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Abstract: The trace impurities discovered after extended storage of a 5-amino- 

benzimidazole library were determined as imidazo[4,5-g]quinazoline derivatives by 

extensive spectroscopic data analysis. The formation of this highly aromatic heterocyclic 

ring involved a novel multi-component reaction, using which several novel compounds 

were prepared. Its mechanism was deduced as a cascade of chemical transformations, 

including the formation of a Schiff’s base, intramolecular hetero-Diels-Alder reaction, 

defluorination and dehydrogenation. 

Keywords: multi-component reaction; heterocyclic compounds; imidazo[4,5-g]-quinazoline; 
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1. Introduction 

Benzimidazole has been regarded as a privileged sub-structure in fragment-based drug design and 

its derivatives have achieved great importance in pharmacology [1–4]. As a part of our program to 

prepare versatile chemical libraries from 1,5-difluoro-2,4-dinitrobenzene (DFDNB), we have disclosed 

a multistep parallel solution-phase synthesis of 5-aminobenzimidazole derivatives [5]. Then, a 

OPEN ACCESS



Molecules 2013, 18 5698 

 

 

chemical library including 2,000 members was prepared. Most of the compounds showed high purity 

in the quality control by high-performance liquid chromatography/electrospray ionization mass 

spectroscopy (HPLC-ESIMS) method. However, it was found that trace impurities could often be 

detected in the wells containing 1-substituted-6-fluoro-2-(pyridin-4-yl)-1H-benzo[d]imidazol-5-amines 

(3, Scheme 1) after extended storage. All of them have positive mode MS peaks at 173 a.m.u. higher 

than the corresponding normal products 3. This greatly stirred our interest in determining their 

chemical structures and establishing their origin. A systematic study including structure identification 

and chemical synthesis of these novel compounds was thus carried out and the results are presented here. 

Scheme 1. Chemical pathway to compounds 412. 

 

2. Results and Discussion 

2.1. Structure Elucidation of the Trace Impurity 

To obtain the trace impurity, the multi-step synthesis of 5-aminobenzimidazole derivatives was  

first performed on a larger scale than for the library preparation. 4-Pyridinylaldehyde and  

3-isopropoxypropyl-1-amine were used in the model reaction. When the content of the M+173 

impurity 4 was more than 1% by HPLC-ESIMS analysis, it was isolated by silica column 

chromatography. Then, its chemical structure was established by extensive spectroscopic data analysis. 

Compound 4 was obtained as a yellow powder. Its molecular formula was determined as 

C30H27N7O from the HRESIMS ion at m/z 502.2353 [M+H]+ (calcd. 502.2349), which indicated  

21 degrees of unsaturation. Since the normal product 6-fluoro-1-(3-isopropoxypropyl)-2-(pyridin-4-

yl)-1H-benzo[d]imidazolyl-5-amine should have a molecular formula C18H21FN4O with 10 degrees of 

unsaturation, three nitrogen atoms and 11 degrees of unsaturation should have been introduced in the 

formation of compound 4. It was noticed that 4-pyridinecarbaldehyde was added in twice the amount 

of reduction intermediate 2 and might still stay with compound 3, even after adequate washing with 

aqueous sodium bicarbonate solution. Ammonia was also thought to be in the reaction mixture because 

of its release from residual ammonium formate. Thus, two more pyridinyl groups and a new aromatic 

ring containing an additional nitrogen atom were presumed to exist in the chemical structure of 

compound 4 compared with 3. 
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The 1H-NMR spectrum of 4 confirmed the existence of an alkyl chain, three pyridinyl rings and a 

large conjugated aromatic ring. All signals in the high-field region could be attributed to the  

3-isopropoxypropyl group. Six pairs of aromatic protons should be assigned to the three pyridinyl 

rings. It was obvious that both signals of H-3 and H-6 appeared as singlets, which should be split into a 

doublet because of heteronuclear coupling with the fluorine atom in compound 3 [5]. This indicated 

the absence of a fluorine atom in 4, consistent with the HRESIMS results. The 13C-NMR and DEPT 

spectra of 4 showed 30 signals, including two primary carbons, three secondary carbons, 15 tertiary 

carbons and 10 quaternary carbons. These spectroscopic data suggested that 4 was a highly aromatic 

heterocyclic compound. Thus, two possible chemical structures 4a and 4b were proposed for 4, which 

differed in the positions of one aromatic nitrogen atom and one pyridinyl ring (Figure 1). 

