Supplementary Materials for

Bio-Activity and Dereplication Based Discovery of Ophiobolins and Other Fungal Secondary Metabolites Targeting Leukemia Cells

Contents

1.	Strains tested in the initial screening against chronic lymphocytic leukemia (CLL)	S4
2.	Strains found active against chronic lymphocytic leukemia (CLL)	S6
3.	Penicillic acid isolated from <i>Penicillium pulvillorum</i> (IBT 22393)	S8
4.	Viridicatumtoxin isolated from P. brasilianum (IBT 22244)	S9
5.	Emestrin A isolated from Aspergillus sp. (Emericella-like state) (IBT 22838)	S10
6.	Neosolaniol monoacetate isolated from Fusarium compactum (IBT 9034)	S12
7.	Ophiobolins	S13
7.1	Potential ophiobolin producing strains from the Aspergilli section Usti	S13
7.2	NMR data for ophiobolin U, ophiobolin K, 6-epiophiobolin K, ophiobolin C, ophiobolin H, 6-epiophiobolin H, and 6-epiophiobolin G	S14
7.3	Ophiobolin U isolated from A. insuetus (IBT 28266)	S16
7.4	Ophiobolin H isolated from A. insuetus (IBT 28266)	S18
7.5	6-epiophiobolin N isolated from A. insuetus (IBT 28266)	S20
7.6	Ophiobolin K isolated from a new sp. in the Aspergillus section Usti (IBT 18591)	S22
7.7	6-epiophiobolin K isolated from a new sp. in the <i>Aspergillus</i> section <i>Usti</i> (IBT 18591)	S24
7.8	Ophiobolin C isolated from A. calidoustus (IBT 25726)	S26
7.9	6-epiophiobolin G isolated from A. calidoustus (IBT 25726)	S28
7.10	Activity of ophiobolin A, B, C and K + 6-epiophiobolin K towards healthy fibroblasts (Wi-38) cells	S30
7.11	Apoptosis induction in CLL cells by different ophiobolins.	S31

List of Figures

Figure S1. ¹ H-NMR spectrum of penicillic acid in DMSO- <i>d</i> ₆ at 500 MHz	S8
Figure S2. ¹ H-NMR spectrum of viridicatumtoxin in DMSO- <i>d</i> ₆ at 400 MHz	S9
Figure S3. ¹ H-NMR spectrum of emestrin A in DMSO- <i>d</i> ₆ at 500 MHz	S10
Figure S4. ¹ H-NMR spectrum of neosolaniol monoacetate in DMSO- <i>d</i> ₆ at 500 MHz	S12
Figure S5. ¹ H-NMR spectrum of ophiobolin U in CDCl ₃ .at 800 MHz	S16
Figure S6. ¹³ C-NMR spectrum of ophiobolin U in CDCl ₃ .at 200 MHz	S16
Figure S7. ¹ H-NMR spectrum of ophiobolin H in CDCl ₃ .at 800 MHz	S18
Figure S8. ¹³ C-NMR spectrum of ophiobolin H in CDCl ₃ .at 200 MHz	S18
Figure S9. ¹ H-NMR spectrum of 6-epiophiobolin N in CDCl ₃ .at 800 MHz.	S20
Figure S10. ¹³ C-NMR spectrum of 6-epiophiobolin N in CDCl ₃ .at 200 MHz	S20
Figure S11. ¹ H-NMR spectrum of ophiobolin K in CDCl ₃ .at 800 MHz	S22
Figure S12. ¹ H-NMR spectrum of 6-epiophiobolin K in CDCl ₃ .at 800 MHz	S24
Figure S13. ¹³ C-NMR spectrum of 6-epiophiobolin K in CDCl ₃ .at 200 MHz	S24
Figure S14. ¹ H-NMR spectrum of ophiobolin C in CDCl ₃ .at 800 MHz	S26
Figure S15. ¹ H-NMR spectrum of 6-epiophiobolin G in CDCl ₃ .at 800 MHz	S28
Figure S16. ¹³ C-NMR spectrum of 6-epiophiobolin G in CDCl ₃ .at 200 MHz	S28
Figure S17. Activity of ophiobolin A, B, C and K + 6-epiophioboln K towards healthy	
fibroblasts (Wi-38)	S30
Figure S18. CLL cells cultured in DMEM were treated for 24 hours with two different	
concentrations of ophiobolin A, ophiobolin B, ophiobolin C and ophiobolin	
K. In order to analyze apoptosis induction, cells of each well were divided	
into two parts and analyzed by flow cytometry using two different staining	
strategies. (a) cell survival was analyzed by gating on cells that were negative	
for Annexin V-phycoerythrin (PE) and 7-aminoactinomycin (7-AAD).	
Relative survival compared to DMSO control (0.1%) is depicted as mean	
values +SD of four independent CLL samples. (b) Caspase-3 activity is	
depicted as mean values +SD of four independent CLL samples relative to	
DMSO control (0.1%).	S31

