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Abstract: Zero-point vibrational level averaging for electron spin resonance (ESR) and 

muon spin resonance (µSR) hyperfine coupling constants (HFCCs) are computed for H and 

Mu isotopomers of the cyclohexadienyl radical. A local mode approximation previously 

developed for computation of the effect of replacement of H by D on 13C-NMR chemical 

shifts is used. DFT methods are used to compute the change in energy and HFCCs when 

the geometry is changed from the equilibrium values for the stretch and both bend degrees 

of freedom. This variation is then averaged over the probability distribution for each  

degree of freedom. The method is tested using data for the methylene group of C6H7, 

cyclohexadienyl radical and its Mu analog. Good agreement is found for the difference 

between the HFCCs for Mu and H of CHMu and that for H of CHMu and CH2 of the 

parent radical methylene group. All three of these HFCCs are the same in the absence of 

the zero point average, a one-parameter fit of the static HFCC, a(0), can be computed. That 

value, 45.2 Gauss, is compared to the results of several fixed geometry electronic structure 

computations. The HFCC values for the ortho, meta and para H atoms are then discussed.  
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1. Introduction 

The lifetime of muonium (Mu), the hydrogenic species formed by an electron and a positive muon, 

is 2.2 µs [1], long enough for complete thermalization after addition to a double bond. Muon spin 

OPEN ACCESS



Molecules 2013, 18 4907 

 

 

resonance (µSR) methods are useful for determination of hyperfine coupling constants (HFCCs) of 

radicals especially of highly reactive species [1–4]. This capability of µSR provides data for simple 

systems that are amenable to advanced electronic structure treatments. One of these systems is the 

cyclohexadienyl radical, C6H7, formed by addition of H or Mu to benzene (or removal of H from  

1,4-cyclohexadiene) [5–13]. In making comparison between electronic structure theory and experiment 

there is a need to include zero point level effects. The isotope effect is the difference of in this effect 

for isotopic species. This work follows previous studies [14,15] in that the effect of this replacement 

on a single bond is treated.  

The effect of replacement of an H by Mu is usually attributed to a change in the C-X bond  

length [2,6,14,15]. This is also the long-standing explanation for the effect of replacement of H by D 

on the 13C-NMR spectrum of molecules [16]. In the 13C-NMR case this appears to be a reasonable 

approximation for the carbon that bears a deuterium. The shifts for the other carbons in the same 

monodeutero species are, however, not reproduced by this method until the bending degrees of 

freedom are added. These are the isotope effects that have information about the connectivity and 

geometry of the molecule. The attribution of the isotope effect to a bond length change for either 13C-NMR 

or μSR are, in each case, “isolated bond” or “local mode” approximations in the extreme limit in which 

the probability distribution is treated as a delta function at the average position. In a recent publication 

on the deuterium isotope effect on 13C-NMR spectra of hydrocarbons [16], we showed that inclusion 

of all three degrees of freedom, bend as well as stretch, and including the contraction of the stretching 

motion when D replaces H, results in good agreement for the substituted carbon and provides 

agreement for the smaller effects on neighboring carbons which diminishes as the number of 

intervening bonds increases.  

The stretch degree of freedom has a net isotope effect because isotopic substitution results in both 

the change in average position (“displacement”) and the change in width of the distribution for one 

isotopic form vs. the other. The variation of 13C chemical shift with increasing CH bond length, R, is 

found to be exactly fit by a second order polynomial. The linear part of the variation multiplies the 

displacement term while the quadratic variation picks out the change in the second moment of the 

probability distribution. For the NMR case there are no higher terms in the variation in the range of 

finite probability. This is not the case for the corresponding μSR calculations. 

The deuterium isotope effect on 13C chemical shifts is small; at most 400 ppb compared to chemical 

shift differences of the order of 100 ppm. The smaller shifts of distant carbons in the range of −20 to 

+140 ppb are known to a precision of about 1 ppb. The quantity reported in these experiments is the 

difference in the chemical shifts with isotopic substitution. This means that the quantity being 

computed for comparison with the experiment is the difference of two calculations of the 13C chemical 

shift and thus is not appreciably dependent on the absolute precision of the method used for geometry 

optimization or NMR calculation. This also justifies the use of the isolated bond approximation in that 

the effect of the zero point motions of the H atoms in all the unsubstituted sites should have the same 

effect on the chemical shifts in both the H and D forms and so they cancel out in the difference. This 

appears to be justified by comparison of the resulting isotope effect based on the local mode 

approximation with ca. 100 high precision experimental results for rigid hydrocarbons.  