Figure 1. Two possible chemical structures of compound 4. 

 

The structure of 4 was further determined by comprehensive 2D NMR data analysis. In the NOESY 

spectrum, the correlation of H-6 with H-17 and H-18 indicated they were on the same side of the core 

aromatic ring. Meanwhile, NOESY correlation of H-6 with H-19 was observed, revealing that they 

were also on the same side and relatively close. In the optimized conformations of 4a and 4b using the 

MMFF94 molecular mechanical force field, the distances between H-6 and H-19 were 2.30 and 4.41 Å, 

respectively. This indicated that 4a was the right chemical structure of compound 4, which was further 

confirmed by gCOSY, gHSQC and HMBC spectra. Therefore, the chemical structure of 4 was 

established as 1-(3-isopropoxypropyl)-2,6,8-tri(pyridin-4-yl)-1H-imidazo[4,5-g]quinazoline. 

2.2. Preparation of Imidazo[4,5-g]quinazoline Derivatives 

Quinazolines represent a large family of compounds with significant pharmacological properties 

and other industrial uses [6–8]. Many methods for preparing quinazolines have been reported in the 

literature ([9,10], but to the best of our knowledge, there are no reports on the synthesis of 2,6,8-triaryl-

1H-imidazo[4,5-g]quinazoline derivatives). Thus, the chemical transformation from 6-fluoro-1H-

benzo[d]imidazol-5-amines to imidazo[4,5-g]quinazolines was investigated. Besides 4-pyridine 

carbaldehyde, three kinds of 4-substituted benzaldehyde and thiophene-2-carbaldehyde were used to 

give compounds 5–12 (Figure 2).  
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Figure 2. Chemical structures of compounds 5–12. 

 

Though no impurity was discovered in the wells of the counterpart in the 5-aminobenzimidazole 

library, all aromatic aldehydes could give the anticipated product after prolonged heating. It was found 

that the addition of ammonium hydroxide could promote the transformation, indicating that ammonia 

might participate in the reaction as supposed above. When aliphatic 2-ethylbutanal was used, no 

corresponding tricyclic product was detected. Meanwhile, it seemed that the substituents on the 

nitrogen atom have little effect on the reactivity of the intermediate 3.  

The experimental procedure was similar to that of the preparation of 5-aminobenzimidazole library 

and performed in a sequential manner [5]. The reduction intermediate 2 was not purified and directly 
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condensed with aldehyde to give condensation intermediate 3, which was further reacted with 

additional aldehyde and ammonia. The total yield of the typical compound 4 might vary from 16.8% to 

63.4% because of the instability of the key intermediate 2,4,5-benzenetriamines 2. 

2.3. Possible Mechanism of the Novel Multi-Component Reaction 

Multi-component reactions have attracted considerable interest for their high synthetic efficiency [11–13]. 

This novel multi-component reaction might involve the formation of a Schiff’s base, intramolecular 

hetero Diels-Alder reaction, defluorination and dehydrogenation, as shown in Scheme 2. The loss of a 

fluorine atom might be a little difficult to explain, but all the supposed intermediates could be detected 

during the course of reaction. In the synthesis of 4 monitored by HPLC-ESIMS analysis, the main 

component at 2 h was a 5-amino-6-fluorobenzimidazole derivative with a positive mode MS peak at 

m/z 329.3. However, intermediates corresponding to positive mode MS peaks at 524.2, 506.2 and 

504.2 appeared as the reaction progressed. In the end, a molecule corresponding to a positive mode MS 

peak at m/z 502.2 was the final product. Thus, the proposed mechanism was supported by the 

experimental evidence. 

