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Abstract: We report herein an original and rapid synthesis of 2,3-diaryl N-tosylaziridines 

by TDAE strategy starting from ortho- or para-nitro(dichloromethyl)benzene derivatives 

and N-tosylimines. A mixture of cis/trans isomers was isolated from 1-(dichloromethyl)-4-

nitrobenzene, whereas only trans-aziridines were obtained from ortho-nitro derivatives. 
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1. Introduction 

Aziridines are found in a number of natural products exhibiting various biological properties, such 

as antitumor and antibiotic activities [1]. They are known to be valuable building blocks since they can 

undergo ring-opening reactions leading to a variety of amine products [2–5]. Therefore, the preparation of 

aziridines has received increasing attention in recent years. Various synthetic methods have been developed 

to prepare aziridines such as nitrene transfer to olefins [6–11], carbene addition to imines [12,13],  

aza-Darzens reaction [14], and ylide addition to imines [15,16]. 

Tetrakis(dimethylamino)ethylene (TDAE) is an organic reducing agent, which reacts with 

halogenated derivatives to generate a carbanion under mild conditions [17–19]. Since 2003, we have 

introduced a new program directed toward the development of original synthetic methods using TDAE 

methodology in medicinal chemistry [20–27].  
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In particular, we have shown that, from o- and p-nitrobenzyl chlorides, TDAE can generate a 

nitrobenzyl carbanion able to react with various electrophiles such as aromatic aldehydes, α-ketoester, 

ketomalonate, α-ketolactam, and sulfonimine derivatives [28–31]. 

Recently, we reported the reaction of 2-(dibromomethyl)quinoxaline and 2-(dibromomethyl)-1,4-

dimethoxy-9,10-anthraquinone with aromatic aldehydes in the presence of TDAE, providing a mixture 

of cis/trans isomers of corresponding epoxides [32,33]. 

In order to extend this reactivity to the synthesis of aziridines, we explored the reaction of  

gem-dihalogenated derivatives with imines in the presence of TDAE. We chose the sulfonylaldimines 

for their ability to react, shown in fluorine chemistry [34] and, more recently, in anthraquinonic series [31] 

in the presence of TDAE. As part of our research program for new bioactive compounds [35–38], we 

report herein an original and efficient synthesis of 2,3-diaryl N-tosylaziridines using readily available 

N-tosylimines and nitro(dichloromethyl)benzene derivatives by the TDAE strategy. 

2. Results and Discussion 

The required starting materials 1–3 were prepared in good yields (76–87%) by chlorination of the 

corresponding aromatic benzaldehydes using SOCl2 in DMF at 80 °C for 2 h (Scheme 1). 

Arylsubstituted N-tosylimines 4a–g were prepared by condensation of various benzaldehydes and 

p-toluenesulfonamide in the presence of AlCl3 in a solvent-free procedure described by Sharghi [39]. 

Scheme 1. Synthesis of nitro(dichloromethyl)benzene derivatives 1–3. 

 

The reaction of 1-(dichloromethyl)-4-nitrobenzene 1 with two equiv. of aromatic N-tosylimines 4a–g 

in the presence of TDAE at −20 °C for 1 h, followed by 2 h at rt, led to a mixture of cis/trans isomers 

of the corresponding aziridines 5a–g in good yields (70–81%) as shown in Scheme 2 and reported in 

Table 1. Both electron-withdrawing and electron-donating substituents on the phenyl ring of the  

N-tosylimines were suitable for this reaction. 1H-NMR spectral studies identified the aziridines 5a–g as 

trans or cis isomers by their coupling constant. Two distinct doublets appeared in 3.39–4.60 ppm 

region with J = 4.3–4.7 Hz or J = 7.3–9.4 Hz, each of the signals corresponding to one proton. The low 

coupling constant here is consistent with a trans-isomer as reported in the literature [40], higher values 

being indicative of the cis-isomer of aziridine [41]. 
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Scheme 2. TDAE-promoted reactivity of 1-(dichloromethyl)-4-nitrobenzene (1) and 

aromatic N-tosylimines 4a–g. 

 

Table 1. Reaction of 1-(dichloromethyl)-4-nitrobenzene (1) with aromatic N-tosylimines  

4a–g using TDAE strategy. a 

Entry X Aziridine cis/trans isomers b (%) Yieldc (%) 
1 H 5a 86/14 81 
2 2-Me 5b 67/33 74 
3 2-Cl 5c 74/26 70 
4 2-Br 5d 68/32 72 
5 3-F 5e 86/14 71 
6 3-CF3 5f 75/25 73 
7 4-F 5g 84/16 80 

a All the reactions were performed using two equiv. of sulfonimines 4a–g, one equiv. of dichloride 1 and one 

equiv. of TDAE in anhydrous THF at –20 °C for 1 h and then at rt for 2 h. b Determined by 1H-NMR of the 

crude product. c All yields refer to chromatographically isolated pure products and are relative to dichloride 1. 