List of Tables

Table S1. Strains tested in the initial screening	S4
Table S2. Strains found active in the initial screening	S6
Table S3. ¹ H and ¹³ C-NMR for penicillic acid in DMSO at 500 MHz for ¹ H and 125 MHz for	
¹³ C	S8
Table S4. 'H-NMR for viridicatumtoxin in DMSO at 500 MHz.	S9
Table S5. ¹ H and ¹³ C-NMR for emestrin A in DMSO at 500 MHz for ¹ H and 125 MHz for ¹³ C.	. S11
Table S6. ¹ H-NMR for neosolaniol monoacetate in DMSO at 500 MHz.	. S12
Table S7. Aspergilli section Usti.	. S13
Table S8. 13C-NMR data for ophiobolin U, ophiobolin K, 6-epiophiobolin K, ophiobolin C,ophiobolin H, 6-epiophiobolin H, and 6-epiophiobolin G. (*125 MHz in dimethyl	
sulfoxide (DMSO)- d_6 , †125 MHz in CDCl ₃ , or ‡200 MHz in CDCl ₃ , δ_C).	. S14
Table S9. ¹ H-NMR data for ophiobolin U, ophiobolin K, 6-epiophiobolin K, ophiobolin C,	
ophiobolin H, 6-epiophiobolin H, and 6-epiophiobolin G. (*500 MHz in DMSO-	
d_6 , †500 MHz in CDCl ₃ , or ‡ 800 MHz in CDCl ₃ , $\delta_{\rm H}$ mult. (<i>J</i> (Hz)))	. S15
Table S10. ¹ H and ¹³ C-NMR for ophiobolin U in CDCl ₃ .at 800 MHz for ¹ H and 200 MHz for ¹³ C.	. S17
Table S11. ¹ H and ¹³ C-NMR for ophiobolin H in CDCl ₃ .at 800 MHz for ¹ H and 200 MHz for ¹³ C	. S19
Table S12. ¹ H and ¹³ C-NMR for 6-epiophiobolin N in CDCl ₃ .at 800 MHz for ¹ H and 200 MHz for ¹³ C.	. S21
Table S13. ¹ H and ¹³ C-NMR for ophiobolin K in DMSO- <i>d</i> ₆ .at 500 MHz for ¹ H and 125 MHz for ¹³ C.	. S23
Table S14. ¹ H and ¹³ C-NMR for 6-epiophiobolin K in DMSO- d_6 .at 500 MHz for ¹ H and 125 MHz for ¹³ C.	. S25
Table S15. ¹ H and ¹³ C-NMR for ophiobolin C in CDCl ₃ .at 800 MHz for ¹ H and 200 MHz for ¹³ C	27
Table S16. ¹ H and ¹³ C-NMR for 6-epiophiobolin G in CDCl ₃ .at 800 MHz for ¹ H and 200 MHz for ¹³ C.	. S29

Molecules 2013, 18

1. Strains tested in the initial screening against chronic lymphocytic leukemia (CLL)

Isolate number	Species	Isolate number	Species
21947	Aspergillus cystallinus	22516, 22523	Penicillium faroense
3234, 5265	Aspergillus cavernicola	21051	Penicillium cluniae
24813	Aspergillus granulosus	11843	Penicillium decumbens
24666	Aspergillus conjunctus	26291	Penicillium bialowiezense
10526, 18590	Aspergillus caespitosus	18329	Penicillium brevicompactum
22551	Aspergillus diversus	22244	Penicillium brasillianum
22564, 24812	Aspergillus funiculosis	22393	Penicillium pulvillorum
11054	Aspergillus deflectus	23856	Penicillium svalbardense
22568	Aspergillus varians	23667	Penicillium lapatayae
4537, 28161	Aspergillus pseudoustus	16536	Penicillium alpinium
14906, 23076	Aspergillus subvesicolor	14084	Penicillium caseium
10525	Aspergillus neocaespitos	16545	Penicillium pinicola
23282	Aspergillus microcysticus	22760	Penicillium aquamarinum
24752, 22153	Aspergillus karnakataense	22662	Penicillium groenlandense
26386, 22274	Aspergillus janus	24414	Penicillium algidum
17337	Aspergillus aureolatus	24411	Penicillium
			jamesonlandense
11835	Aspergillus sydowii	22544	Penicillium eidiense
10127	Aspergillus quasivesicolor	22356	Penicillium monticola
18591	New sp. in the <i>Aspergillus</i> section <i>Usti</i>	22663	Penicillium floccosum
21781, 22558	Aspergillus brevis	17760	Penicillium artemision
13670, 13691	Aspergillus neopuniceus	14073	Penicillium wyomingense
20587	Aspergillus neoustus	13954	Penicillium minitum
16756	Aspergillus panamensis	24420	Penicillium rivulorum
11860, 11847	Aspergillus protuberus	29798	Penicillium diversicolor
11821, 25061	Aspergillus vesicolor	16537	Penicillium ribeum
23160	Aspergillus subsessilis	16625	Penicillium turcosum
22554, 25041	Aspergillus ustus	22779	Penicillium jugorum
17674	Aspergillus	30014	Penicillium galathea
	pseudoversicolor		
4332	Aspergillus neovesicolor	30013	Penicillium
			nassarsuaquense
18288	Aspergillus arizonae	fel 248, cml 832	Pestalotiopsis
13989	Aspergillus aculeatus	fel 64	Arthrinium phaeospermum
22838	Aspergillus sp.	fel 192	Ascochyta
	(Emericella-like state)		

Table S1. Strains tested in the initial screening.

Isolate number	Species	Isolate number	Species
9194	Cylindrocarpon olidum	fell 01	Acremonium
8893	Fusarium poae	fel 240	Paraconiothyrium
8988	Fusarium avenaceum	cml 1707	Nodulisporium
8979, 9077,	Fusarium equiseti	fel 89, fel 355, fel 364	Phomopsis
9115			
8977	Fusarium tricinctum	fel 302	Cytospora
8945, 7785	Epicoccum nigrum	fel 159	Bipolaris sp.
9034	Fusarium compactum	fel 06	Glomerella cingulata
9044	Fusarium culmorum	fel 307, fel 308	Lecanicillium pasalliotae
9063	Fusarium cerealis	fel 17, fel 42	Paraconiothyrium
			sporulosum
9085	Fusarium oxysporum	fel 05, fel 30, cml	Periconia
		1716	
9096	Fusarium redolens	fel 299A	Curvularia
9089	Fusarium merismoides	fel 142	Tubercularia sp.
9087	Fusarium torulosum	fel 315	Verticillium leptobactum
9086, 9206	Fusarium solani	cml 1692	Lasiodiplodia theobromae
9103	Fusarium flocciferum	cml 1709	Collototrichum crassipes
9112, 9121	Fusarium pallidoroseum	cml 1681	Cuvularia prasadii
9107	Fusarium proliferatum	cml 1671	Libertella
9117	Fusarium verticillioides	fel 58, cml 1702,	Microsphaeropsis
		cml 1703, cml 1690	
1807	Fusarium sambucinam	cml 1670A	Clonostachys
9184	Fusarium	cml 1693	Spegazzinia deightonii
	chlamydosporum		
9181	Fusarium neohelle	cml 1695	Virgatospora echinofibrosa
9182	Fusarium neochlam	fel 09, fel 241	Paraconiothyrium
			brasiliense

 Table S1. Cont.