Scheme 2. Plausible mechanism of the multi-component reaction. 
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The hetero-Diels-Alder reaction has been regarded as one of the most convenient routes to  

N-heterocycles and has been used in the synthesis of many natural products [14–17]. It was also 

deduced as the key step in the present process, where the dienophile was the Schiff’s base formed 

between ammonia and the aldehydes. 

3. Experimental 

3.1. General 

All chemical reagents were of reagent grade and used as purchased. Auto HPLC-ESIMS analysis 

was performed on a ThermoFinnigan, LCQ-Advantage mass spectrometer equipped with an Agilent 
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1100 HPLC system and a flow splitter. HPLC-HRESIMS were recorded on an Agilent 1100 series 

LC/MSD trap mass spectrometer (ESI-TOF). 1H-NMR and 13C-NMR spectra were recorded on a 

Mercury 300 or Inova 500 MHz NMR spectrometers equipped with an auto sampler. Infrared spectra 

were recorded using KBr pellets on a Nicolet Impact 400 spectrometer. Flash column chromatography 

was carried out on silica gel (200–300 mesh). 

3.2. General Synthesis Procedure 

To a solution of 0.5 mmol of the substituted dinitro compound 1 in tetrahydrofuran (8 mL) and 

ethanol (8 mL), HCOONH4 (800 mg) and 10% Pd-C (100 mg) were added under stirring. When the 

reaction mixture turned colorless, the catalyst and insoluble excess HCOONH4 were filtered off. The 

filtrate was added directly into a solution of aldehyde (1.5 mmol) and glacial acetic acid (1.2 mL) in 

tetrahydrofuran (4 mL). After stirring at room temperature overnight, the reaction mixture was heated 

to 90 C for 36 h or longer. The reaction mixture was then evaporated to dryness, and the residue was 

further purified by silica gel column chromatography eluting with ethyl acetate/petroleum ether. For a 

typical product, 1-(3-isopropoxypropyl)-2,6,8-tri(pyridin-4-yl)-1H-imidazo[4,5-g]-quinazoline (4),  

159 mg of yellow powder was obtained (63.4% overall yield for three steps). M.p. > 300 C;  
1H-NMR (500 MHz, DMSO-d6):  0.79 (6H, d, J = 6.5 Hz), 1.88 (2H, m), 3.16 (2H, m), 3.20 (1H, m), 

4.55 (2H, t, J = 7.5 Hz), 7.94 (2H, d, J = 5.5 Hz), 7.97 (2H, d, J = 5.5 Hz), 8.28 (1H, s), 8.46 (2H, d,  

J = 6.0 Hz), 8.56 (1H, s), 8.80 (2H, d, J = 5.5 Hz), 8.86 (2H, d, J = 5.5 Hz), 8.91 (2H, d, J = 5.5 Hz). 
13C-NMR (125 MHz, DMSO-d6):  21.63 (2C), 29.37 (1C), 41.92 (1C), 63.42 (1C), 70.47 (1C), 

106.90 (1C), 117.24 (1C), 117.91 (1C), 121.79 (2C), 123.53 (2C), 124.36 (2C), 136.80 (1C), 137.81 

(1C), 144.70 (1C), 144.76 (1C), 146.40 (1C), 148.14 (1C), 150.18 (2C), 150.39 (2C), 150.45 (2C), 

154.94 (1C), 158.06 (1C), 166.53 (1C). HRMS (ESI): m/z 502.2353 [M+H]+ (calcd 502.2349). 

