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Abstract: Chemical bond breaking and formation during chemical reactions can be 

observed using “transition state spectroscopy”. Comparing the measurement result of the 

transition state spectroscopy with the simulation result of single direct-dynamics trajectory, we 

have elucidated the reaction dynamics of Claisen rearrangement of allyl vinyl ether. 

Observed the reaction of the neat sample liquid, we have estimated the time constants of 

transformation from straight-chain structure to aromatic-like six-membered ring structure 

forming the C1-C6 bond. The result clarifies that the reaction proceeds via three steps taking 

longer time than expected from the gas phase calculation. This finding provides new hypothesis 

and discussions, helping the development of the field of reaction mechanism analysis. 
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1. Introduction 

Phenomena which are too fast to be directly observed by our eye, can be visualized by observing 

them using strobe lights. The use of such stroboscopic method to observe ultrafast chemical bond 

breaking and formation in chemical reactions has been a long-awaited dream for chemists. Lord G. Porter 

was awarded Nobel Prize in Chemistry for his contribution to the technique of flash photolysis [1]. 

After the first report of laser oscillation in 1960 [2], laser pulses have been used as strobe lights and 

its time duration has been kept trying to be shortened as short as attosecond order [3–5]. In the field of 

ultrafast optical measurement, the shorted pulse of femtosecond strobe light enabled us to observe 

electronic and vibration spectra in transition states of photoreactions. Zewail, who was awarded the 

Nobel Prize in Chemistry for his pioneering work on femtosecond time-resolved spectroscopy [6], has 

proposed “transition state spectroscopy” as a study of transition state realizing the chemists dream to 

observe chemical bond breaking and formation. Generally, heavy atom—hydrogen stretching 

vibrational modes (3000–3800 cm−1) have a period of 11–9 fs, and carbonyl stretching vibrational 

mode and C=C bond stretching vibrational mode (1600–1750 cm−1) show the vibration in a period of 

21–19 fs. Therefore, using laser pulses whose duration is much shorter than the vibration periods, 

molecular motion in those vibrational modes can be time-resolved observing the modulation of 

transition probability of the corresponding wavelength in real-time. It means that molecular structure 

changes in photoreactions can be observed by measuring the real-time amplitudes of molecular 

vibrations from which time-dependent frequencies are calculated [7–9]. In addition, we have 

previously reported [8–11] that when the pump photon energy is lower than the minimum electronic 

transition energy, molecular vibrational modes of the electronic ground state are excited via an induced 

Raman process, which triggers the reaction in the electronic ground state without converting photon 

energy to thermal energy. As a result, thermally allowed reactions also can be observed by measuring the 

real-time amplitudes of molecular vibrations, from which time-dependent frequencies are calculated. In 

this work, a visible 5-fs laser pulse, which is much shorter than those vibration periods, was used to 

observe molecular structure changes in thermally allowed Claisen rearrangements, including their 

transition states. 

2. Results and Discussions 

2.1. Transition State Spectroscopy of the Claisen Rearrangement of Allyl Vinyl Ether 

We have performed pump-probe measurement of neat liquid of allyl vinyl ether (AVE). Measured 

time-resolved absorption change traces were analyzed by time-frequency analysis [12] using a 

Blackmann window function of 400 fs FWHM. The result is shown in Figure 1a [10], whose x-axis 

and y-axis correspond to reaction time after 5 fs pulse irradiation and time dependent molecular 

vibration frequency, respectively. In the spectrogram, the molecular vibrational modes appear 

immediately after the 5 fs pulses irradiation being assigned to those of AVE; C-O-C symmetric 

stretching vibrational mode (s C–O–C) of the ether group (900 cm−1), C-H deformation vibrational 

modes (C–H) of the allyl and the vinyl groups (1290 cm−1 and 1320 cm−1, respectively), C–H2 

deformation vibrational mode (C–H2) of the methylene group (1500 cm−1) and C=C stretching 
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vibrational modes (C=C) of the allyl and the vinyl groups (1650 cm−1). These molecular vibrational 

modes agree well with the Raman data of AVE (Figure 1b). 

Figure 1. (a) Spectrogram of a Claisen rearrangement induced by visible 5 fs pulses [10]; 

(b) Raman spectrum of AVE; (c) Raman spectrum of allyl acetaldehyde. 