2. Strains found active against chronic lymphocytic leukemia (CLL)

• • • •	a .	Maximum activity
Isolate number	Species	observed on media
9103	Fusarium occiferum	YES
9034	Fusarium compactum	YES
22838	Aspergillus sp. (Emericella-like	YES
	state)	
13989	Aspergillus aculeatus	СҮА
23105	Aspergillus pseudovesicolor	YES
3235	Aspergillus cavernicola	YES
18950	Aspergillus caespitosus	YES
22564	Aspergillus funiculosis	YES
22551	Aspergillus diversus	YES
14906	Aspergillus subvesicolor	СҮА
23282	Aspergillus microcysticus	СҮА
24752	Aspergillus karnakataense	YES
18951	New sp. in the Aspergillus section	YES
	Usti	
20587	Aspergillus neoustus	YES
23160	Aspergillus subsessilis	СҮА
26291	Penicillium bialowienze	YES
18329	Penicillium brevicompactum	YES
21051	Penicillium cluniae	YES
22393	Penicillium pulvillorum	YES
22244	Penicillium brasilianum	YES
11843	Penicillium decumbens	YES
18288	Aspergillus arizonae	СҮА
16545	Penicillium pinicola	YES
22760	Penicillium aquamarinum	СҮА
22523	Penicillium faroense	YES
22662	Penicillium groenlandense	ALK
24411	Penicillium jamesonlandense	СҮА
22544	Penicillium eidense	YES
22356	Penicillium monticola	СҮА
22663	Penicillium occosum	СҮА
17760	Penicillium artemision	YES
29798	Penicillium diversicolor	YES
16537	Penicillium ribeum	YES
16625	Penicillium turcosum	ALK

Table S2. Strains found active in the initial screening.

Isoloto numbon	Creation	Maximum activity
Isolate number	Species	observed on media
22779	Penicillium jugorum	СҮА
30014	Penicillium galathea	СҮА
fel 248	Pestalotiopsis	MEA
fel 64	Arthrinium phaeospermum	MEA
fel 355	Phomopsis	MEA
fel 302	Cytospora	MEA
fel 159	Bipolaris sp	YES
fel 308	Lecanicillium psalliotae	YES
fel 240	Paraconiothyrium brasiliense	YES
fel 17	Paraconiothyrium sporulosum	YES
fel 05, fel 30 and cml	Periconia	YES
1716		
fel 299A	Curvularia	YES
fel 142	Tubercularia	YES
cml 1692	Lasiodiplodia theobromae	YES
cml 1709	Collototrichum crassipes	YES
cml 1692	Libertella	YES
cml 1703, cml 1690	Microphaeropsis	YES
cml 1707	Nodulisporium	YES
cml 1670A	Clonostachys	YES
cml 1693	Spegazzinia deightonii	YES
cml 1695	Virgatospora echinofibrosa	YES

Table S2. Cont.

3. Penicillic acid isolated from *Penicillium pulvillorum* (IBT 22393)

Figure S1. ¹H-NMR spectrum of penicillic acid in DMSO-*d*₆ at 500 MHz

Table S3. ¹H and ¹³C-NMR for penicillic acid in DMSO at 500 MHz for ¹H and 125 MHz for ¹³C.

7 5 4 6 HO 0 0				
	$\delta_{\rm H}$ mult. (J (Hz))	δ_{C}^{*}		
1		169.8		
2	5.39 1 H, s	89.6		
3		178.6		
4		106.3		
4 - OH	3.33 1 H, br.s.			
5		140.4		
6a	5.16 1 H, s	115.4		
6b	5.33 1 H, br.s.	115.4		
7	1.65 3 H, s	16.9		
8	3.84 3 H, s	58.5		

* ¹³C-NMR chemical shifts determined from HSQC and HMBC experiments.

4. Viridicatumtoxin isolated from P. brasilianum (IBT 22244)

Figure S2. ¹H-NMR spectrum of viridicatumtoxin in DMSO- d_6 at 400 MHz.

 Table S4. ¹H-NMR for viridicatumtoxin in DMSO at 500 MHz.

1		
	$\delta_{\rm H}$ mult. (J (Hz))	
4α	2.55 (1H, m)	
4β	2.81 (1H, m)	
5	4.66 (1H, br.s.)	
9	6.68 (1H, s)	
14α	2.91 (1H, m)	
14β	3.17 (1H, m)	
17	5.40 (1H, br.s.)	10
18α	1.98 (1H, m)	
18β	2.13 (1H, m)	17, 20,2,22 22, 14, OH
19α	1.30 (1H, dd, 5.6, 12.8)	23 - 16 / 15 $OH = OH = OH$
19β	1.75 (1H, m)	24 8 6a 5a 4a 3
21	0.45 (3H, s)	9^{10all} 11a 112a 112 110 111 112 111 13
22	0.87 (3H, s)	Г ² Г ² П ² ОН ² ¹⁰ ОН ОН О О NH ₂
23	1.43 (3H, s)	-
24	3.79 (3H,s)	
OH	5.59 (1H, br.s.)	
OH	6.79 (1H, br.s.)	
OH	8.84 (1H, br.s.)	
OH	9.73 (1H, br.s.)	
OH	14.64 (1H, br.s.)	

5. Emestrin A isolated from Aspergillus sp. (Emericella-like state) (IBT 22838)

Figure S3. ¹H-NMR spectrum of emestrin A in DMSO- d_6 at 500 MHz.