The formation of these aziridines 5a–g may be explained by nucleophilic addition of α-chlorocarbanion, 

formed by TDAE acting with 1-(dichloromethyl)-4-nitrobenzene (1), on the C=N double-bond of  

N-tosylimines 4a–g followed by an intramolecular nucleophilic substitution. The greater stabilization 

of the cis isomer is explained by steric hindrance [15]: the largest group on the three-membered ring is 

the tosyl group and this will preferentially be anti to the other substituents to minimize 1,2-steric 

interactions, which forces the two remaining groups to be cis to each other. 

The reaction of 1-(dichloromethyl)-2-nitrobenzene (2) and 1-(dichloromethyl)-4,5-dimethoxy-2-

nitrobenzene (3) with two equiv. of various N-tosylimines 4a–g in the presence of TDAE at –20 °C for 

1 h followed by 2 h at rt led only to the corresponding trans-aziridines 6a–g and 7a–g in good yields 

(61–80%) as shown in Table 2 (Scheme 3). This total trans diastereoselectivy can be explained by 

analysing the relevant transition states (Scheme 4). The very high steric hindrance of the ortho-nitro 

subtituent of 2 and 3 with aromatic ring of sulfonimines has a significant effect. Clearly, transition 

state A is less sterically hindered than transition state B, which explains the preferential formation of 

the trans aziridines. To explain this total trans diastereoselectivity, a different coordination transition 

state could also be envisaged. In this hypothesis, the bis cation deriving from TDAE [42] coordinates 

both the TsN− anion and NO2 group, thus stabilizing a transition state where TsN− anion and NO2 

group are on the same side like transition state C and increasing the formation of the trans aziridine 

that must be considered the cinetic compound. 
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Table 2. Reaction of 1-(dichloromethyl)-2-nitrobenzene derivatives 2–3 with aromatic  

N-tosylimines 4a–g using TDAE strategy. a 

Entry Substrate X trans-Aziridine b Yield c (%) 
1 2 H 6a 70 
2 2 2-Me 6b 62 
3 2 2-Cl 6c 80 
4 2 2-Br 6d 70 
5 2 3-F 6e 75 
6 2 3-CF3 6f 63 
7 2 4-F 6g 79 
8 3 H 7a 73 
9 3 2-Me 7b 70 
10 3 2-Cl 7c 61 
11 3 2-Br 7d 74 
12 3 3-F 7e 68 
13 3 3-CF3 7f 75 
14 3 4-F 7g 64 

a All the reactions were performed using 2 equiv of sulfonimines 4a–g, 1 equiv of dichloride 2–3 and 1 equiv 

of TDAE in anhydrous THF at –20 °C for 1 h and then at rt for 2 h. b Determined by 1H-NMR of the crude 

product. c All yields refer to chromatographically isolated pure products and are relative to dichloride 2–3. 

Scheme 3. TDAE-promoted reactivity 1-(dichloromethyl)-2-nitrobenzene derivatives 2–3 

and aromatic N-tosylimines 4a–g. 

 

Scheme 4. Diastereoselectivity of the aziridine formation. 
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3. Experimental  

3.1. General 

Melting points were determined on a Büchi melting point B-540 apparatus and are uncorrected. 

Element analyses were performed on a Thermo Finnigan EA1112 at the spectropole of the  

Aix-Marseille University. Both 1H- and 13C-NMR spectra were determined on a Bruker AC 200 

spectrometer. The 1H- and the 13C- chemical shifts are reported from CDCl3 peaks: 1H (7.26 ppm) and 
13C (76.9 ppm). Multiplicities are represented by the following notations: s, singlet; d, doublet; t, 

triplet; q, quartet; m, a more complex multiplet or overlapping multiplets. The following adsorbents 

were used for column chromatography: silica gel 60 (Merck, particle size 0.063–0.200 mm, 70–230 mesh 

ASTM). TLC was performed on 5 cm × 10 cm aluminium plates coated with silica gel 60 F254 (Merck) 

in an appropriate solvent. 