 

The CH2 deformation vibrational mode of the methylene group and the C–O–C symmetric 

stretching vibrational mode of the ether group disappear at about 800 fs delay. It implies that the C4-O 

bond is weakened or broken in the first step of the reaction. The wavenumber shifts of the C=C bonds 

stretching modes also suggest that the C4-O bond is weakened. Just after the 5 fs pulses irradiation, the 

C=C bond stretching vibrational mode of the vinyl and that of the allyl groups appear around 1650 cm−1. 

Then, the C4-O bond weakening causes the electronic density of the allyl and the vinyl groups to 

decrease and increase, respectively. Therefore, the C=C bond stretching vibrational mode observed at 

1650 cm−1 was separated into a red-shifted mode toward 1570 cm−1 and in a blue-shifted mode toward 

1690 cm−1. 

After the C4-O bond weakening, electrons transfer from the vinyl group to the allyl group to form a 

weak C1-C6 bond, which causes an increase and decrease of the electronic density of the allyl and the 

vinyl groups, respectively. Thus, the C5=C6 bonds stretching vibrational mode of the allyl group is 

blue-shifted from 1570 to 1580 cm−1, and the C1=C2 bonds stretching vibrational mode of the vinyl 

group is red-shifted from 1690 to 1580 cm−1. In addition, the electron transfer from the vinyl group to 

the allyl group makes the C=C bonds of both of the allyl and the vinyl groups equivalent having the 

same wavenumber of 1580 cm−1 around 1500 fs delay, which implies that aromatic-like C=C bonds 

are formed. This result shows that the generated intermediate has an aromatic-like six-membered 

structure. Finally, C4-O bond breaking and C1-C6 bond formation proceed simultaneously to generate 

allyl acetaldehyde being observed in appearance of molecular vibrational modes around 2,000 fs delay. 

The frequencies of the new modes at 1030, 1150 and 1750 cm−1 agree well with the Raman data of 

allyl acetaldehyde (Figure 1c), which can be assigned to the C-C-C symmetric stretching vibrational 
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mode (s C–C–C), the C–C–C asymmetric stretching vibrational mode (as C–C–C), and the C=O stretching 

vibrational mode (C=O), respectively. 

In addition, the initial phases of the observed molecular vibrational modes appeared immediately 

after the 5 fs pulses irradiation (900, 1320, and 1650 cm−1) are close to sine-like within ±0.21 radian 

(Figure 2). Therefore, this result conforms that the observed molecular vibrational modes are 

associated with the wavepacket in the ground state. 

Figure 2. Fourier initial phase spectra of 900 cm−1 (black line), 1320 cm−1 (red line), and 

1650 cm−1 (blue line) modes. 

 

[3,3]-Sigmatropic rearrangements of allyl aryl ethers were reported by Claisen in 1912 [13], which 

has been followed by broad variations of the Claisen rearrangements as below. After the first report of 

[3,3]-sigmatropic rearrangements of allyl vinyl ether in 1938 by Schuler and Murphy [14] and its first 

kinetic study [15], the [3,3]-sigmatropic rearrangement of allyl vinyl ether has been widely studied as 

a most simple model of the Claisen rearrangement in kinetic isotope effect measurements in 

experiments and reaction mechanism analysis in theoretical calculations [16–31]. In the transition 

state of the Claisen rearrangement, substitution and solvent were reported to affect the competing 

processes of C4-O bond breaking and C1-C6 bond formation, resulting in changes of the detailed 

structure of the transition states [32]. In general, three possible mechanisms have been suggested for 

the Claisen rearrangement mechanism of allyl vinyl ether [16–31]. In the first mechanism, the reaction 

proceeds in a synchronous concerted pathway via an aromatic-like transition state. The second possible 

mechanism proposes an asynchronous stepwise pathway via a bis-allyl like transition state, in which 

C4-O bond breaking takes place in the first step of the reaction. The third possible mechanism indicates 

an asynchronous stepwise pathway via a 1-4-diyl-like transition state, in which C1-C6 bond formation 

takes place in the first step of the reaction. In this work, we have observed intermediates and transition 

states which indicate a new possible mechanism for the Claisen rearrangement. The mechanism is 

described by a three-step pathway. At first, the C4-O bond is weakened to generate a bis-allyl-like 

intermediate. Next, the formation of a weak C1-C6 bond results in the generation of an aromatic-like 

six-membered intermediate. Finally, C4-O bond breaking and C1-C6 bond formation occur 

simultaneously to generate allyl acetaldehyde (Figure 3). This resembles the transiton state reported in 

the Claisen rearrangement of alkoxy allyl enol ether [33]. 
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Figure 3. Transition-state profile for the Claisen rearrangement. (a) Purple curve: a 

synchronous concerted pathway reaction via an aromatic-like TS. Black curve: a stepwise 

pathway reaction via a bis-allyl like TS. Gray curve: a stepwise pathway reaction via a  

1-4-diyl like TS; (b) Red curve: this work. 

