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Abstract: A new cycloartane-type triterpene glycoside, agroastragaloside V (1) was 

isolated from the roots of Astragalus membranaceus. The structure was identified as 3-O-

β-(2'-O-acetyl)-D-xylopyranosyl-6-O-β-D-glucopyranosyl-(24S)-3β,6α,24α,25-tetrahydroxy- 

9,19-cyclolanostane, by means of spectroscopic methods, including HR-FAB/MS,  

1D NMR (1H, 13C, DEPT), 2D NMR (gCOSY, gHSQC, gHMBC, NOESY), and IR 

spectroscopy. Four known cycloartane glycosides, namely, agroastragaloside I (2), 

agroastragaloside II (3), isoastragaloside II (4) and astragaloside IV (5) were also isolated. 

All isolated compounds were tested for the ability to inhibit LPS-induced nitric oxide 

production in RAW264.7 macrophages. 

Keywords: Astragalus membranaceus; cycloartane-type triterpene; agroastragaloside V; 

nitric oxide 

 

1. Introduction 

Astragalus species are among the most widely distributed in northern temperate regions and 

tropical African mountains [1]. Five species have been identified in Korea and the primary parts used 

for medicinal purposes, are cylindrical, but not usually branched, measure around 30–90 cm in length, 

and are covered with a tough, yellowish-brown skin with a sweet white inner pulp [2]. Radix astragali, 
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the dried root of Astragalus membranaceus (FISCH.) BGE., known as Huangqi in China and Korea, is 

one of the most widely used medicinal herbs prescribed in many Chinese formulas to reinforce “Qi” 

(the vital energy) [3]. Studies of its pharmacological and clinical uses have demonstrated that Astragali 

Radix has many biological functions, including hepatoprotection [4], neuroprotection [5], cardiotonic [6], 

anti-aging activity [7], anti-cancer effects [8], and anti-inflammatory effects [9]. Astragalus species are 

rich in cycloartane-type triterpene glycosides that possess diverse biological activities. Some 

cycloartane triterpene glycosides have been shown to have antitumor activity [10]. Astragaloside IV, a 

cycloartane triterpene glycoside extracted from Radix Astragali, has a broad range of pharmacological 

properties, including antiapoptotic [11], anti-inflammatory and antihypertensive [12] effects. 

As part of our efforts to isolate the chemical constituents of Astragali Radix to evaluate  

A. membranaceus qualitatively, we report herein on the isolation of a new minor saponin, 

agroastragaloside V (1), obtained from the roots of A. membranaceus cultivated in Korea, together 

with four known compounds 25, and the structural determination of these substances using extensive 

spectroscopic methods. Several previous studies have provided immune stimulant effects of several 

cycloartane-type triterpene glycosides and the extracts on macrophage activation and expression of 

inflammatory cytokines were investigated from Astragalus species [9,12]. Therefore, isolated 

compounds 1–5 were evaluated for anti-inflammatory activities through the measurement of nitrite, a 

soluble oxidation product of nitric oxide (NO), in lipopolysaccharide (LPS)-induced RAW 254.7 

macrophage cells. 

2. Results and Discussion 

A 80% methanolic extract of dried roots of A. membranaceus was suspended in H2O and extracted 

with EtOAc, and then n-BuOH. The EtOAc soluble fraction was concentrated under reduced pressure 

to produce a residue which was then subjected to multiple chromatographic steps using silica gel, 

reversed-phase C18, and Sephadex LH-20, yielding the compounds 15 (Figure 1). 

Figure 1. Chemical structures of isolated compounds 15. 

 

 

Compound 1, was obtained as an amorphous white powder from MeOH. High-resolution (HR) 

FAB-MS exhibited an ion peak for [M−H] at m/z 811.4777, which is compatible with the molecular 

formula C43H72O14. The IR spectrum of 1 showed the presence of a hydroxyl group (3433 cm1) and an 

ester carbonyl group (1,724 cm1). The 1H-NMR spectrum of 1 (Table 1) revealed the presence of a 

cyclopropane methylene group with signals at δH 0.17 (1H, d, J = 4.0 Hz) and 0.53 (1H, d, J = 4.0 Hz) 
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and also contained signals for six tertiary methyl groups at δH 0.95, 1.28, 1.38, 1.41, 1.43, and 1.78, 

and for one acetyl methyl group (δH 2.03) which were correlated in HSQC with carbon signals at δC 