1-Pentyl-2,6,8-tri(pyridin-4-yl)-1H-imidazo[4,5-g]quinazoline (5): m.p. > 300 C; yield: 31.2%.  
1H-NMR (300 MHz, DMSO-d6):  0.72 (3H, t, J = 6.6 Hz), 1.13 (4H, m), 1.69 (2H, m), 4.46 (2H, t,  

J = 7.5 Hz), 7.90 (2H, d, J = 4.5 Hz), 7.97 (2H, d, J = 4.5 Hz), 8.28 (1H, s), 8.45 (2H, d, J = 4.5 Hz), 

8.56 (1H, s), 8.80 (2H, d, J = 4.5 Hz), 8.87 (2H, d, J = 4.5 Hz), 8.91 (2H, d, J = 4.5 Hz). 13C-NMR (75 

MHz, DMSO-d6):  13.58 (1C), 21.31 (1C), 27.98 (1C), 28.40 (1C), 44.33 (1C), 106.82 (1C), 117.16 

(1C), 117.78 (1C), 121.68 (2C), 123.41 (2C), 124.35 (2C), 136.74 (1C), 137.50 (1C), 144.54 (1C), 

144.62 (1C), 146.20 (1C), 147.94 (1C), 150.08 (2C), 150.33 (2C), 150.44 (2C), 154.77 (1C), 157.87 

(1C), 166.30 (1C). HRMS (ESI): m/z 472.2249 [M+H]+ (calcd 472.2244). 

1-(3-Isopropoxypropyl)-2,6,8-tris(4-methoxyphenyl)-1H-imidazo[4,5-g]quinazoline (6): m.p. > 300 C; 

yield: 45.1%. 1H-NMR (300 MHz, CDCl3):  0.97 (6H, d, J = 6.3 Hz), 2.03 (2H, m), 3.28 (2H, m), 

3.35 (1H, m), 3.90 (6H, s), 3.95 (3H, s), 4.46 (2H, t, J = 7.2 Hz), 7.04 (2H, d, J = 6.9 Hz), 7.08 (2H, d, 

J = 6.9 Hz), 7.15 (2H, d, J = 6.9 Hz), 7.84 (2H, d, J = 8.7 Hz), 7.94 (2H, d, J = 8.7 Hz), 8.10 (1H, s), 

8.51 (1H, s), 8.69 (2H, d, J = 8.7 Hz). 13C-NMR (125 MHz, CDCl3):  22.11 (2C), 30.37 (1C), 42.51 

(1C), 55.60 (1C), 55.70 (2C), 64.27 (1C), 71.89 (1C), 106.20 (1C), 114.02 (2C), 114.31 (2C), 114.62 

(2C), 116.93 (2C), 118.27 (2C), 122.08 (1C), 130.38 (2C), 131.31 (2C), 131.49 (1C), 131.92 (2C), 

136.95 (1C), 148.24 (1C), 158.08 (1C), 160.04 (1C), 161.27 (1C), 161.67 (1C), 161.81 (1C), 167.81 

(1C). HRMS (ESI): m/z 589.2815 [M+H]+ (calcd 589.2809). 
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2,6,8-Tris(4-fluorophenyl)-1-(3-isopropoxypropyl)-1H-imidazo[4,5-g]quinazoline (7): m.p. > 300 C; 

yield: 48.3%. 1H-NMR (300 MHz, DMSO-d6):  0.97 (6H, d, J = 6.0 Hz), 2.02 (2H, m), 3.29 (2H, m), 

3.35 (1H, m), 4.45 (2H, t, J = 7.2 Hz), 7.21 (6H, m), 7.93 (4H, m), 8.06 (1H, s), 8.56 (1H, s), 8.72 (2H, 

m). 13C-NMR (100 MHz, DMSO-d6):  21.61 (2C), 29.31 (1C), 41.75 (1C), 63.43 (1C), 70.47 (1C), 

106.75 (1C), 115.40 (1C), 115.60 (1C), 115.86 (1C), 115.90 (1C), 115.96 (1C), 116.12 (1C), 117.33 

(1C), 125.95 (2C, d, J = 2 Hz), 130.22 (2C, d, J = 9 Hz), 132.33 (2C, d, J = 9 Hz), 134.26 (2C, d, J = 2 Hz), 

134.31 (2C, d, J = 2 Hz), 137.09 (1C), 146.71 (1C), 148.02 (1C), 155.72 (1C), 159.15 (1C), 163.24 

(1C, d, J = 246 Hz), 163.47 (1C, d, J = 248 Hz), 163.70 (1C, d, J = 246 Hz), 167.00 (1C). HRMS 

(ESI): m/z 553.2215 [M+H]+ (calcd 553.2211). 

