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Abstract: The need to explore new alternative therapeutic strategies and chemoprevention 

methods for hepatocellular carcinoma is growing significantly. Selenium is a trace element 

that plays a critical role in physiological processes, and is used in cancer chemoprevention. 

The aim of this work was to test in vitro the effect of sodium selenite on the human 

hepatoma cell lines, HepG2 and Huh7, to assess its effect on the expression of GPX1, 

SELK and SELENBP1 and also to evaluate its action on inflammation determinants such 

as cytokines. Our results show that: (i) the increase observed for the GPX1 and SELK 

expression is correlated with an increase in the sodium selenite concentration, also 

evidencing an inverse association between the levels of these two proteins and 

SELENBP1; (ii) the selenium concentrations evaluated in protein extracts increase in 

proportional way with the selenite concentrations used in the treatment, suggesting that 

other selenoproteins can also be modulated and should be evaluated in further studies, and 

(iii) some cytokines, VEGF and three pro-inflammatory cytokines, i.e., IL-6, IL-8, and  

IL-17, decreased with an increasing selenite concentration. Finally, interactomic studies 

show that GPX1 and SELK, and the four pro-inflammatory cytokines are functionally 

correlated evidencing a putative anti-inflammatory role for the selenite. 
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1. Introduction 

Selenium is a trace element for which no direct indication of its being essential in human nutrition 

was found until 1979 [1]. In the same year, the existence of a correlation between the low 

concentration of selenium in the geographical area of Keshan in China and the pathology, known as 

Keshan disease (due to dietary deficiency of selenium), was identified by a research group in this 

country [1]. Selenium is stored in human tissues in varying amounts: 30% of tissue selenium is found 

in the liver, 15% in the kidney, 30% in muscle, 10% in the plasma and the remaining 15% throughout 

the other organs [1]. Selenium is also found in trace quantities in a number of dietary agents such as 

dairy products, meat products, poultry, fish, fruits, vegetables and cereals, rendering it part of the food 

chain [2], furthermore, it is considered a significant antioxidant and precursor of the antioxidant 

enzyme known as ―glutathione peroxidase‖ (GPX), which protects cells from free radical damage in a 

number of neuronal and neuromuscular disorders, such as stroke and cerebrovascular disease, 

Alzheimer’s disease, Parkinson’s disease, familial amyotrophic lateral sclerosis and Duchenne 

muscular dystrophy [2]. The evidence linking a lack of selenium with cancer is found in epidemiological 

and clinical studies where the low dietary selenium levels have become an accurate way of predicting 

future cancer rates [3] and, in particular, it has been shown that selenium supplementation led to a 50% 

reduction in cancer mortality [3]. In general, the mean content of selenium in serum from patients with 

various types of cancer was lower than that of the control groups. Therefore, the correlation between 

decreased levels of selenium and increased DNA damage and increased oxidative stress further 

indicates the significance of this trace element [4]. 

Many studies, including geographic, pre-clinical, animal, prospective as well as intervention 

studies, have shown selenium to be involved in gastrointestinal and liver cancers [5,6], and have 

suggested its putative role in their progression and, subsequently, metastasis prevention [7]. A 

significant positive correlation between plasma selenium levels and liver cancer was also found. Some 

epidemiological studies showed significantly lower serum, plasma and liver selenium levels in patients 

with liver diseases, such as chronic hepatitis and cirrhosis, and different grades of hepatocellular 

injury, compared to healthy control groups [8–13]. Hepatocellular carcinoma (HCC) develops in the 

liver with severe impairment of cellular antioxidant systems and some oxidative stress biomarkers for 

this cancer are reported in literature [14]. In particular, oxidative stress and ERK1/2 phosphorylation is 

reported as predictors of outcome in HCC patients treated with sorafenib plus octreotide LAR [15,16]. 