19.9, 16.6, 18.6, 25.7, 26.5, 28.3 and acetyl (δC 21.2), respectively. A secondary methyl group at δH 

1.07 (3H, d, J = 6.4 Hz) and at δC 18.3, and four oxygen bearing methine proton signals at δH 4.48 

(ddd, J = 8.0, 8.0, 5.2 Hz), 3.53 (ddd, J = 9.5, 9.5, 4.5 Hz), 3.41 (dd, J = 10.5, 2.2 Hz) and 3.23 (dd,  

J = 11.3, 4.0 Hz), which were indicative of secondary alcoholic functions (Table 1), were readily 

noticed in the 1H-NMR spectrum. Furthermore, the 1H-NMR spectrum of 1 clearly showed two 

anomeric doublets at δH 4.77 (J = 7.6 Hz), and 4.96 (J = 7.2 Hz) in the downfield region, indicating of 

the presence of two β-linked sugars. This was supported by the 13C-NMR spectrum, which showed two 

anomeric carbon signals at δC 104.7 and 105.2. The chemical shifts of the individual protons of the two 

sugar units were revealed from a combination of 2D-COSY spectral analyses, and 13C chemical shifts 

of their relative attached carbons were assigned unambiguously from the HSQC and HMBC 

experiments which led to the identification of a β-xylopyranosyl unit and a β-glucopyranosyl unit. The 

sites of attachment of the xylose and glucose moieties of 1 were determined by HMBC experiment to 

be at C-3 and C-6, respectively. In the HMBC spectrum, the first anomeric proton signal at δH 4.77 (H-1') 

showed long range correlation with the carbon at δC 89.0 (C-3). Also the second anomeric proton 

signals at δH 4.96 (H-1") showed long-range correlation with the carbons at δC 79.1 (C-6), respectively. 

Consequently, xylose and glucose should be attached to the hydroxyl groups at C-3 and C-6. The 

relative configuration of OH-6 was confirmed by a NOESY experiment, which showed a correlation 

between H-6 and H-28, H-19a, as well as H-8. These NOE correlations indicated that the oxygen at  

C-6 is α-oriented. In the 1H-NMR spectrum, signals at 2.03 (3H, s), and 13C-NMR signals at 170.0, 

showed the presence of an acetoxyl group in 1. The NMR data of the acetoxyl moiety of 1 were in 

good agreement with those reported for agroastagaloside II (3) [13,14]. Also, the cross peak between 

the oxygenated methine proton signal of xylose (H-2') and the ester carbon signal (δC 170.0) suggested 

that the acetyl group was linked to the hydroxyl of C-2' of xylose (Figure 2) in the HMBC spectrum. 

This was confirmed by the down-field shifts of the carbon (δC 75.7) and proton signal (δH 5.52, H-2') 

owing to the esterification effect. The 13C-NMR spectrum of l displayed a total of 43 carbon signals. 

Based on a DEPT experiment, the HSQC spectrum, and a comparison with the 13C-NMR data of the 

related agroastagaloside II (3), all the signals could be assigned (Table 2). These data were similar to 

agroastagaloside II (3) with the exception of the proton and carbon resonances for the lack of an 

oxygenated methine moiety at the C-16 position, respectively. The methylene signals due to C-16 in 1 

were replaced by those of an oxygenated methine (δH 4.72 and δC 72.1) in agroastagaloside II (3) [14]. 

The molecular weight of 1 was 16 Da less than that of agroastagaloside II (3), indicating the presence 

of one less hydroxyl group. This conclusion was also supported by the HMBC spectrum, which 

showed 2J, 3J, and long range correlation between the proton signal of H-17 (δH 1.51) and the carbon 

signals of C-13 (δC 45.8), C-16 (δC 28.7), C-20 (δC 28.6), C-18 (δC 18.6) and C-21 (δC 18.3) (Figure 2). 

The D-configurations of xylose and glucose units were established after hydrolysis of 1 followed  

by GC analysis [15]. Finally, the structure of 1 was determined to be 3-O-β-(2'-O-acetyl)-D-

xylopyranosyl-6-O-β-D-glucopyranosyl-(24S)-3β,6α,24α,25-tetrahydroxy-9,19-cyclolanostane, and named 

agroastragaloside V. Comparisons of NMR and MS data for the known compounds 2–5 with reported 

values led to their identification as agroastragaloside I (2) [16], agroastragaloside II (3) [14], 

isoastragaloside II (4) [13] and astragaloside IV (5) [16], respectively (Figure 1). 
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Table 1. 1H- (400 MHz) and 13C-NMR (100 MHz) data of compound 1 (in pyridine-d5,  

δ in ppm, J in Hz) a. 