 

In any general thermally activated reaction, the reactant spends a substantial part of the total 

reaction time waiting for the very rare circumstance to get sufficient energy in the reaction coordinate. 

Once it does, the rest of the reaction is very fast. In other words, the reaction does not progress along 

the reaction coordinate at constant speed. However, the calculated spectrogram in Figure 1 showed that 

the reaction progressed in a different way as follows. The first step of the reaction (generation of a  

bis-allyl-like intermediate) proceeds in 800–1,000 fs. The second step generates an aromatic-like  

six-membered intermediate in 300–500 fs. The final step of the three-step pathway finishes in several 

tens to several hundreds femtoseconds. The observed reaction timescale was confirmed by theoretical 

calculation of single direct-dynamics trajectory. 

2.2. Single Direct-Dynamics Trajectory 

Molecular dynamics of the Claisen rearrangement of AVE was simulated by dynamic reaction 

coordinate (DRC) calculations with large kinetic energy equally assigned to all degrees of freedom of 

the molecule in an isolated condition. The calculations were performed with GAMESS 2009 program 

package [34]. Trajectories were computed at the B3LYP/6-311G+(d,p) level of theory. Excess kinetic 

energy of 8–12 kcal/mol was provided for each freedom degree in the calculation. Several trajectory 

calculations with different directions of initial velocities generated randomly were carried out. A bow-like 

structured AVE obtained in the intrinsic reaction coordinate (IRC) calculation was used as an initial 

structure of the DRC calculation (Figure 4). 

Figure 4. Bow-like structured AVE obtained in the IRC calculation. 
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Figure 5 summarizes typical time evolutions of length of bonds that dissociates (C4-O) and forms 

(C1-C6) in the Claisen rearrangement. A successful trajectory which underwent the Claisen rearrangement 

was observed in a calculation with the initial kinetic energy of 10 kcal/mol (Figure 5b). Dissociation of 

C4-O bond and decrease of distance between C1 and C6 lead to the aromatic-like six membered 

structure around 320 fs after large elongation and recovery of the dissociating bond length at 200 fs. 

Figure 5. Bond length changes of C4-O bond (green curve) and C1-C6 bond (gray curve) 

observed in the DRC trajectories with initial kinetic energies of (a) 8 kcal/mol,  

(b) 10 kcal/mol, and (c) 12 kcal/mol.  

 
(a) (b) (c) 

Time evolutions of bond lengths of C1=C2 and C5=C6 in the reactive trajectory (Figure 6) indicate 

that the first structure of the trajectory calculation shown in Figure 4 corresponds to the structure in the 

800–1,000 fs time region of the spectrogram. Those bond lengths are observed to be distinctly 

different, ~1.35 and ~1.42Å, respectively, during 0 fs to 200 fs, which agree with C=C stretching 

modes appearing at 1690 and 1570 cm−1 around 1,000 fs after photo-excitation in the spectrogram. 

After the initial phase, those bond lengths in the trajectory become almost identical when C4-O 

bond starts to break and the aromatic-like six-membered structure forms during 200 fs to 320 fs. This 

behavior is consistent with merge of the two C=C stretching bands to a single band of the aromatic-like 

six-membered structure appearing at 1580 cm−1 around 1,500 fs delay in the spectrogram. 

Figure 6. Time evolutions of bond lengths of C1=C2 (blue curve) and C5=C6 (red curve) in 

the trajectory with initial kinetic energy of 10 kcal/mol. Means in 50 fs periods are also 

indicated (light blue and pink lines, respectively). 

 

In the reactive trajectory, the product is generated within ~150 fs after the formation of the 

aromatic-like six-membered structure. The time constant is half of that observed in the spectrogram. 

The discrepancy arises presumably due to the isolated condition of the trajectory calculation which 
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lacks interaction with surrounding molecules. Molecular friction caused by the interaction with 

surrounding molecules in neat solvent used in the experiment could slow the product formation.  