We have two objectives in this present work. One is the demonstration of the suitability of a 

transferable local mode DFT-based method for the computation of muon and hydrogen zero point level 
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effects in µSR and ESR spectroscopies and their difference, the isotope effect. This task is performed 

in analogy to that used in the deuterium NMR calculations including all three degrees of freedom and, 

especially, the change in the stretch distribution width for the muon. The second objective is to 

establish a benchmark value for the geometry optimization and HFCC computation method. That is 

done by “correcting” the experimental values for the zero point effect to obtain a “target” a(0) value.  

The computation of the effect of zero point level motion on the ESR (or μSR) spectrum proceeds in 

the following steps. An optimized C2v is displaced along the stretch and each bend motions for one of 

the two equivalent CH bonds. The resulting variation of the energy relative to the value at the 

minimum along the stretch displacement is converted to cm−1 and fit to a Morse potential. The in-plane 

and out-of-plane bending degrees of freedom are treated in the same fashion except the potential is fit 

to a polynomial which is found to be nearly harmonic.  

Figure 1. Stretching potential energy with zero point energy levels and probability 

distributions for H and Mu and variation of a-a(0) Gauss × 105. 

 

The variation of the individual hyperfine coupling constants from the equilibrium value a(0) is then 

averaged over the populated zero point level geometries. This produces the zero point level averaged 

value of the difference between the hyperfine coupling at the equilibrium geometry, a(0), and that for 

the zero point level. These are shown in Table 1. The computational method used here is summarized 

in Figures 1–3. Figure 1 shows the variation of the potential energy with stretching degree of freedom. 

Figures 2 and 3 show the corresponding variation for the two bending degrees of freedom.  
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Figure 2. Out of plane bending potential with zero point energy levels and probability 

distributions for H and Mu and variation of a-a(0) Gauss × 104. 

 

Figure 3. In-plane bending potential (dark blue) with zero point energy levels and 

probability distributions for H and Mu and variation of a–a(0) Gauss × 50,000. 
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2. Results and Discussion 

In this initial study we concentrate on the largest zero point effects which are measurable as isotope 

effects. For this discussion the methylene carbon C1 has attached H1 or Mu and H1'. H1 and H1' are 

identical in C6H7 but Mu and H1' differ in C6H6Mu. The isotope effects then are the difference in the 

measured HFCC for Mu (as A', i.e., corrected for the magnetic moment ratio) and that for H1' and the 

difference between H1' of C6H6Mu and H1 of C6H7. In the comparison of the HFCC for Mu with that 

for H1' both values are from experiment for the gas phase. The C6H7 comparison is necessarily with 

data obtained in solution. These are then compared to the difference in the ZP corrections. 

Table 1 contains the main results of this work. All entries are in Gauss. The computed contributions 

to the Zero Point Correction (ZPC) due to the stretching and two bending degrees of freedom are 

obtained by averaging the variation of the HFCC for the responding atom relative to that at the 

equilibrium geometry, a-a(0), over the probability distribution for a muon and for a hydrogen atom. 

The stretch contribution dominates. The effect of muon motion on its methylene neighbor is small but 

significant. The effect of Mu motion on the more distant atoms is much smaller and similar to that due 

to H motion so the isotope effect for the ortho, meta and para H atoms is very small.  

The three experimental values given are for the lowest temperature reported for the gas phase muon 

values (313 K) and a solution value for 298 K. These would all be the same in the absence of zero 

point averaging and solvation effects. The difference Mu-H1' = 56.9 − 44.6 = 12.3 G is compared to 

the calculated value of 11.3 G given by the difference in the ZPC of 11.1 − (−0.2). No contribution 

from solvation is involved in this difference. The difference H1' – H1 for H1' in C6H6Mu and H1  

(or H1') in C6H7 observed to be 44.57 − 48.03 = −3.46 G is computed to be −3.20 G. This experimental 

difference includes the solvent effect. This can be estimated by using the solvated value for C6H6Mu 

which is [5] 44.78 G to give 44.78 − 48.03 = −3.25 G. This value is given in Table 1.  