No. δH δC (DEPT) No. δH δC (DEPT) 

1 1.27 b, 1.55 b, m 32.1 (CH2) 23 1.68 b, 1.96 b, m 27.9 (CH2) 
2 1.68 b, 1.94 b, m 30.0 (CH2) 24 3.91, brd, J = 10.8 77.1 (CH) 
3 3.39, dd, J = 4.4, 11.6 89.0 (CH) 25 - 72.5 
4 - 42.3 26 1.43, s 25.7 (CH3) 
5 1.93, d, J = 8.8 52.5 (CH) 27 1.41, s 26.5 (CH3) 
6 3.78, ddd, J = 4.4, 9.6, 9.6  79.1 (CH) 28 1.78, s 28.3 (CH3) 
7 1.82, 2.25, m 34.5 (CH2) 29 1.28, s 16.6 (CH3) 
8 1.90, m 45.8 (CH) 30 0.95, s 19.9 (CH3) 
9 - 21.5 1' 4.77, d, J = 7.6 104.7 (CH) 

10 - 28.7 2' 5.52, dd, J = 8.0, 8.0 75.7 (CH) 
11 1.15, 1,89 b, m 26.3 (CH2) 3' 4.15 b, m 76.3 (CH) 
12 1.64 b, 2.35 b, m 33.2 (CH2) 4' 4.14 b, m 71.4 (CH) 

13 - 45.8 5' 
4.27 b, m, H-5'a 3.62, dd,  

J = 9.6, 11.6, H-5'b 
67.1 (CH2) 

14 - 46.9 1'' 4.96, d, J = 7.2 105.2 (CH) 
15 1.45 b, 1.66 b, m 30.0 (CH2) 2'' 4.00, dd, J = 8.0, 8.0 75.6 (CH) 
16 1.33 b, 1.54 b, m 28.7 (CH2) 3'' 4.29, m 79.1 (CH) 
17 1.51 b, m 49.7 (CH) 4'' 4.10, dd, J = 8.8, 8.8 72.0 (CH) 
18 1.38, s 18.6 (CH3) 5'' 3.88, m 78.1 (CH) 

19 
0.17, d, J = 4.0, H-19a 
0.53, d, J = 4.0, H-19b 

28.4 (CH2) 6'' 
4.42, dd, J = 2.4, 11.2, H-6''a 

4.29, dd, J = 3.6, 11.2, H-6''b 
63.2 (CH2) 

20 2.39 b, m 28.6 (CH) COCH3 - 170.0 
21 1.07, d, J = 6.4 18.3 (CH3) COCH3 2.03, s 21.2 (CH3) 
22 1.40, 1.99 b, m 33.0 (CH2)    

a Assignments were confirmed by 1H-1H COSY, HSQC, and HMBC. b Signals are unclear due to overlapping. 

Figure 2. Key 1H-1H COSY (bold dash) and HMBC (blue arrow) correlations of compound 1. 

 

Previous studies have already reported on the anti-inflammatory effects of components obtained 

from A. membranaceus [9,12]. Thus, we also investigated the inhibitory effects of compounds 1–5 on 

NO production by using the Griess reaction to measure nitrite, a soluble oxidation product of NO, in 

the culture medium of LPS-induced RAW 264.7 macrophages. As shown in Table 2, compounds 1–5 

inhibited NO production with IC50 values in the range of 1.38 to 4.70 μM, respectively. Some cell 
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toxicity was observed in cells treated with compounds 2, 3 and 4, whereas other compounds had no 

influence on cell viability. 

Table 2. Inhibitory effects of compounds 1–5 against LPS-Induced NO production in 

RAW 264.7 macrophage cells. 