1-(3-Isopropoxypropyl)-2,6,8-tri(thiophen-2-yl)-1H-imidazo[4,5-g]quinazoline (8): m.p. > 300 C; 

yield: 28.5%. 1H-NMR (300 MHz, CDCl3):  1.08 (6H, d, J = 6.0 Hz), 2.22 (2H, m), 3.46 (2H, m), 

3.50 (1H, m), 4.68 (2H, t, J = 7.5 Hz), 7.21 (1H, d, J = 4.8 Hz), 7.25 (1H, d, J = 4.8 Hz), 7.32 (1H, d,  

J = 5.1 Hz), 7.51 (1H, d, J = 4.8 Hz), 7.65 (1H, d, J = 5.1 Hz), 7.69 (1H, d, J = 4.5 Hz), 7.93 (1H, d,  

J = 3.3 Hz), 8.00 (1H, d, J = 3.3 Hz), 8.25 (1H, s), 8.48 (2H, s). 13C-NMR (125 MHz, DMSO-d6):  

22.10 (2C), 30.16 (1C), 41.48 (1C), 63.06 (1C), 70.13 (1C), 107.15 (1C), 119.25 (1C), 120.53 (1C), 

125.16 (1C), 126.57 (1C), 127.95 (1C), 128.49 (1C), 129.05 (1C), 135.29 (1C), 136.91 (1C), 143.84 

(1C), 143.62 (1C), 146.08(1C), 146.35 (1C), 146.82 (1C), 146.91 (1C), 149.05 (1C), 150.11 (1C), 

155.04 (1C), 157.64 (1C), 167.42 (1C). HRMS (ESI): m/z 517.1190 [M+H]+ (calcd 517.1185). 

1-(3-Isopropoxypropyl)-2,6,8-tris(4-nitrophenyl)-1H-imidazo[4,5-g]quinazoline (9): m.p. > 300 C; 

yield: 23.9%. 1H-NMR (300 MHz, DMSO-d6):  0.77 (6H, d, J = 6.6 Hz), 1.86 (2H, m), 3.15 (2H, m), 

3.22 (1H, m), 3.88 (6H, s), 3.92 (3H, s), 4.48 (2H, m), 7.35 (2H, d, J = 7.2 Hz), 7.49 (2H, d, J = 7.2 Hz), 

8.01 (2H, d, J = 7.2 Hz), 8.26 (2H, d, J = 7.2 Hz), 8.46 (1H, s), 8.55 (2H, d, J = 7.2 Hz), 8.67 (1H, s), 

8.90 (2H, d, J = 7.2 Hz). 13C-NMR (75 MHz, DMSO-d6):  23.04 (2C), 30.98 (1C), 42.19 (1C), 64.27 

(1C), 75.21 (1C), 107.29 (1C), 116.38 (1C), 116.72 (1C), 117.19 (1C), 117.56 (1C), 119.12 (1C), 

123.84 (2C), 124.08 (2C), 129.47 (2C), 130.47 (2C), 137.35 (2C), 137.69 (1C), 137.98 (2C), 142.18 

(1C), 150.55 (1C), 161.01 (1C), 161.84 (1C), 162.61 (1C), 163.09 (1C), 164.16 (1C), 170.62 (1C). 

HRMS (ESI): m/z 634.2049 [M+H]+ (calcd 634.2045). 

1-(tert-Pentyl)-2,6,8-tri(pyridin-4-yl)-1H-imidazo[4,5-g]quinazoline (10): m.p. > 300 C; yield: 53.7%. 
1H-NMR (300 MHz, DMSO-d6):  0.67 (3H, t, J = 7.2 Hz), 1.49 (6H, s), 2.05 (2H, m), 3.41 (6H, s), 

3.44 (3H, s), 7.90 (2H, d, J = 4.5 Hz), 7.95 (2H, d, J = 4.5 Hz), 8.21 (1H, s), 8.43 (2H, d, J = 4.5 Hz), 