In the case of the initial kinetic energy of 8 kcal/mol, the C4-O bond did not dissociate and in turn 

the Claisen rearrangement was not observed (Figure 5a). Although C1 and C6 atoms approached 

closely during the trajectory, thermal elongation of C4–O bond was not enough to initiate the 

rearrangement. On the other hand, when the initial kinetic energy of 12 kcal/mol was supplied, the 

larger excess energy led to fragmentation, i.e., C4-O bond dissociation without bond formation 

between C1 and C6 atoms (Figure 5c). However, the fragmentation would be strongly suppressed in 

neat solvent due to caging effect. Furthermore, an NMR measurement confirmed that the product was 

pure allyl acetaldehyde, whereas such fragmentations are expected to generate various product species. 

We therefore conclude that the rearrangement proceeds through the aromatic-like six membered 

structure as observed in the trajectory with the initial kinetic energy of 10 kcal/mol. 

3. Experimental 

3.1. Visible 5-fs Laser System 

The ultrashort pulse laser [35] and ultrafast spectroscopy system used in the measurement is 

described elsewhere [36] and it is briefly summarized in the following. The output pulse from a 

Ti:sapphire regenerative amplifier (Spectra Physics Spitfire) with 100 fs duration, centered at 790 nm, 

and 5 kHz repetition rate was separated by a beam splitter in two pulses. One of the two pulses was 

focused into a -BaB2O4 (BBO) crystal (0.4 mm-thick, = 29°) to generate second harmonic (SH) 

pulse, which was used as a pump pulse in the following optical parametric amplification. The other 

pulse of the separated two pulses was focused in a 2mm-thick sapphire plate to generate femtosecond 

white light broadening spectral bandwidth by third order nonlinear effect of self phase modulation. The 

white light pulse was amplified in a non-collinear optical parametric amplifier (NOPA) pumped by the 

SH pulse. In the NOPA, the angle between the SH pump pulse and the white light seed pulse was set to 

be 3.7 degrees in the non-linear crystal (type-I BBO crystal, 1 mm-thick, = 31.5°) to satisfy the phase 

matching condition in broad visible spectral region, which results in broadband amplification of the 

white light seed pulse. A prism pair and a chirped mirror pair were used to compensate material 

dispersion compressing the pulse duration as short as 5 fs to be used for pump-probe measurement. 

The pulse duration can be compressed more as short as 3.9 fs inserting an additional chirp compressor 

made of a diffraction grating and a deformable mirror. 

3.2. “The Reaction in the Electronic Ground State”, Triggered by the Visible 5-fs Pulse 

Most organic compounds have absorption bands in the ultraviolet region, therefore the visible 5 fs pulse 

with broad bandwidth of 525–725 nm does not excite their electronic states by single photon excitation, but 

induces their molecular vibration via stimulated Raman process with -type interaction in the ground state 

or V-type interaction in the excited state [37]. The 5 fs pulse has a bandwidth of 5200 cm−1, which can 

excite high energy vibration bands as high as in the case of thermal excitation at 7,500 K. Meanwhile, 

being different from the standard thermal reaction, certain vibration modes are selectively excited by 

selection rule and cross section of the stimulated Raman process. Activated vibration modes have high 
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vibration quantum number comparable with that of thermal excitation at 7,500 K, while other vibration 

modes keep the low vibration quantum number of that at room temperature. This direct excitation of 

vibration modes and its relaxation and transfer to other modes in several hundred femtoseconds [38] 

will excite vibration modes on the reaction pathway. Thus, this impulsive excitation by the visible 5 fs 

pulse triggers “the reaction in the electronic ground state”, which is different from that induced by 

electronic state excitation under photo irradiation conditions. 

4. Conclusions  

In conclusion, the Claisen rearrangement of allyl vinyl ether was triggered by a new scheme 

exciting the sample by visible 5 fs pulses whose photon energy is much lower than the absorption band 

of the sample. Observing the molecular vibration frequency changes in the reaction, including its 

transition states, elucidated the reaction mechanism of the Claisen rearrangement in the new scheme. 

The time constants of transformation from straight-chain structure to aromatic-like six-membered ring 

structure forming the C1-C6 bond were estimated from the observed dynamics of the molecular 

vibration modes. It was compared with the molecular dynamics simulated by dynamic reaction 

coordinate calculations with large kinetic energy. The result clarifies that the reaction proceeds via 

three steps showing agreement between the observed molecular vibration frequency change and that 

predicted in the dynamic reaction coordinate calculations. This finding provides a new hypothesis and 

discussions, helping the development of the field of reaction mechanism analysis. 
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