	$\delta_{\rm H}$ mult. (J (Hz))	δ_{C} *	
1		80.8 ‡	
2		164.2 †	
3		80.8 ‡	
4		164.2 †	
5a	5.67 1 H, dd (2.5, 7.4)	59.8	
5b		160.2	
6	4.67 1 H, ddd (2.0, 2.5, 7.4)	74.6	
7	4.91 1 H, dd (2.0, 8.5)	106.2	
8	6.42 1 H, dd (2.5, 8.5)	137.1	
10	7.06 1 H, d (2.5)	141.1	
11	5.46 1 H, d (7.2)	72.6	HOO
11-OH	6.25 1 H, d (7.2)		10 5h 11 1 12 12
12	3.25 3 H, s	27.1	O H J S N CH3
1'		127.2	8 6 1/4 OH
2'	7.76 1 H, d (1.9)	122.5	
3'		143.6	7" 6" 2' 1)6'
4'		149.0	5" 1" 0 5'
4'-OH	9.73 1 H, s		4" /4' 2" HO
5'	6.88 1 H, d (8.3)	115.2	^{3"} ^O ~ _{CH3}
6'	7.16 1 H, dd (2.0, 8.3)	124.8	·
7'	4.96 1 H, d (4.6)	74.6	
7'-OH	5.99 1 H, d (4.6)		
1"		145.6	
2"		153.4	
3"	7.21 1 H, d (8.6)	112.1	
4"	7.57 1 H, dd (1.9, 8.6)	123.8	
5"		122.0	
6"	7.37 1 H, d (1.9)	120.0	
7"		164.3	
8"	3.94 3 H, s	55.7	

Table S5. ¹H and ¹³C-NMR for emestrin A in DMSO at 500 MHz for ¹H and 125 MHz for ¹³C.

* ¹³C-NMR chemical shifts determined from HSQC and HMBC experiments; ‡ Not possible to distinguish between C1 and C3; † Not possible to distinguish between C2 and C4.

6. Neosolaniol monoacetate isolated from Fusarium compactum (IBT 9034)

Figure S4. ¹H-NMR spectrum of neosolaniol monoacetate in DMSO-*d*₆ at 500 MHz.

Table S6. ¹H-NMR for neosolaniol monoacetate in DMSO at 500 MHz.

1		
	$\delta_{\rm H}$ mult. (J (Hz))	
2	3.41 1H, d (5.0)	
3	4.07 1H, dd, (3.0; 5.0)	
4	5.39 1H, d (3.2)	
5		
6		
7a	2.18 1H, dd (5.3; 15.7)	
7b	1.94 1H, m	
8	5.15 1H, d, (5.3)	
9		
10	5.67 1H, d (5.7)	
11	4.1 1H, d (5.7)	
12		
13a	2.78 1H, d (3.9)	
13b	2.98 1H, d (3.9)	
14	0.59 3H, s	\nearrow_{0}
15a	3.94 1H, d (12.2)	
15b	4.16 1H, d (12.2)	
16	1.66 3H, s	
C=O C4		
C=O C8		
C=O C15		
CH3 C4	1.96 3H, s	
CH3 C8	2.04 3H, s	
CH3 C15	1.93 3H, s	

7. Ophiobolins

7.1 Potential ophiobolin producing strains from the Aspergilli section Usti

IBT number	Species
4537	Aspergillus ustus
10619	
20587	
22554	
25041	
10524	Aspergillus keveii
24673	
24708	
28266	Aspergillus insuetus
28267	
13091	Aspergillus calidoustus
25726	

 Table S7. Aspergilli section Usti.

7.2 NMR data for ophiobolin U, ophiobolin K, 6-epiophiobolin K, ophiobolin C, ophiobolin H, 6-epiophiobolin H, and 6-epiophiobolin G

Table S8. ¹³C-NMR data for ophiobolin U, ophiobolin K, 6-epiophiobolin K, ophiobolin C, ophiobolin H, 6-epiophiobolin H, and 6-epiophiobolin G. (* 125 MHz in dimethyl sulfoxide (DMSO)- d_6 , † 125 MHz in CDCl₃, or ‡ 200 MHz in CDCl₃, δ_C).

Ophiobolin	U ‡	K *	6-epi-K *	C†	Н‡	6-epi-N ‡	6-epi-G †
1	35.2	34.5	41.0	36.0	35.7	45.6	45.8
2	51.0	49.2	49.6	50.8	50.9	49.3	49.2
3	81.9	76.2	74.7	76.6	80.2	179.8	178.1
4	53.4	53.9	54.7	54.6	50.8	130.0	130.2
5	73.1	217.0	216.1	217.5	116.0	209.6	208.2
6	50.5	48.3	48.2	48.4	52.8	49.9	50.0
7	142.1	140.6	141.5	141.5	138.5	140.1	139.9
8	164.1	157.6	159.9	163.8	123.6	157.3	158.1
9	25.6	24.3	30.0	24.7	25.0	31.0	30.9
10	54.0	53.0	43.1	53.4	55.0	43.1	43.8
11	44.1	43.3	44.9	43.6	43.6	45.0	45.4
12	42.0	42.2	44.4	42.6	43.0	44.5	44.3
13	26.7	25.4	27.1	22.8	26.8	27.1	27.8
14	47.4	46.2	51.4	45.2	47.2	51.1	52.1
15	35.9	34.4	31.9	32.7	35.5	31.8	32.6
16	137.7	136.9	136.0	36.8	138.0	37.1	135.7
17	122.3	121.7	123.3	26.0	121.7	25.6	124.0
18	120.2	119.9	120.1	124.3	120.4	124.4	120.0
19	135.9	134.6	135.3	131.0	135.2	131.6	136.6
20	26.3	25.7	25.2	25.4	25.4	17.4	17.3
21	198.1	193.1	194.7	195.9	71.5	193.0	193.0
22	18.6	18.2	22.8	19.0	18.7	23.1	22.9
23	20.6	19.6	21.1	16.4	20.4	18.6	21.3
24	18.3	18.0	17.9	17.6	18.2	17.7	18.2
25	26.7	25.9	26.1	25.6	26.6	25.7	26.5