Table 1. Summary of calculations and comparison with experiment (all values in Gauss).  

moved:  muon  hydrogen 

responding:  Mu  H1'  H1 

Stretch  10.15  −0.23  2.88 

In Plane  0.65  −0.05  −0.01 

Out of Plane  0.33  0.08  0.13 

Total ZPC:  11.12  −0.20  3.00 

EXPERIMENT:*  Gauss  56.89  44.57  48.03 

EXP DIFFERENCE:  Gauss  12.32  −3.25 # 

CALC DIFFERENCE:  Gauss  11.32  −3.20 

OPTIMIZED a(Re):  45.19  56.31  44.99  48.19 

RMSD & EXP‐CALC :  0.42  0.58  −0.42  −0.16 

* Taken from [6]. The C6H7 data in [6] is from [11]. # See text above. 

Another way of making comparison of computed and experimental results is to determine what 

single value of a(0) for the H1 hydrogen atoms, the same for all three cases, will result in best 

agreement with experiment. The value found is 45.19 Gauss. With this value and the computed ZPCs 

the absolute observations are computed within 0.5 G on the average. The differences of this zero point 
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correction calculation and experiment shown above are roughly equal to the reported experimental 

uncertainty of ca. 0.25 G. This good agreement is probably somewhat coincidental since solvent and 

temperature effects, although small, are measurable.  

The ZPC correction is dominated by the stretching degree of freedom. The mean extension of the H 

atom from the minimum is 0.0217 Å while that for muonium is 0.0687 Å. The HFCC rises rapidly 

with increase in R-Re In the present treatment the effect of the stretching motion is computed by 

multiplication of the variation of the HFCs, a(R-Re) – a(Re) by the probability that the bond length R is 

sampled by the normalized wavefunction. It should be noted that the effect of the change in bond 

length is only a small part of this change, ca. 3.5 G out of the 10 G total effect. The major net effect is 

due to the rapid rise of a(R-Re) –a(Re) with large positive values of R-Re and the much greater 

sampling of this region by the muon radial motion. This is shown in Figure 4 where the product of the 

variation of a(R-Re)-a(Re) times the probability distribution is shown as the dashed lines. The integral 

of this function is the radial part of the ZPC for each case. The difference of the integrals is the isotope 

effect. It is clear that the largest effect comes from the region of R-Re near 0.3 Å.  

The method used in previous treatments appears to be suspect. The procedure followed was:  

“A possible way of simulating this isotopic perturbation is by increasing the C-H bond length of H 

species, analogous to the muonic one, by 4.9% and keeping it fixed while the remaining geometry 

parameters are relaxed in a geometry optimization calculation using the MNDO (RHF version)  

semi-empirical program [14].” This would seem to be treating the muonium as if it was a very heavy atom.  

Figure 4. Stretching displacement potential (red curve) and probability distributions for H 

and Mu showing (dashed or dotted lines) the product of the probability times the variation 

of a(R-Re)-a(Re). 

 

Calculations of the ZPC for the HFCCs for the other H atoms of C6H7 have been made in this local 

mode treatment and were found to be much smaller than for the methylene H atoms. It was found that 

the bend contributions to this more distant effect were on the same order as the stretch contribution. 

This is also observed for the 13C-NMR H/D effect. By hypothesis of this local mode approach these 
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will cancel in the difference between C6H7 and C6H6Mu, i.e., the calculation of the isotope effect. It is 

reassuring in this respect that these effects are small. However the zero point correction may be a 

significant fraction of the HFCC since these are also small. 

Despite the good agreement shown above, there are reasons to suspect the local mode treatment 

presented here. One of these is the fundamental issue that we have not checked the assumption that the 

effects of stretch and bend contributions are in fact additive. This was found to be the case for the  
13C-NMR H/D effect. It has been argued that the isotope effect of replacement of H by Mu in C6H7 is 

larger for C6D6H vs. C6D6Mu [6]. This cannot be accounted for in our approach but seems to be based 

on only one data point. 