HCC is a major health problem worldwide, being the fifth most common malignancy in males and 

the eighth in females and the third most common cause of cancer-related mortality in the World. The 

incidence of HCC is on the increase, with marked variations among geographic regions and racial and 

ethnic groups, relative to the exposure to documented environmental risk factors [17]. In particular, 

Southern Italy has the highest rates of HCC in Europe [18], and recently it has been reported that 

BRAF and PIK3CA genes are somatically mutated in HCC patients of South Italy [19]. Since it has been 
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demonstrated that selenium binding protein-1 (SELENBP1) is a protein able to incorporate exogenously 

administered radioactive (75Se)-sodium selenite in the liver in vivo [20,21], our group has recently 

evaluated the expression of SELENBP1 and selenium in tissue samples of HCC patients [22,23]. These 

studies provided evidence that this protein, as well as selenium, is down-regulated in the liver tissue of 

HCC patients and that its gradual loss is associated with an increased malignant grade [22,23]. On the 

other hand, in the literature observations related to the levels of GPX1, in which the selenium is present 

as selenocysteine, are contradictory, because some papers emphasized that GPX levels are increased in 

HCC patients, but others stated that they were reduced according to the grade of the HCC [24,25]. 

Moreover, selenoprotein K (SelK) is a novel endoplasmic reticulum (ER) resident protein, the biological 

function of which has been little characterized, indeed, a recent study showed that in HepG2 cells it 

was regulated by the two ER stress agents, tunicamycin and β-mercaptoethanol, and its gene silencing 

could significantly aggravate HepG2 cell death and apoptosis induced by the ER stress agent [26]. 

In the present study, we have analysed: (i) the GPX1, SELK and SELENBP1 expression by western 

blotting and the selenium concentrations by atomic absorption spectrometry in HepG2 and Huh7 cells 

after stimulation with increasing sodium selenite concentrations to understand the effect of the selenite 

on the protein expression, and (ii) the effect of selenite on the cytokinome of these cell lines by a 

multiplex biometric ELISA-based immunoassay, and have found a functional correlation among these 

molecules by an interactomic analysis. 

2. Results and Discussion 

2.1. Evaluation of SELENBP1, SELK and GPX1 Expression in HepG2 and Huh7 Cells 

We evaluated the SELENBP1, SELK and GPX1 protein expression in HepG2 and Huh7 after 24 h 

stimulation with different concentrations of selenite (0.25, 0.5 and 1 µM) compared to untreated cells. 

In untreated HepG2 and Huh7 cells SELENBP1 is not expressed (Figure 1), in agreement with a recent 

article that evidenced very marginal levels of this protein in HepG2 and HuH7 as well as in other non 

metastatic HCC cell lines [27]. 

Figure 1. SELENBP1 protein expression analysis by western blot in the untreated HepG2 

cells (1), in HepG2 cells after 24hrs of treatment with sodium selenite at the indicated 

doses, 0.25 mM (2) and 1mM (3), and in untreated HeLa cells (4). 

 

We used as positive control for anti SELENBP1 antibody HeLa cells, known to express high levels 

of this protein [28]. However, even if SELK and GPX1 are expressed in the untreated HepG2 and 

Huh7 cells, the expression of SELK is less than that of GPX1 (Figure 2). 

This is in agreement with the gene expression analysis which evidenced that SELK was found 

down-regulated in HepG2 when compared to normal hepatocytes, whereas the expression of GPX1 

was similar in normal and cancerous cells (Figure 3). Moreover the treatment with selenite in both cell 
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lines produces an increase in the 11 KDa SELK as well as 23 KDa GPX1 protein expression already at 

low doses of selenite, and levels of both proteins were found constant, independently from used 

concentrations (Figure 2). In the meantime, the 40 KDa SELENBP1 protein was not appreciable. 

Figure 2. SELK and GPX1 protein expression analysis by Western blot in the HepG2 and 

Huh7 cell lines after 24 h of treatment with sodium selenite at the indicated doses.  

-tubulin was used as loading control. 

 

Figure 3. Difference score (Diff.score) between hepatocytes and HepG2 cells. 