		5) 1					
Ophiobolin	U ‡	K *	6-epi-K *	C †	Н‡	6-epi-N ‡	6-epi-G †
1a	1.03 m	1.14 m	1.58 m	1.26 m	1.36 m	1.18 m	1.15 m
1b	1.58 m	1.58 m	1.65 m	1.81 m	1.42 m	2.04 dd (3.7; 13.2)	2.03 m
2	2.30 m	2.25 m	1.91 m	2.38 m	2.26 m	2.71 m	2.66 m
3-ОН			6.51 br.s.				
4 a	1.87 dd (4.1, 15.1)	2.35 m	2.21 m	2.49 m	2.10 m	6.11 s	6.04 s
4b	2.68 dd (7.9, 15.1)	2.50 m	2.77 d (16.0)	2.80 m	2.18 m		
5	4.91 dd (4.7, 7.9)						
6	3.02 d (9.6)	3.22 d (9.8)	3.04 d (10.8)	3.26 m	3.17 d (9.8)	3.54 d (3.7)	3.40 m
8	6.94 t (8.5)	7.02 t (8.5)	6.96 m	7.21 m	5.64 br.s.	6.86 dd (2.0; 6.3)	6.80 m
9a	2.24 m	2.04 m	2.27 m	2.31 m	1.70 m	2.25 m	2.20 m
9b	2.89 dd (8.5, 12.5)	2.69 m	2.65 m	2.45 m	2.50 dd (8.6; 13.8)	2.71 m	2.93 m
10	1.55 m	1.56 m	2.46 m	1.67 m	1.60 m	2.72 m	2.63 m
12 a	1.38 m	1.33 m	1.38 m	1.41 m	1.40 dd (7.6; 11.7)	1.42 m	1.43 m
12b		1.35 m	1.44 m	1.44 m	1.57 m	1.51 m	1.52 m
13 a	1.58 m	1.54 m	1.22 m	1.46 m	1.54 m	1.23 m	1.25 m
13b	1.78 m	1.69 m	1.57 m	1.55 m	1.76 m	1.58 m	1.67 m
14	2.09 m	2.09 m	1.87 m	2.36 m	2.05 m	1.75 m	1.89 m
15	2.72 m	2.72 m	2.61 m	1.65 m	2.68 m	1.42 m	2.55 m
16a	5.21 t (10.0)	5.23 t (9.5)	5.25 t (9.3)	1.18 m	5.20 m	0.99 m	5.11 t (1.3)
16b				1.24 m		1.45 m	
17a	6.03 m	5.99 m	6.11 m	1.95 m	5.99 m	1.94 m	6.10 m
17b				2.00 m		2.07 m	
18	6.00 m	6.04 m	6.09 m	5.09 m	5.98 m	5.12 t (7.0)	6.00 m
20	1.26 s	1.19 s	1.26 s	1.36 s	1.24 s	2.10 s	2.06 s
21a	9.26 s	9.14 s	9.12 s	9.23 s	4.48 br.s.	9.30 s	9.26 s
21b					4.59 d (12.2)		
22	0.99 s	0.91 s	0.77 s	0.90 s	0.90 s	0.86 m	0.85 s
23	0.91 d (6.7)	0.85 d (6.6)	0.92 d (6.6)	0.78 d (6.8)	0.88 d (6.7)	0.91 d (6.4)	0.97 d (6.8)
24	1.74 s	1.68 s	1.70 s	1.61 s	1.73 s	1.61 s	1.76 s
25	1.82 s	1.76 s	1.79 s	1.69 s	1.80 s	1.69 s	1.83 s

Table S9. ¹H-NMR data for ophiobolin U, ophiobolin K, 6-epiophiobolin K, ophiobolin C, ophiobolin H, 6-epiophiobolin H, and 6-epiophiobolin G. (* 500 MHz in DMSO- d_6 , † 500 MHz in CDCl₃, or ‡ 800 MHz in CDCl₃, $\delta_{\rm H}$ mult. (*J* (Hz))).

7.3 Ophiobolin U isolated from A. insuetus (IBT 28266)

Figure S5. ¹H-NMR spectrum of ophiobolin U in CDCl₃ at 800 MHz.

Figure S6. ¹³C-NMR spectrum of ophiobolin U in CDCl₃ at 200 MHz.

	$\delta_{\rm H}$ mult. (J (Hz))	$\delta_{\rm C}$	HMBC connectivities	NOE connectivities
1a	1.03 (1H, m)	35.2	2, 3, 10, 11, 22	1b
1b	1.58 (1H, m)	35.2	3, 10, 12	1a, 2, 15, 20, 22
2	2.30 (1H, m)	51.0	1, 3, 6, 7	6, 20, 22
3		81.9		
4a	1.87 (1H, dd, 4.1,	53.4	3, 5	2, 4b, 20
	15.1)			
4b	2.68 (1H, dd, 7.9,	53.4	2, 3, 6	4a, 5
	15.1)			
5	4.91 (1H, dd, 4.7,	73.1	3, 6, 7	4b, 6
	7.9)			
6	3.02 d (1H, d, 9.6)	50.5	2, 3, 5, 7, 8, 21	2, 5, 9a, 22
7		142.1	-	-
8	6.94 t (1H, d, 8.5)	164.1	6, 9, 21	9a, 9b, 10, 21
9a	2.24 (1H, m)	25.6	7, 8, 10, 11	6, 8, 9b, 22
9b	2.89 (1H, dd, 8.5,	25.6	7, 8, 10, 11, 14	8, 9a, 10, 14, 15, 16
	12.5)			
10	1.55 (1H, m)	54.0	8, 9, 11, 14, 15, 22	8, 9b, 14
11		44.1	-	-
12	1.38 (2H, m)	42.0	10, 11, 13, 14, 22	13a, 13b, 22
13a	1.58 (1H, m)	26.7	11, 14, 15	12, 13b, 22, 23
13b	1.78 (1H, m)	26.7	10, 11, 14, 15	12, 13a, 14
14	2.09 (1H, m)	47.4	10, 11, 13, 15, 16, 23	9b, 10, 13b, 15, 16, 23
15	2.72 (1H, m)	35.9	14, 16, 17, 23	9b, 1b, 14, 16, 18, 22, 23
16	5.21 (1H, t, 10.0)	137.7	14, 15, 18, 23	9b, 14, 15, 17, 23
17	6.03 (1H, m)	122.3	15, 19	16, 24
18	6.00 (1H, m)	120.2	24, 25	15, 25
19		135.9		
20	1.26 (3H, s)	26.3	2; 3; 4	1b, 2, 4a
21	9.26 (1H, s)	198.1	6, 7, 8	5, 8
22	0.99 s (3H, s)	18.6	1, 10, 11, 14	1b, 2, 6, 9a, 12, 13a, 15
23	0.91 (2H, d, 6.7)	20.6	14, 15, 16	13a, 14, 15, 16
24	1.74 (3H, s)	18.3	18, 19, 25	17
25	1.82 (3H, s)	26.7	18, 19, 24	18

