220 nm; tmajor = 27.4 min, tminor = 38.6 min. 

(R)-2-(2-Methoxyphenyl)-2-methyl-4,4-bis(phenylsulfonyl)butanal (13f). [α] 18 
D  = −70.8° (c = 1.00, 

CHCl3); 83% ee; enantiomeric excess was determined by HPLC with Chiralcel AD-H column 

(hexane/2-propanol = 80:20), flow rate = 1.0 mL/min; λ = 220 nm; tmajor = 18.8 min, tminor = 25.9 min. 

(R)-2-(3-Bromophenyl)-2-methyl-4,4-bis(phenylsulfonyl)butanal (13g). [α] 18 
D  = −71.7° (c = 1.00, 

CHCl3); 91% ee; enantiomeric excess was determined by HPLC with Chiralpak AS-H column 

(hexane/2-propanol = 80:20), flow rate = 1.0 mL/min; λ = 220 nm; tmajor = 41.3 min, tminor = 47.1 min. 

(R)-2-Methyl-2-(naphthalen-2-yl)-4,4-bis(phenylsulfonyl)butanal (13h). [α] 18 
D  = +13.0° (c = 1.00, 

CHCl3); 92% ee; enantiomeric excess was determined by HPLC with Chiralpak AS-H column 

(hexane/2-propanol = 70:30), flow rate = 1.0 mL/min; λ = 220 nm; tmajor = 32.9 min, tminor = 39.1 min. 

(R)-2-Methyl-2-(naphthalen-1-yl)-4,4-bis(phenylsulfonyl)butanal (13i). [α] 22 
D  = −31.8° (c = 1.00, 

CHCl3); 92% ee; enantiomeric excess was determined by HPLC with Chiralcel AD-H column 

(hexane/2-propanol = 70:30), flow rate = 1.0 mL/min; λ = 220 nm; tmajor = 16.7 min, tminor = 22.4 min. 

(R)-2-Methoxy-2-phenyl-4,4-bis(phenylsulfonyl)butanal (13j). 68% ee; enantiomeric excess was 

determined by HPLC with Chiralcel AD-H column (hexane/2-propanol = 5:1), flow rate = 1.0 mL/min;  

λ = 220 nm; tmajor = 37.1 min, tminor = 44.5 min. 
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(R)-tert-Butyl 1-oxo-2-phenyl-4,4-bis(phenylsulfonyl)butan-2-ylcarbamate (13k).  [α] 25 
D  = +10.0°  

(c = 1.00, CHCl3) 64% ee; enantiomeric excess was determined by HPLC with Chiralcel OD-H column 

(hexane/2-propanol = 90:10), flow rate = 0.5 mL/min; λ = 220 nm; tmajor = 19.9 min, tminor = 22.2 min. 

4. Conclusions  

Novel organocatalysts 6 and 7 can easily be prepared from L-valine, an inexpensive and commercially 

available natural amino acid. Organocatalysts 6 and 7, which are simple β-aminosulfonamides with 

only one stereogenic center, efficiently catalyze the conjugate additions of various branched aldehydes 

to vinyl sulfone 11 with a short reaction time at room temperature to give the corresponding addition 

products possessing all-carbon quaternary stereocenters with high enantioselectivities. The excellent 

performance is probably due to the carbon skeleton of L-valine and the electron-withdrawing effect of 

the perfluoroalkyl groups on 6 and 7. Moreover, fluorous organocatalyst 7 bearing a perfluorooctyl 

group was readily recovered by simple solid phase extraction using fluorous silica gel and was immediately 

reusable without further purification for the first cycle. Further application of these organocatalysts in 

the synthesis of bioactive compounds is currently being investigated in our laboratory. 
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