A more obvious issue is that the shape of the potential energy in the region of large extension is 

important in obtaining the correct result. Our stretch potential is based on a computed B3LYP/ 

6-311G(2d,2p) potential that is fit in its lower region to a Morse potential. The larger displacement part 

of the potential energy is not taken directly from the calculation due to incorrect dissociation behavior 

of DFT methods. Instead the asymptotic value is taken from a calculation on the deformed benzene 

plus the exact result for an H atom. This involves the energy difference between the optimized C6H7 

open shell structure and a bent C6H6 structure. This dissociation energy and the shape of the potential 

as this limit is approached should be obtained from more advanced methods. This may be the origin of 

the 10% deficit of the computed value for the ZPC correction difference. Despite these reservations, 

the agreement observed between computed and observed effects supports several conclusions.  

3. Methods 

The structure of C6H7 in C2v symmetry is optimized using Gaussian 03 [17] B3LYP/6-311G(2d,2p). 

This is the starting point for the bond length and angle deformation calculations. The stretch, in-plane 

and out of plane deformations, in both positive and negative displacements away from the equilibrium 

position are made in small intervals with at least 5 points in each direction. 

In performing the fit for the Morse potential representing the variation of energy with R, the large R 

part of the computation is discounted in favor of the known dissociation limit which is the energy 

obtained by the same computation for the structure made by removing one of the methylene hydrogen 

atoms from the optimized C2v C6H7 structure to make a C6H6 with an out-of-plane CH bond. The 

hydrogen energy of minus 0.5 atomic units is added to this. The resulting Morse parameters  

Re = 1.09Å, β = 2.617/Å and De = 18630 cm−1 in the designation and units as used for input for the 

program FGH [18,19]. The reduced mass used in an FGH calculation is 1.008 amu for H or 0.11345 

amu for Mu [1]. The final results were computed with 300 points over a range adjusted to be sure that 

the integrand product (Figure 4) had dropped to zero. 

The series of calculations at displaced geometry produces values for each of the hyperfine coupling 

constants. The values for each displacement minus the value at the equilibrium geometry, a(0), are 

plotted as a function of the displacement and the variation of each hyperfine constant with 

displacement is fit to a sixth order polynomial. This polynomial is then evaluated at the values of the 

displacement at which the corresponding numerical wavefunction was evaluated. These interpolated 

values of a(ξ) (ξ = δR, δθ or δφ) are then multiplied by the value of the normalized square of the 

wavefunction for H or Mu at the same value of the displacement (Figure 4) and the result summed. 
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4. Conclusions  

It should first be noted that the difference in the experimental values in Table 1 of 56.89 (Mu), 

44.57 (H1') of C6H6Mu and 48.03 for H1 of C6H7 can only be explained by inclusion of at least the 

zero point correction to the HFCC values as done here. No electronic structure calculation at any single 

geometry can account for the variation in these numbers. This is seen by comparison of results for the 

two isotopic species but a zero point correction is also potentially important in a quantitative treatment 

for the ortho, meta and para hydrogen atoms.  

One of the conclusions of this work is that, although it is the stretching degree of freedom 

dominates the zero point effect, it is not the change in bond length that is most important but rather the 

change in range of the stretching motion. This differs from the 13C-NMR H/D effect and is due to much 

larger mass ratio for this case. Another conclusion is that the value for the HFCCat the minimum energy 

position, a(0), that should be compared with a computation for an optimized geometry is 45.2 ± 0.6 G. The 

error limit range given is obtained by “correcting” each of the three experimental values by their 

respective zero point correction and taking the average and standard deviation. The resulting range 

encompasses both the experimental variation and the apparent 8% error in the zero point level shift 

difference Mu vs. H.  

This consensus value of 45.2 ± 0.6 G is compared to the a(Re) values computed by several methods 

and geometries in Table 2 and Figure 5. Entries 1 and 2 are from [20] and use a geometry from [21] 

based on an AM1 calculation; the other ten entries are from this work. Each entry is based on a 

geometry and a HFCC method at that geometry. For entries 3–5 the geometry is optimized with the 

same method used for the HFCC calculation. The other calculations use the indicated MP2/basis 

method indicated for optimization and the DFT/basis indicated for HFCC.  

Table 2. Comparison of vibrationally corrected HFCC for H(1) with computed a(0) values. 