 

Our results agree with a previous study that investigated the biological effects of selenium in human 

hepatoma Hep3B cells evidencing that selenium supplementation restored the GPX activity when these 

cells are kept in selenium-deficient media [29]. Similar results were also shown in another study in 

which increased GPX1 levels resulted in the reduction of SELENBP1 in human colorectal as well as 

breast cancer cells [30]. This effect was demonstrated to be due, at least in part, to the inhibition of 

SELENBP1 transcription. However, even if little is known about the regulation of SELENBP1 

transcription, it is possible that SELENBP1 expression is dependent on reactive oxygen-responsive 

transcriptional elements, and the reduction in peroxides that is expected to be achieved with increased 

GPX1 activity can result in the attenuation of transcription [30]. 

However, in the literature we did not find any information about the expression and modulation of 

SELK in liver cancer cells after selenium up-take and, hence, our data evidence for the first time a 

positive correlation between this protein and selenite in hepatic cells. 
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2.2. Evaluation of Selenium Concentrations 

Since SELK and GPX1 protein expression increase already at low doses of selenite and, then, 

remained constant, we evaluated by atomic absorption spectrometry the concentration of selenium in 

the same protein extracts from HepG2 and Huh7 after stimulation with different concentrations of 

selenite compared to untreated cells in order to understand if the cells absorbed only the selenium 

present in SELK and GPX1 or also other amounts. 

As shown in Figure 4, the selenium concentration increases with increasing sodium selenite 

concentrations (with p < 0.05) in both cell lines even if in different amount and through different trend. 

This has evidenced that also other selenoproteins are modulated from cellular treatment with selenite. 

Moreover, we can suggest that the different concentrations evaluated in HepG2 and Huh7 could 

depend from the fact that Huh7 cells are more undifferentiated respect to HepG2. In fact, recent studies 

have shown that the Huh7 cell line is associated with low expression of cytokeratin 8/18 (CK8/18), 

while HepG2 cell line is correlated with high expression of CK8/18 being usually expressed in normal 

hepatocytes [31]. In addition, HepG2 cells express p53 in their native form while Huh7 cells 

constitutively express the mutated form of the same protein and, therefore, are characterized by a more 

malignant phenotype [32]. 

Figure 4. Selenium concentrations (μg/g) in protein extracts of HepG2 and Huh7 after 24 h 

of treatment with sodium selenite at the indicated doses. 

 

2.3. Bio-Plex assay on HepG2 and Huh7 cells 

Since in HCC the constant inflammation resulted to play an important role in the transition from 

chronic liver disease to neoplastic process [33,34], we also studied the immuno-modulatory role of the 

selenite on the cytokines production in hepatoma cellular supernatants by a multiplex biometric 

ELISA-based immunoassay. In details, we evaluated the cytokine levels in HepG2 and Huh7 

supernatants after incubation with sodium selenite at 24 h. The obtained results were compared with 

untreated cells used as control. These experiments showed that the levels of VEGF and three  

pro-inflammatory interleukins, like IL-6, IL-8, and IL-17, decreased in statistically significant way at 

increasing concentrations of sodium selenite (Figure 5). 



Molecules 2013, 18 2554 

 

 

Figure 5. Significant cytokine levels (with p < 0.05) in HepG2 and Huh7 cells line after 

24h of treatment with sodium selenite. 

 

Studies on HCC patients, conducted in our laboratory, showed that high levels of IL-8 and IL-6 

correlated with tumor size suggesting that these two proteins could have a role during the HCC 

progression and can be considered as markers of tumor invasiveness [30]. 

In particular, IL-8 is a pro-inflammatory chemokine (CXCL8) having a strong pro-angiogenic 

activity in HCC patients [35] and its expression has been correlated with invasiveness and tumor 

metastasis because it increased significatively in the later stages of HCC [36]. Moreover, IL-17 is a 

pro-inflammatory interleukins that stimulates fibroblasts and epithelial and endothelial cells, macrophages 

and keratinocytes to produce some cytokines such as IL-6 and IL-8 and its function is essential to a 

subset of CD4 + T cells called T helper 17 (Th17) whose role is linked to many immune and 

autoimmune diseases [37]. 

