Supplementary Materials

Figure S1. Absorption titration of derivative **4** (50 μ M) with increasing concentrations of ctDNA. [DNA] = 0 (black), 10 (red), 20 (green), 40 (yellow), 60 (blue), 80 (pink), 100 (light blue) e 120 (gray) μ M. Arrows (\downarrow) refer to hypochromic effects. Inset: corresponding to the plot of [DNA]/($\epsilon_a - \epsilon_f$) as function of DNA concentration as determined from the absorption spectral data.

Figure S2. Absorption titration of derivative 7 (25 μ M) with increasing concentrations of ctDNA. [DNA] = 0 (black), 20 (red), 40 (blue), 60 (yellow), 100 (green) e 120 (pink) μ M. Arrows (\downarrow) refer to hypochromic effects. Inset: corresponding to the plot of [DNA]/($\epsilon_a - \epsilon_f$) as function of DNA concentration as determined from the absorption spectral data.

Figure S3. Fluorescence changes of derivative **4** (10 μ M) with increasing concentrations of ctDNA. [DNA] = 0 (black), 20 (red), 40 (green), 80 (blue) e 120 (pink) μ M. Insert: corresponding the fluorescence intensity of bound derivative to ctDNA (I) / fluorescence intensity of free derivative (I₀).

Figure S4. Fluorescence spectra of derivative **6** (10 μ M) with increasing concentrations of ctDNA. [DNA] = 0 (black), 20 (red), 40 (green), 80 (yellow) e 120 (blue) μ M. Insert: corresponding the fluorescence intensity of bound derivative to ctDNA (I) / fluorescence intensity of free derivative (I₀).

Figure S5. Fluorescence changes of derivative 7 (10 μ M) with increasing concentrations of ctDNA. [DNA] = 0 (black), 20 (red), 40 (green), 80 (yellow) e 120 (blue) μ M. Insert: corresponding the fluorescence intensity of bound derivative to ctDNA (I) / fluorescence intensity of free derivative (I₀).

Figure S6. Absorption (blue), excitacion (black), emission (red) spectra of derivative 4, at concentrations 50, 10 and 10 μ M, respectively, in Tris-HCl buffer. Excitation at 360 nm and emission at 415 nm.

Figure S7. Absorption (blue), excitacion (black), emission (red) spectra of derivative **5**, at concentrations 50, 10 and 10 μ M, respectively, in Tris-HCl buffer. Excitation at 356 nm and emission at 440 nm.

Figure S8. Absorption (blue), excitacion (black), emission (red) spectra of derivative **5**, at concentrations 25, 10 and 10 μ M, respectively, in Tris-HCl buffer. Excitation at 364 nm and emission at 418 nm.

Figure S9. Absorption (blue), excitacion (black), emission (red) spectra of derivative **5**, at concentrations 25, 10 and 10 μ M, respectively, in Tris-HCl buffer. Excitation at 360 nm and emission at 435 nm.

Figure S10. ¹³C-NMR spectrum (DMSO) of derivative 4.

Figure S11. ¹H-NMR spectrum (DMSO) of derivative 4.

Figure S12. ¹³C-NMR spectrum (DMSO) of derivative 5.

Figure S14. ¹³C-NMR spectrum (DMSO) of derivative 6.

Figure S15. ¹H-NMR spectrum (DMSO) of derivative 6.