Table S10. ¹H- and ¹³C-NMR for ophiobolin U in CDCl₃ at 800 MHz for ¹H and 200 MHz for ¹³C.

7.4 Ophiobolin H isolated from A. insuetus (IBT 28266)

Figure S7. ¹H-NMR spectrum of ophiobolin H in CDCl₃ at 800 MHz.

Figure S8. ¹³C-NMR spectrum of ophiobolin H in CDCl₃ at 200 MHz.

	$\delta_{\rm H}$ mult. (J (Hz))	δ _C	HMBC connectivities	NOE connectivities
1a	1.36 m	35.7	2, 6, 10, 11, 22	1b
1b	1.42 m	35.7		1a, 2, 8, 20
2	2.26 m	50.9		1b, 6, 20, 22
3		80.2		
4a	2.10 m	50.8		4b, 20
4b	2.18 m	50.8		4a
5		116.0		
6	3.17 d (9.8)	52.8		2, 9a, 22
7		138.5		
8	5.64 br.s.	123.6		1b, 9b
9a	1.70 m	25.0	8, 10, 11	6, 9b, 22
9b	2.50 dd (8.6; 13.8)	25.0	7, 8, 10, 11, 14	8, 9a, 10, 15, 16
10	1.60 m	55.0	8, 9, 11, 14, 15, 22	9b, 14
11		43.6		
12a	1.40 dd (7.6; 11.7)	43.0	10, 11, 14, 22	12b, 13a, 22
12b	1.57 m	43.0	13, 15	12a, 13b
13a	1.54 m	26.8	12, 14, 15	12a, 13b, 23
13b	1.76 m	26.8	10, 11, 14	12b, 13a, 14
14	2.05 m	47.2	10, 11, 13, 15, 16, 23	10, 13b, 16, 23
15	2.68 m	35.5	14, 16, 23	9b, 18, 22
16	5.20 m	138.0	18	9b, 14, 17, 23
17	5.99 m	121.7	15, 19	16, 24
18	5.98 m	120.4	16, 24, 25	15, 23, 25
19		135.2		
20	1.24 s	25.4	2, 3	1b, 2, 4a
21a	4.48 br.s.	71.5		
21b	4.59 d (12.2)	71.5		
22	0.90 s	18.7	1, 10, 11	2, 6, 9a, 12a, 15
23	0.88 d (6.7)	20.4	14, 15, 16	13a, 14, 16, 18
24	1.73 s	18.2	18, 19, 25	17
25	1.80 s	26.6	18, 19, 24	18

Table S11. ¹H- and ¹³C-NMR for ophiobolin H in CDCl₃ at 800 MHz for ¹H and 200 MHz for ¹³C.

7.5 6-epiophiobolin N isolated from A. insuetus (IBT 28266)

Figure S9. ¹H-NMR spectrum of 6-epiophiobolin N in CDCl₃ at 800 MHz.

	$\delta_{\rm H}$ mult. (J (Hz))	δ _C	HMBC connectivities	NOE connectivities
1a	1.18 m	45.6	2; 3; 10; 12; 22	1b, 6, 10, 12a/15 *
1b	2.04 dd (3.7; 13.2)	45.6	2, 6, 10, 11	1a, 10, 12a/15 *, 12b, 22
2	2.71 m	49.3	8, 11	8. 9a, 16b, 20, 22
3		179.8		
4	6.11 s	130.0	3; 5; 6; 20	20
5		209.6		
6	3.54 d (3.7)	49.9	1; 2; 5; 7; 8; 21	1a; 2; (8); 9a, 10
7		140.1		
8	6.86 dd (2.0; 6.3)	157.3	6; 10; 21	2/9b **, (6), 9a, 21, 22
9a	2.25 m	31.0	7; 8; 10	2/9b **, 6, 8, 12a, 22
9b	2.71 m	31.0	8, 11	8. 9a, 12a/15 *, 20, 22
10	2.72 m	43.1	1, 7, 13, 14, 22	1a, 1b, 6, 14, 16b
11		45.0		
12a	1.42 m	44.5	1, 13, 22	1a, 1b, 9b, 12b, 13b, 14, 17a, 23
12b	1.51 m	44.5	10; 11; 14; 22	1b; 12a/15 *; 13a; 13b; 22
13a	1.23 m	27.1	12; 14; 15	12b; 13b; 22; 23
13b	1.58 m	27.1	10; 11	13a; 14, 12a/15 *; 23
14	1.75 m	51.1		9b, 10, 12a/15 *, 13b
15	1.42 m	31.8		1a, 1b, 9b, 12b, 13b, 14, 17a, 23
16a	0.99 m	37.1	15; 17; 18; 23	10; 17b; 18
16b	1.45 m	37.1	23	2/9b **; 10, 16a
17a	1.94 m	25.6	16; 18; 19	12a/15 *; 17b; 23
17b	2.07 m	25.6		16a; 17a; 23
18	5.12 t (7.0)	124.4	24; 25	15; 16a; 25
19		131.6		
20	2.10 s	17.4	2, 3, 4	2/9b **; 4
21	9.30 s	193.0	6, 7	8
22	0.86 m	23.1	1; 10; 12	1b; 2/9b **; 8; 9a; 12b; 13a
23	0.91 d (6.4)	18.6	14; 15; 16	10; 13a; 13b; 15; 16a; 17a; 17b
24	1.61 s	17.7	18; 19; 25	25
25	1.69 s	25.7	18; 19; 24	18; 24