3.2. General Procedure for the Preparation of 1–3 

Benzaldehyde derivative (13 mmol) was dissolved in thionyl chloride (10 mL), and then to the 

mixture was added 1 mL of DMF. The reaction mixture was stirred for 2 h at 80 °C. Then, the solvent 

was removed under vacuum. The residue was dissolved in dichloromethane (100 mL), washed with 

H2O (3 × 100 mL) and dried over MgSO4. After evaporation, the crude product was purified by silica 

gel chromatography with dichloromethane: petroleum ether (1:1) to give the corresponding 

dichlorobenzene derivatives 1–3. Analyses for compounds 1 and 2 are in agreement with those 

reported in the literature [43,44]. 

1-(Dichloromethyl)-4,5-dimethoxy-2-nitrobenzene (3). 76% yield; white solid; mp 110 °C; 1H-NMR 

(200 MHz, CDCl3) δH 3.98 (s, 3H), 4.05 (s, 3H), 7.54 (s, 1H), 7.56 (s, 1H), 7.73 (s, 1H); 13C-NMR  

(50 MHz, CDCl3) δC 56.6, 56.7, 66.4, 107.2, 110.8, 129.4, 149.8, 153.8. Anal. Calcd for C9H9Cl2NO4: 

C, 40.63; H, 3.41; N, 5.26. Found: C, 40.86; H, 3.26; N, 5.39. 

3.3. General Procedure for TDAE Reaction 

Into a two-necked flask equipped with a drying tube (silica gel) and a nitrogen inlet was added  

15 mL of an anhydrous THF solution of dichloride derivative 1–3 (1 equiv.) and N-tosylimine 4a–g  

(2 equiv.). The solution was cooled to −20 °C, maintained at this temperature for 30 min and then was 

added dropwise (via a syringe) the TDAE (1 equiv.). The solution was vigorously stirred at −20 °C for 

1 h and then maintained at rt for 2 h. After this time, TLC analysis (CH2Cl2) clearly showed that 

compound (1–3) was totally consumed. The solution was filtered (to remove the octamethyl-oxamidinium 

dichloride) and hydrolyzed with H2O (70 mL). The aqueous solution was extracted with chloroform  

(3 × 40 mL), the combined organic layers washed with H2O (2 × 40 mL) and dried over MgSO4. 

Evaporation of the solvent furnished an orange viscous liquid as crude product. Purification by silica 

gel chromatography (CH2Cl2/petroleum ether: 70/30) and recrystallization from isopropanol gave 

corresponding aziridines (5–7). Analyses for compounds 5a, 5d, 5g and 6a are in agreement with those 

reported in the literature [45]. 
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2-(4-Nitrophenyl)-3-o-tolyl-1-tosylaziridine (5b). cis-isomer; white solid; mp 202 °C; 1H-NMR (200 MHz, 

CDCl3) δH 2.13 (s, 3H), 2.45 (s, 3H), 4.28 (d, 1H, J = 7.3 Hz), 4.33 (d, 1H, J = 7.3 Hz), 6.91–7.14 (m, 

4H), 7.22 (d, 2H, J = 8.6 Hz), 7.38 (d, 2H, J = 7.8 Hz), 7.87–7.99 (m, 4H). 13C-NMR (50 MHz, 

CDCl3) δC 21.6, 21.7, 45.6, 47.9, 123.0, 125.6, 127.9, 128.0, 128.2, 129.7, 129.8, 130.0, 131.5, 134.4, 

134.5, 135.9, 139.6, 145.2. trans-isomer; white solid; mp 161 °C; 1H-NMR (200 MHz, CDCl3) δH 2.38 

(s, 3H), 2.41 (s, 3H), 4.20 (d, 1H, J = 4.7 Hz), 4.35 (d, 1H, J = 4.7 Hz), 7.17–7.28 (m, 6H), 7.59–7.66 

(m, 4H), 8.21 (d, 2H, J = 8.7 Hz). 13C-NMR (50 MHz, CDCl3) δC 18.8, 21.6, 45.6, 47.8, 123.0, 125.6, 

127.9, 128.0, 128.1, 128.1, 129.0, 129.7, 129.9, 134.3, 135.9, 139.5, 145.2, 147.3. Anal. Calcd for 

C22H20N2O4S: C, 64.69; H, 4.94; N, 6.86; S, 7.85. Found: C, 64.79; H, 4.97; N, 6.85; S, 7.92. 