Method Basis set a(0) 

target value based on vibrationally corrected experiment:  45.2  0.6 # 

Geometry from AM1 

CCSD(T)  [9s,5p,1d]/(4s,2p,1d) C [4s,1p]/(2s,1p) H 39.98 * 1 

CCSD [9s,5p,1d]/(4s,2p,1d) C [4s,1p]/(2s,1p) H 41.60 * 2 

optimized with method used for HFCC calculation 

CCSD (opt)  6-31G(2d,2p) 41.00 3 

CCSD(opt) 6-311++G(2d,2p) 41.00 4 

DFT/B3LYP(opt) various up to 6-311++G(3d,3p) 49.2–50.2 5 

optimized with MP2/6-311++G(2d,2p)  

 DFT/B3LYP  6-31G(2d,2p) 46.80 6 

 DFT/B3LYP  6-311 G(2d,2p)  47.50 7 

optimized with MP2/6-311++G(3d,3p)  

DFT/B3LYP cc-pVQZ 48.31 8 

 DFT/B3LYP aug-cc-pVQZ 47.45 9 

 DFT/B3LYP 6-311++G(3d,3p) 46.76 10

 DFT/B3LYP 6-311++G(3df, 3pd) 46.02 11

DFT/PBE0 EPR basis set III (ref 21) 48.80 12
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Figure 5. Graphical comparison of a(0) = a(Re,0,0) computed as indicated in Table 2. The 

numbers on the entries are in the right hand column of Table 2. The red box shows the 

“target” range of values. 

 

These same results are compared in a graphical format in Figure 5 to each other and to the “target” 

value that would result in agreement with experiment when the zero point corrections of Table 1 are 

added. It is seen that all of the correlated CCSD values, entries 1–4, are too low by a large margin. 

This is also the case for MP2 HFCC values. The DFT/B3LYP values comprising entry 5 used this 

method for both geometry and HFCC calculations. The range of a(0) values, 49.2 to 50.2, representing 

various basis sets, are all considerably too high. Entries 6–12 are all DFT results based on MP2 

geometries. The large conventional basis set, entry 11, differs from the ZPL corrected estimate by 1.25 

times the estimated standard error of this extracted value, i.e., essentially in agreement. Use of the PBE 

functional and the EPR-III basis set [22] results in a value considerably too large. The fact that these 

considerations discriminate so clearly among computed results shows their utility.  

The ortho, meta and para hydrogen atoms of C6H7 have HFCC values very similar to those for 

C6H6Mu. This absence of an isotope effect does not necessarily mean that the observed values are 

unaffected by zero point averaging but only that the large effect at the methylene position are not 

transmitted to the other centers. The computed zero point corrections using the same local approximation 

are somewhat too small to result in agreement with experiment but they are in the correct direction.  

The HFCC values obtained using the method and basis set “11” that best fits the target methylene 

value results in static a(0) values that are strongly correlated with the experimental values but are about 

20% too small in an absolute sense (viz, ortho: −9.13 exp.; −7.30 calc.; meta: 2.65 exp.; 1.66 calc.; 

para: −13.56 exp.; −11.19 calc.). The RMS deviation is 1.1 Gauss. The PBE0 EPR III results are, on 

average 30% too large. Method “10” which is the second closet match to the target a(0) value gives an 

RMS deviation of only 0.22 Gauss which is probably within experimental error. The diagonal (i.e., 

only the H in question moves) zero point corrections for the ortho, meta and para hydrogen atoms are 

−0.265 G, +0.154 G and −0.300 G, respectively. Addition of these corrections results in an RMS 

deviation of 0.91 G for set 10 and of 0.14 G for set 10. The fact that the a(0) values are slightly too 

small in absolute value is thus in the right direction. 
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The method introduced here for the computation of HFCCs of muon containing radicals is an 

outgrowth of our work on 13C-NMR isotopic shift computations. It is a specific case of a more general 

treatment applied to EPR HFC’s of the parent radicals [22]. This more general normal-mode based 

method may result in small individual contributions giving a cumulative effect that is in agreement 

with experiment. Further analysis will include automation of this zero point correction procedure and 

further exploration of the electronic structure methodology that is needed to provide agreement with 

experiment. The local mode approach permits treatment of large systems. 
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