Table S12. ¹H and ¹³C NMR for 6-epiophiobolin N in CDCl₃.at 800 MHz for ¹H and 200 MHz for ¹³C.

* Not possible to distinguish between H12a and H15; ** Not possible to distinguish between H2 and H9b.

7.6 Ophiobolin K isolated from a new sp. in the *Aspergillus* section *Usti* (IBT 18591)

Figure S11. ¹H-NMR spectrum of ophiobolin K in CDCl₃ at 800 MHz.

	$\delta_{\rm H}$ mult. (J (Hz))	$\delta_C *$	HMBC connectivities	NOE connectivities
1a	1.14 m	34.5	6, 10, 11, 22	
1b	1.58 m		6, 10, 11	2, 12a, 20
2	2.25 m	49.2	1, 4, 6, 7	1b, 4a, 6, 20, 22
3		76.2		
4a	2.35 m	53.9	3, 5, 20	2, 20
4b	2.50 m		2, 3, 5	
5		217.0		
6	3.22 d (9.8)	48.3	2, 3, 5, 7, 8, 21	2, 9a, 22
7		140.6		
8	7.02 t (8.5)	157.6	6, 9, 21	9b, 10, 21
9a	2.04 m	24.3	7, 8, 10, 11	6, 22
9b	2.69 m		7, 8, 10, 11, 14	8, 10, 16
10	1.56 m	53.0	1, 8, 9, 11, 14, 22	8, 9b, 12
11		43.3		
12a	1.33 m	42.2	10, 11, 13, 14, 22	1b, 13b, 22
12b	1.35 m			
13a	1.54 m	25.4	11, 15	14, 22, 23, 24
13b	1.69 m		11	12a, 14
14	2.09 m	46.2	10, 11, 13, 15, 16, 23	13a/b, 15, 16 , 23
15	2.72 m	34.4	16, 17, 23	14, 18, 22, 23
16	5.23 t (9.5)	136.9	14, 15, 18, 23	9b, 14, 17, 23
17	5.99 m	121.7	15, 18	16, 24
18	6.04 m	119.9	16, 19, 24, 25	15, 23, 25
19		134.6		
20	1.19 s	25.7	2, 3, 4	1b, 2, 4a
21	9.14 s	193.1	6, 7, 8	8
22	0.91 s	18.2	1, 10, 11	2, 6, 9a, 12a, 13a,15
23	0.85 d (6.6)	19.6	14, 15, 16	13a, 14, 15, 16, 18
24	1.68 s	18.0	18, 19, 25	13a, 17, 25
25	1.76 s	25.9	18, 19, 24	18, 24

Table S13. ¹H and ¹³C-NMR for ophiobolin K in DMSO- d_6 at 500 MHz for ¹H and 125 MHz for ¹³C.

* ¹³C NMR chemical shifts determined from HSQC and HMBC experiments.

7.7 6-Epiophiobolin K isolated from a new sp. in the Aspergillus section Usti (IBT 18591)

Figure S12. ¹H-NMR spectrum of 6-epiophiobolin K in CDCl₃ at 800 MHz.

Figure S13. ¹³C-NMR spectrum of 6-epiophiobolin K in CDCl₃ at 200 MHz.

	$\delta_{\rm H}$ mult. (J (Hz))	$\delta_{\rm C}$	HMBC connectivities	NOE connectivities
1a	1.58 m	41.0	2, 6, 10, 22	6, 12a
1b	1.65 m			2, 20, 22
2	1.91 m	49.6	6, 7	1a/b , 4b, 20, 22
3		74.7		
3-ОН	6.51 br.s.			
4a	2.21 m	54.7	2, 3, 5	20 (w)
4b	2.77 d (16.0)		3, 5, 20	2, 20
5		216.1	-	
6	3.04 d (10.8)	48.2	1, 2, 5, 7, 21	1a, 2 (w), 10
7		141.5		
8	6.96 m	159.9	6, 10, 21	9a/b, 21, 22
9a	2.27 m	30.0	7, 8	8, 22 (w)
9b	2.65 m			8, 10
10	2.46 m	43.1		6, 9b, 14
11		44.9		
12a	1.38 m	44.4	10, 22	1a
12b	1.44 m		10, 22	22
13a	1.22 m	27.1	14, 15	22
13b	1.57 m			14, 23
14	1.87 m	51.4		10, 13b, 16, 23
15	2.61 m	31.9		17, 23
16	5.25 t (9.3)	136.0	14, 18	14, 17, 23
17	6.11 m	123.3	15, 19	16, 24
18	6.09 m	120.1	24, 25	15, 23, 25
19		135.3		
20	1.26 s	25.2	2, 3, 4	1b, 2, 4b
21	9.12 s	194.7	6, 7, 8	8
22	0.77 s	22.8	1, 10, 11	1b, 2, 8, 9a, 12b, 13a
23	0.92 d (6.6)	21.1	14, 15, 16	13b, 14, 15, 16, 17
24	1.70 s	17.9	18, 19, 25	17
25	1.79 s	26.1	18, 19, 24	17

Table S14. ¹H and ¹³C-NMR for 6-epiophiobolin K in DMSO- d_6 at 500 MHz for ¹H and 125 MHz for ¹³C.