IL-6 acts as both a pro-inflammatory and anti-inflammatory cytokine and is one of the most 

important mediators of the acute phase response. In cancer cells, it stimulates the secretion of VEGF 

being an established potent angiogenetic factor with pro-inflammatory properties [38]. Recently it has 

been reported that selenite inhibits the expression of VEGF and IL-6 induced by lipopolysaccharide in 

human prostate cancer PC3 cells via TLR4-NF-(K)B signalling blockage [39]. This evidences that the 

decreased levels of IL-6, IL-8, IL-17 and VEGF are certainly correlated between them. Hence, our 

results suggest that selenite could inhibit the tumor invasiveness promoting cellular regression and 

have an anti-inflammatory effect according to our studies on lipoic acid and caffeic acid which 

evidenced that these molecules reduce the expression of some pro-inflammatory cytokines in HepG2 

and Huh7 cells [40]. 
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2.4. Interactomic Studies 

Specific undirect or direct physical interactions among the molecules evidenced in this paper and 

biochemically different in their structure have been assessed also by an interactomic analysis. In 

general, interacting molecules form molecular interaction networks that are classified by the nature of 

the compounds involved. 

The four significant cytokines and the two seleno-proteins, SELK and GPX1, were analysed by 

Ingenuity Pathway Analysis 7.1 (Ingenuity Systems, Inc., Redwood City, CA, USA). The network is 

generated by associated functions and data mining from experimental data reported in literature, and 

our molecules have been found involved into a network named ―Tissue Development, Gene 

expression, Cell Death and Survival‖ where IL-6, IL8, IL-17, VEGF and GPX1 are connected with 

two hub genes, correlated between them [41] such as SMARCA4 and encoding chromatin remodeling 

complex components and TP53 (tumor p53) that responds to different types of cellular stresses to 

regulate target genes by inducing cell cycle arrest, apoptosis, senescence, DNA repair, or metabolic 

changes (Figure 6). 

Figure 6. Interactomic analysis by Ingenuity Pathway Analysis (IPA) of significant 

molecules. The interactome shows the close functional association between SELK, GPX1 

and significant cytokines, (evidenced with cyan symbols) as well as the paths in which 

other functionally relevant molecules are also involved (evidenced with white symbols). 
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Their related proteins are known to create a protein complex. In details, SMARCA4 is connected 

with GPX1 and VEGF via ITGA3 (integrin alpha3) whereas TP53 with VEGF, IL-6, IL-8 and SELP 

(selenoprotein P) that, together with SELK, interacts with SECISBP2 that functions as a SECIS (sec 

insertion sequence) binding protein useful for the incorporation of selenocysteine also into GPX1 [42]. 

On the other hand, IL-17 is correlated with IL-6 through RORC that decrease the expression of IL-17 

and IL-6 in differentiating human naïve T lymphocytes [43]. The power of the interactomic studies 

depend on the fact that the molecular members found in a network are also member of functionally 

different sub-nets thus they transfer to the more general network also the different cellular and 

biochemical functions related to each specific sub-net [44]. In conclusion, recalling that TP53 is 

modulated by NF-κB [45], our network analysis confirms that the four cytokines are strictly correlated 

between them, and the decrease of their levels can induce NF-κB inactivation and, hence, an 

inflammation decrease in the hepatoma cells clearly assessing a reliable putative anti-inflammatory 

role for the selenite. 

3. Experimental 

3.1. Cell Culture 

Human hepatoma cell lines (HepG2 and Huh7) were kept in culture and expanded at 37 °C in a 

humidified atmosphere of 5% CO2 in culture medium DMEM (Dulbecco's Modified Eagle’s Medium, 

Lonza, Verviers, Belgium), supplemented with FBS (Invitrogen, Camarillo, CA, USA) at 10%, 

Penicillin/Streptomycin 100x (Euroclone, Devon, UK), Glutamax 100x (Invitrogen) and non-essential 

amino acids 100x (Invitrogen). Phosphate buffer (PBS phosphate buffered saline Ca
2+

 and Mg
2+

 free) 

and trypsin (Ca
2+

 and Mg
2+

 free) were supplied by Euroclone. 

The cells (2 × 104) were seeded in 100 mm plates in 8 mL of culture medium, and left to grow for  

24 h at 37 °C to allow adhesion. Then, the cells were treated with sodium selenite, dissolved in H2O, 

at the following concentrations 0.25 µM, 0.5 µM and 1 µM and incubated for 24 h. The experiments 

were performed in duplicate and repeated for three times. However, the concentrations of sodium 

selenite used in this study were chosen concerning that human physiological concentration of selenium 

is less than 3 µM [46]. 