Compound IC50 (μM) a cell viability (%) b 

1 1.85 ± 0.24 93.15 ± 6.96 
2 1.38 ± 0.15 54.54 ± 1.21 
3 2.31 ± 0.47 47.56 ± 3.40 
4 4.70 ± 1.77 68.98 ± 1.82 
5 2.09 ± 0.27 94.42 ± 4.33 

Caffeic acid c 0.83 ± 1.15 82.20 ± 1.64 
a The IC50 value of each compound was defined as the concentration (μM) that caused 50% inhibition of NO 

production in LPS-activated RAW 264.7 macrophage cells. Cells were pretreated for 1 h with compounds 

before stimulation with LPS (1 μg/mL) for 7 h; b Cell viability indicates mean maximum inhibitory effect, at 

a concentration of 100 μM, expressed as a percentage inhibition of nitrite production induced by LPS (1 μg/mL) in 

the presence of vehicle; c Positive control. The results are averages of three independent experiments, and the 

data are expressed as mean ± SD. 

3. Experimental 

3.1. General 

1H-, 13C-, and 2D-NMR spectra were recorded on a Varian Unity Inova AS 400 FT-NMR 

instrument, and the chemical shifts were given in δ (ppm) based on the use of tetramethylsilane (TMS) 

as an internal standard. Optical rotations were measured on a JASCOP-1010 digital polarimeter. IR 

spectra were run on a Perkin Elmer Spectrum One FT-IR spectrometer. HR-FABMS spectra were 

obtained using a JEOL JMS-700 mass spectrometer (Tokyo, Japan). A Shimadzu gas chromatograph 

(GC-14B) equipped with an on-column injection system and flame ionization detector (FID) was used 

(Tokyo, Japan). Silica gel 60 (Merck, 230–400 mesh), LiChroprep RP-18 (Merck, 40–63 μm), and 

Sephadex LH-20 (Amersham Pharmacia Biotech., Uppsala, Sweden) were used for column 

chromatography (CC). Pre-coated silica gel plates (Merck, Kieselgel 60 F254, 0.25 mm) and pre-coated 

RP-18 F254s plates (Merck) were used for analytical thin-layer chromatography analyses. Spots were 

visualized by spraying with 10% aqueous H2SO4 solution followed by heating. 

3.2. Plant Material 

The roots of A. membranaceus were cultivated in Jecheon, Chungbuk Province, Korea, for one 

year, harvested in September 2011, and identified by Dr. Jung-Hun Lee, National Institute of 

Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA). A voucher 

specimen (MPS00874) was preserved at the NIHHS, RDA. 
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3.3. Extraction and Isolation 

The roots of A. membranaceus (10 kg) were powdered and extracted three times with 36 L of 

aqueous 80% MeOH at room temperature for 24 h. After concentration in vacuo, the MeOH extract 

(1,387 g) was suspended in H2O (3 L) and then partitioned with EtOAc (3 L × 3) followed by 

concentration to give the EtOAc fraction (E, 57 g). Fraction E (ARE, 57 g) was subjected to a silica gel 

CC (10 × 21 cm) using a gradient of CH2Cl2–MeOH–H2O (15:3:1→12:3:1→9:3:1→7:3:1→MeOH, 

each 2.5 L to yield 23 fractions (E1 to E23). Fraction E10 [2.51 g, elution volume/total volume 

(Ve/Vt) 0.45–0.57] was subjected to the RP-18 silica gel CC [4.5 × 12 cm, MeOH–H2O (1:1.8, 2.5 L)] to 

give compound 2 [184 mg, Ve/Vt 0.43–0.65, (RP-18 F254s) Rf 0.50, MeOH–H2O (5:1)]. Subfraction 

E17 (400 mg, Ve/Vt 0.66–0.70) was separated by CC [RP-18 (4.5 × 8 cm), MeOH–H2O (2.5:1, 1.5 L)] 

to give compound 4 [25 mg, Ve/Vt 0.38–0.45, TLC (RP-18 F254s) Rf 0.30, MeOH–H2O (3:1)].  