7.8 Ophiobolin C isolated from A. calidoustus (IBT 25726)

Figure S14. ¹H-NMR spectrum of ophiobolin C in CDCl₃ at 800 MHz.

	$\delta_{\rm H}$ mult. (J (Hz))	δ_{C} *	HMBC connectivities	NOE connectivities
1a	1.26 m	36.0	2, 10, 11	
1b	1.81 m		6, 10	2, 12a, 20
2	2.38 m	50.8		1b, 4a, 6, 20, 22
3		76.6		
4a	2.49 m	54.6	5, 20	2, 20
4b	2.80 m		2, 3, 5	20
5		217.5		
6	3.26 m	48.4	2, 3, 5, 7, 8, 21	2, 9a, 22
7		141.5		
8	7.21 m	163.8	6, 9, 21	9b, 10, 21
9a	2.31 m	24.7	7, 8, 10, 11	6, 22, 23
9b	2.45 m		7, 8, 10, 11	8, 10
10	1.67 m	53.4	8, 14, 15	8, 9b, 16b
11		43.6		
12a	1.41 m	42.6		1b, 22
12b	1.44 m			
13a	1.46 m	22.8	11	23
13b	1.55 m		10, 11	14
14	2.36 m	45.2		13b, 15, 16b, 17b
15	1.65 m	32.7	16	14, 23
16a	1.18 m	36.8	14, 15, 17, 18, 23	17a, 23
16b	1.24 m		14, 15, 17, 18, 23	1b, 10, 14,17b, 18
17a	1.95 m	26.0	15, 16, 18, 19	16a,18
17b	2.00 m		16, 18, 19	14, 16b, 23, 24
18	5.09 m	124.3	24, 25	16b, 17a, 25
19		131.0		
20	1.36 s	25.4	2, 3, 4	1b, 2, 4a/b
21	9.23 s	195.9	6, 7	8
22	0.90 s	19.0	10, 11, 12	2, 6, 9a, 12a
23	0.78 d (6.8)	16.4	14, 15, 16	9a, 13a, 15, 16a, 17b
24	1.61 s	17.6	18, 19, 25	17b
25	1.69 s	25.6	18, 19, 24	18

Table S15. ¹H and ¹³C-NMR for ophiobolin C in CDCl₃ at 800 MHz for ¹H and 200 MHz for ¹³C.

* ¹³C NMR chemichal shifts determinated from HSQC and HMBC experiments.

7.9 6-epiophiobolin G isolated from A. calidoustus (IBT 25726)

Figure S15. ¹H-NMR spectrum of 6-epiophiobolin G in CDCl₃ at 800 MHz.

	$\delta_{\rm H}$ mult. (<i>J</i> (Hz))	δ _C	HMBC connectivities	NOE connectivities
1a	1.15 m	45.8	2, 3, 10, 11, 22	6, 10, 12a
1b	2.03 m		3, 6, 12, 22	2, 22
2	2.66 m	49.2	1	1b, 22
3		178.1		
4	6.04 s	130.2	3, 5, 6, 20	20
5		208.2		
6	3.40 m	50.0	1, 2, 5, 7, 8, 21	1a, 10
7		139.9		
8	6.80 m	158.1	6, 9, 10, 21	9a/b, 21, 22
9a	2.20 m	30.9	7, 8, 10, 14	8, 15, 22
9b	2.93 m		7, 8, 10, 11	8, 10
10	2.63 m	43.8	8, 9, 11, 13, 14, 22	1a, 6, 9b, 14
11		45.4		
12a	1.43 m	44.3	1, 13, 14, 22	1a, 13b
12b	1.52 m		1, 10, 13, 14, 22	22
13a	1.25 m	27.8	12, 14, 15	22
13b	1.67 m		10, 11, 14	12a, 14, 23
14	1.89 m	52.1	9, 10, 13, 15, 16, 23	10, 13b, 16, 23
15	2.55 m	32.6	14, 16, 17, 23	9a/b, 18, 23
16	5.11 t (1.3)	135.7	14, 15, 17, 18, 23	14, 17, 23
17	6.10 m	124.0	15, 18, 19, 23	16, 24
18	6.00 m	120.0	16, 17, 24, 25	15, 23, 25
19		136.6		
20	2.06 s	17.3	2, 3, 4, 5	4
21	9.26 s	193.0	6, 7	8
22	0.85 s	22.9	1, 12	1b, 2, 8, 9a, 12b, 13a
23	0.97 d (6.8)	21.3	14, 15, 16	13b, 14, 15, 16,18
24	1.76 s	18.2	18,19, 25	17
25	1.83 s	26.5	18,19, 24	18

Table S16. ¹H and ¹³C-NMR for 6-epiophiobolin G in CDCl₃ at 800 MHz for ¹H and 200 MHz for ¹³C.

7.10 Activity of ophiobolin A, B, C and K + 6-epiophiobolin K towards healthy fibroblasts (Wi-38) cells

Figure S17. Activity of ophiobolin A, B, C and K + 6-epiophioboln K towards healthy fibroblasts (Wi-38).

7.11 Apoptosis induction in CLL cells by different ophiobolins

Figure S18. CLL cells cultured in DMEM were treated for 24 hours with two different concentrations of ophiobolin A, ophiobolin B, ophiobolin C and ophiobolin K. In order to analyze apoptosis induction, cells of each well were divided into two parts and analyzed by flow cytometry using two different staining strategies. (a) cell survival was analyzed by gating on cells that were negative for Annexin V-phycoerythrin (PE) and 7-amino-actinomycin (7-AAD). Relative survival compared to DMSO control (0.1%) is depicted as mean values +SD of 4 independent CLL samples; (b) Caspase-3 activity is depicted as mean values +SD of 4 independent CLL samples relative to DMSO control (0.1%).