3.2. Protein Extraction and Western Blot Analyses 

HepG2 and Huh7 cells were washed once in cold phosphate buffered saline (PBS) and lysed in a 

lysis buffer containing 20 mM Tris HCl pH 7,5, 150 mM NaCl, 1mM EDTA and NP40 after 24 h of 

treatment with 0.25, 0.5 and 1 µM of sodium selenite. The lysis buffer was complemented with 

protease inhibitor cocktail tablets (Roche Applied Science, Penzberg, Germany), diluted in H2O  

to obtain a stock solution 7X concentrated, and with phosphatase inhibitor cocktail tablets  

(Roche Applied Science), diluted in H2O to obtain a 100 concentrated stock solution. The lysates 

were clarified by centrifugation at 13,000 rpm for 15 min. Protein concentrations were estimated by a 

BioRad assay (Bio-Rad Laboratories, Hercules, CA, USA), based on the method of Bradford, that is a 

simple and accurate procedure for determining concentration of solubilized protein. Then the proteins 

were boiled for 5 min before electrophoresis in Laemmli Sample buffer (Bio-Rad) containing 62.5 mM 
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Tris-HCl pH 6.8, 2% sodium dodecyl sulphate (SDS), 25% glycerol, 0,01% bromophenol blue 

complemented with 10% β-mercaptoethanol. 60 μg of proteins were subjected to SDS–polyacrylamide 

gel electrophoresis (PAGE) using 12% acrylamide concentrated gels under reducing condition. After 

electrophoresis, proteins were transferred to nitrocellulose membranes (Amersham Hyperfilm MP, 

High performance autoradiography, GE Healthcare, Hertfordshire, UK); complete transfers were 

assessed using prestained protein standards (Fermentas, Milano, Italy). After blocking with Tris-buffered 

saline 5% non fat dry milk (Bio-Rad), membranes were incubated ON at 4 °C in shaking with the Goat 

anti GPX1 antibody (R&D Systems, Minneapolis, MN, USA), with the rabbit anti SELK antibody 

(ABCAM, Cambridge), and with the rabbit anti SELENBP1 antibody (ABCAM, Cambridge, UK) 

diluted 1:500, 1:500 and 1:1,000 overnight at 4 °C, respectively, and then incubated with the horseradish 

peroxidase conjugated secondary antibody (1:3,000) for 60 min at room temperature; the reaction was 

detected with a Western blotting detection system (ECL; Amersham Biosciences, Little Chalfont, UK). 

To ascertain that equal amounts of protein were loaded, membranes were incubated with antibodies 

against the -tubulin protein (1:500) (Santa Cruz Biotechnology, Santa Cruz, CA, USA). 

3.3. Atomic Absorption Spectrometer Studies 

Nitric acid 67% and ultrapure water were from Sigma-Aldrich (Steinheim, Germany). Selenium 

standard (1,000 ppm) was from Carlo Erba Reagents (Milan, Italy). The sample preparation for 

quantitative determination of selenium is performed according to the method reported by O’Neill  

et al. [47], with some modifications. The samples were sonicated, dissolved in 1% aqueous HNO3, and 

kept at 50 °C overnight. The selenium concentration was determined by graphite furnace atomic 

absorption spectroscopy on a Varian SpectrAA200 (Victoria, Australia) spectrometer with Zeeman 

background correction. The quantitative determinations were carried out by a calibration curve using 

selenium standard solutions (5–20 ppb). Digested samples were diluted with ultra pure water to bring 

the selenium concentration within the calibration range. The furnace settings were as follows: for 

drying, ramp to 85 °C (5 s), ramp to 95 °C (40 s), and ramp to 120 °C (10 s); for washing, ramp to 

1,000 °C (5 s) and hold at 1,000 °C (3 s); for atomization, ramp to 2,600 °C (0.8 s, read signal), hold at 

2,600 °C (2 s, read signal), and hold at 2,600 °C (2 s, tube clean). The absorbance was determined at 

196 nm, the slit was 1.0 nm. Results were expressed as µg selenium per g of protein. Data presented 

are the average of two measurements. 