Fraction E21 [140 mg, Ve/Vt 0.88–0.92] was subjected to the RP-18 CC [3.5 × 7.5 cm, MeOH–H2O 

(3:1) to give five subfractions (E21-1 to E21-5). Subfraction E21-3 (22 mg, Ve/Vt 0.59–0.68) was 

fractionated using a Sephadex LH 20 CC [2.5 × 50 cm, MeOH–H2O (4:1, 800 L)] and yielded 

compound 1 [12 mg, Ve/Vt 0.66–0.85, TLC (RP-18 F254s) Rf 0.40, MeOH–H2O (5:1)]. Subfraction 

E21-6+7 (45 mg, Ve/Vt 0.59–0.68) was subjected to the RP-18 CC [2.5 × 7.5 cm, MeOH–H2O (3:1) to 

give compound 5 [18 mg, Ve/Vt 0.67–0.90, TLC (RP-18 F254s) Rf 0.35, MeOH–H2O (5:1)]. Fraction 

E22 [140 mg, Ve/Vt 0.93–0.98] was subjected to the RP-18 CC [3.5 × 6 cm, MeOH–H2O (3:1) to give 

five subfractions (E22-1 to E22-6). Subfraction E22-4 (78 mg, Ve/Vt 0.72–0.81) was fractionated 

using a RP-18 CC [2.5 × 5 cm, MeOH–H2O (2.5:1, 800 L)] and yielded compound 3 [33 mg, Ve/Vt 

0.65–0.80, TLC (RP-18 F254s) Rf 0.50, MeOH–H2O (5:1)]. 

3.4. Spectroscopic Data 

Agroastragaloside V (1). Amorphous white powder; [α]25 
D  −18.5° (c = 0.15, MeOH); IR (CaF2 

window) cm−1: 3433, 1724, 1510, 1245, 1065; HR-FAB/MS m/z 811.4777 [M−H]− (calcd for 

C43H71O14, 811.4843); 1H- and 13C-NMR data, see Table 1. 

3.5. Acid Hydrolysis and GC Analysis 

A solution of compound 1 (3 mg) in 2 N HCl (2 ml) was heated at 80 °C for 6 h. The mixture was 

cooled at 0 °C and neutralization with 2 N NaOH in H2O (2 mL) and then extracted with CHCl3. The 

aqueous layer was concentrated under a vacuum to give a residue of the sugar fraction. The residue 

was dissolved in pyridine (100 μL), and then 0.1 M L-cysteine methyl ester hydrochloride (150 μL) 

was added. After reacting at 60 °C for 90 min, the reaction mixture was dried under a vacuum. For 

derivatization, 100 μL of N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) was added and the 

mixture incubated at 37 °C for 30 min. Then, the mixture was subjected to GC analysis under the 

following conditions: capillary column, DB-5 (30 m × 0.32 mm × 0.25 μm); detector, FID; detector 

temperature, 280 °C; injector temperature, 250 °C; carrier, N2 gas (20.4 mL/min); oven temperature, 

170250 °C with a rate of 5 °C/min, with one μL of each sample injected directly into the inject port 

(split-less mode). The peaks from the hydrolyrate of 1 were detected at 9.24 and 10.02 (D-xylose) and 
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12.66 min D-glucose). The retention times for authentic samples in the same experimental conditions 

were detected at 9.24 and 10.02 (D-xylose, Sigma), and 12.66 min (D-glucose, Sigma), respectively. 

3.6. Measurement of NO Production and Cell Viability 

Assays for NO production and cell viability were carried out as previously described [17]. Briefly, 

RAW 264.7 macrophages were harvested and seeded in 24-well plates (3 × 105 cells/well) for the 

measurement of NO production. The plates were pretreated with various concentrations of samples for 

1 h and incubated with LPS (1 μg/mL) for 7 h. The amount of NO was determined by the nitrite 

concentration in the cultured RAW264.7 macrophage supernatants using the Griess reagent. The cell 

viability was evaluated by MTT reduction. 

4. Conclusions 

The new compound 3-O-β-(2'-O-acetyl)-D-xylopyranosyl-6-O-β-D-glucopyranosyl-(24S)-3β,6α, 

24α,25-tetrahydroxy-9,19-cyclolanostane, named agroastragaloside V (1), was isolated from 

Astragalus membranaceus, together with four known cycloartane glycosides. According to previous 

investigations of the various Astragalus species, we have evaluated the inhibitory activities of all 

compounds against LPS-induced NO production in RAW264.7 macrophages. Agroastragaloside V and 

astragaloside IV showed significant inhibition of NO production without cytotoxicity. The results 

provide a potential explanation for the use of this plant as a herbal medicine in the treatment of 

inflammatory diseases, and they merit consideration as leads for anti-inflammatory agents. 

Supplementary Materials 

1H-NMR, 13C-NMR, and HR-FABMS spectra of 1 are available free of charge via the internet at 

http://www.mdpi.com/1420-3049/18/4/3725/s1. 
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