8.50 (1H, s), 8.83 (2H, d, J = 4.5 Hz), 8.81 (2H, d, J = 4.5 Hz), 8.90 (2H, d, J = 4.5 Hz). 13C-NMR (75 MHz, 

DMSO-d6):  8.15 (1C), 29.22 (2C), 33.26 (1C), 61.15 (1C), 106.90 (1C), 117.19 (1C), 117.83 (1C), 

121.28 (2C), 123.06 (2C), 124.13 (2C), 136.42 (1C), 137.39 (1C), 144.01 (1C), 144.48 (1C), 146.10 

(1C), 147.69 (1C), 150.32 (2C), 150.43 (2C), 150.95 (2C), 154.70 (1C), 157.64 (1C), 166.15 (1C). 

HRMS (ESI): m/z 472.2247 [M+H]+ (calcd 472.2244). 

2,6,8-Tris(4-methoxyphenyl)-1-(tert-pentyl)-1H-imidazo[4,5-g]quinazoline (11): m.p. > 300 C; yield: 

41.8%. 1H-NMR (300 MHz, CDCl3):  0.56 (3H, t, J = 7.5 Hz), 1.46 (6H, s), 2.02 (2H, m), 3.78 (6H, 

s), 3.80 (3H, s), 7.03 (2H, d, J = 7.2 Hz), 7.07 (2H, d, J = 7.2 Hz), 7.12 (2H, d, J = 7.2 Hz), 7.78 (2H, 

d, J = 7.2 Hz), 7.89 (2H, d, J = 8.4 Hz), 8.09 (1H, s), 8.50 (1H, s), 8.64 (2H, d, J = 8.4 Hz). 13C-NMR 
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(125 MHz, CDCl3):  8.09 (1C), 29.14 (2C), 33.17 (1C), 55.14 (1C), 55.57 (2C), 61.19 (1C), 106.18 

(1C), 114.05 (2C), 114.26 (2C), 114.65 (2C), 116.28 (2C), 118.01 (2C), 121.95 (1C), 130.16 (2C), 

131.09 (2C), 131.32 (1C), 131.83 (2C), 136.90 (1C), 148.12 (1C), 158.00 (1C), 160.07 (1C), 161.05 

(1C), 161.59 (1C), 161.72 (1C), 167.56 (1C). HRMS (ESI): m/z 559.2708 [M+H]+ (calcd 559.2704). 

2,6,8-Tri(pyridin-4-yl)-1H-imidazo[4,5-g]quinazoline (12): m.p. > 300 C; yield: 27.2%. 1H-NMR  

(300 MHz, DMSO-d6):  7.93 (2H, d, J = 4.8 Hz), 7.99 (2H, d, J = 4.8 Hz), 8.26 (1H, s), 8.49 (2H, d,  

J = 4.8 Hz), 8.54 (1H, s), 8.81 (2H, d, J = 4.8 Hz), 8.86 (2H, d, J = 4.8 Hz), 8.92 (2H, d, J = 4.8 Hz), 

11.90 (1H, s). 13C-NMR (75 MHz, DMSO-d6):  106.78 (1C), 117.01 (1C), 117.69 (1C), 121.57 (2C), 

123.28 (2C), 124.21 (2C), 136.56 (1C), 137.47 (1C), 144.29 (1C), 144.53 (1C), 146.16 (1C), 147.88 

(1C), 150.26 (2C), 150.41 (2C), 150.49 (2C), 154.69 (1C), 157.76 (1C), 166.19 (1C). HRMS (ESI): 

m/z 402.1459 [M+H]+ (calcd 402.1462). 

4. Conclusions  

In conclusion, a novel multi-component reaction, which led to the formation of the unexpected trace 

impurities detected in a 5-aminobenzimidazole chemical library after extended storage, has been 

investigated. The possible reaction mechanism is thought to involve a cascade of chemical 

transformations, with the key step being a hetero Diels-Alder reaction. Its application to the 

preparation of other 6-halo-1H-benzo[d] imidazol-5-amines and ortho-haloanilines will be fully 

investigated in the future.  
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