3.4. Bio-Plex Assay 

In our approach, the levels of a panel of numerous cytokines, chemokines, and growth factors were 

evaluated at the same time by BioPlex assay. The simultaneous quantitative determination of a large 

panel of cytokines, able to report the correct ratios and dynamics between highly and poorly 

represented molecules, has emerged as an accurate, simple, specific, noninvasive, reproducible and 

less expensive method [33,34,40]. The multiplex biometric ELISA-based immunoassay, containing 

dyed microspheres conjugated with a monoclonal antibody specific for a target protein was used, 

according to the manufacturer’s instructions (Bio-Plex Bio-Rad), to evaluate the concentrations of 

different cytokines by Human Cytokine 27-Plex Panel after 24 h of incubation with sodium selenite in 

HepG2 and Huh7 supernatants. In particular, the following cytokines were evaluated: IL-1β, IL-1ra, 
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IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17, eotaxin (CCL11), 

basic FGF, G-CSF, GM-CSF, IFN-γ, CXCL10, MCP-1, MIP-1α, MIP-1β, PDGF-ββ, RANTES, TNF-α 

and VEGF. Each experiment was performed in duplicate as previously described [33,34,40]. Protein 

concentrations were determined using a Bio-Plex array reader (Luminex, Austin, TX, USA) that 

quantitates multiplex immunoassays in a 96-well format with very small fluid volumes. The analyte 

concentration was calculated using a standard curve, with software provided by the manufacturer  

(Bio-Plex Manager Software). 

3.5. Statistical Analysis 

The cytokines concentrations evaluated in HepG2 and Huh7 supernatants after 24 of incubation 

with sodium selenite were compared by T-test. Values of p < 0.05 were considered to be statistically 

significant. The statistical program Prism 4 (GraphPad Software, San Diego, CA, USA) was used. 

4. Conclusions 

HCC treatment with conventional chemotherapeutic agents is inefficient, due to several side effects 

linked to impaired organ function typical of liver diseases. Therefore, it needs to explore possible 

chemo-preventive alternative and/or therapeutic strategies. In fact, the use of dietary antioxidants and 

micronutrients has been recently proposed for successful HCC management [48]. The goal of our 

research was to investigate whether the treatment with selenite shows functional effects on GPX1, 

SELK and SELENBP1, which belong to two different classes of selenium containing molecules, and 

on the hepatoma cell cytokinome. To accomplish this purpose, we have analyzed the expression of 

SELENBP1 and GPX1 in HepG2 and tested the effects of sodium selenite on these cells. Moreover, 

we have evaluated the cytokine concentrations in order to evaluate the pro- or anti-inflammatory 

effects of sodium selenite. Our data evidenced that sodium selenite induced: (a) the increase of GPX1 

and SELK protein expression in both HepG2 and Huh7 cells treated with increasing selenite 

concentrations, and (b) the related decrease of VEGF and of three pro-inflammatory cytokines, i.e.,  

IL-6, IL-8, and IL-17. Our data were also confirmed by an interactomic analysis that showed also the 

functional paths in which these molecules are involved. 

On the whole, the work presented herein establishes that not only in HCC there is a correlation 

between the selenium availability, and the cellular amount of two proteins, GPX1 and SELK, but also 

that sodium selenite shows an anti-inflammatory effect and might, therefore, inhibit the tumor 

invasiveness promoting a cellular regression also because is adequately related to the specific 

functional paths. However, whether any of the possible benefits or risks of selenium intake are due to 

consequential effects on GPX1 and SELK must be more amply demonstrated. 

Moreover, since the selenium concentrations, measured by atomic absorption spectrometry, were 

shown to increase in proportional with those of selenite used in the treatment, we can suggest that 

other selenoproteins can also be modulated and should be evaluated. Therefore, our further studies will 

regard the proteomic evaluation of hepatoma cell lines treated with increasing amount of selenite to 

identify in what metabolic pathways these proteins are involved and the other possible markers 

involved in these processes. 
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