2-(2-Chlorophenyl)-3-(4-nitrophenyl)-1-tosylaziridine (5c). cis-isomer; white solid; mp 193 °C; 1H-NMR 

(200 MHz, CDCl3) δH 2.45 (s, 3H), 3.39 (d, 1H, J = 7.6 Hz), 3.46 (d, 1H, J = 7.6 Hz), 7.04–7.20 (m, 

4H), 7.26 (d, 2H, J = 8.6 Hz), 7.38 (d, 2H, J = 8.2 Hz), 7.93 (d, 2H, J = 8.6 Hz), 7.97 (d, 2H, J = 8.2 Hz). 
13C-NMR (50 MHz, CDCl3) δC 21.6, 46.0, 46.9, 123.1, 126.5, 128.0, 128.3, 129.0, 129.3, 129.4, 129.5, 

130.0, 133.2, 134.1, 139.1, 145.3, 147.4. trans-isomer; white solid; mp 185 °C; 1H-NMR (200 MHz, 

CDCl3) δH 2.42 (s, 3H), 4.10 (d, 1H, J = 4.5 Hz), 4.56 (d, 1H, J = 4.5 Hz), 7.22–7.41 (m, 6H), 7.69  

(d, 2H, J = 8.7 Hz), 7.73 (d, 2H, J = 8.7 Hz), 8.23 (d, 2H, J = 8.7 Hz). 13C-NMR (50 MHz, CDCl3)  

δC 21.6, 47.2, 49.8, 123.5, 127.0, 127.7, 128.4, 129.4, 129.6, 130.0, 130.0, 131.2, 134.5, 136.1, 139.5, 

144.8, 148.1. Anal. Calcd for C21H17ClN2O4S: C, 58.81; H, 4.00; N, 6.53; S, 7.48. Found: C, 58.88; H, 

3.99; N, 6.43; S, 7.49. 

2-(3-Fluorophenyl)-3-(4-nitrophenyl)-1-tosylaziridine (5e). cis-isomer; white solid; mp 108 °C; 1H-NMR 

(200 MHz, CDCl3) δH 2.47 (s, 3H), 4.22 (d, 1H, J = 9.4Hz), 4.32 (d, 1H, J = 9.4Hz), 6.69–6.88 (m, 

3H), 7.04–7.16 (m, 1H), 7.23 (d, 2H, J = 8.3 Hz), 7.39 (d, 2H, J = 8.3 Hz), 7.96 (d, 2H, J = 8.3 Hz) 

7.99 (d, 2H, J = 8.3 Hz). 13C-NMR (50 MHz, CDCl3) δC 21.7, 46.3, 47.1 (d, J = 2.6 Hz), 114.5 (d,  

J = 22.7 Hz), 115.2 (d, J = 21.1 Hz) 123.2 (d, J = 2.9 Hz), 123.3, 128.0, 128.5, 129.9, 130.1, 133.7 (d, 

J = 8.0 Hz), 134.2, 139.1, 145.4, 147.6, 162.4 (d, J = 247.0 Hz). trans-isomer; white solid; mp 143 °C;  
1H-NMR (200 MHz, CDCl3) δH 2.41 (s, 3H), 4.22 (d, 1H, J = 4.4 Hz), 4.26 (d, 1H, J = 4.4 Hz), 7.70 

(d, 2H, J = 8.8 Hz), 7.24–7.41 (m, 4H), 7.60 (d, 2H, J = 8.8 Hz), 7.67 (d, 2H, J = 8.2 Hz), 8.21 (d, 2H, 

J = 8.8 Hz). 13C NMR (50 MHz, CDCl3) δC 21.6, 49.0, 50.1 (d, J = 2.2 Hz), 115.2 (d, J = 22.7 Hz), 

116.1 (d, J = 21.2 Hz), 123.7, 124.0 (d, J = 2.9 Hz), 127.5, 129.2, 129.7, 130.0, 134.7 (d, J = 7.7 Hz), 

136.4, 140.2, 144.7, 148.1, 162.7 (d, J = 247.4Hz). Anal. Calcd for C21H17FN2O4S: C, 61.16; H, 4.15; 

N, 6.79; S, 7.77. Found: C, 60.51; H, 4.19; N, 6.62; S, 7.66. 

2-(4-Nitrophenyl)-3-(3-(trifluoromethyl)phenyl)-1-tosyl-aziridine (5f). cis-isomer; white solid; mp 63 °C; 
1H-NMR (200 MHz, CDCl3) δH 2.44 (s, 3H), 4.30 (d, 1H, J = 7.7 Hz), 4.34 (d, 1H, J = 7.7 Hz), 7.21–7.41 

(m, 8H), 7.95 (d, 2H, J = 8.4 Hz), 7.99 (d, 2H, J = 8.4 Hz). 13C-NMR (50 MHz, CDCl3) δC 21.6, 46.4, 

46.9, 123.3, 124.4 (q, J = 4.0 Hz), 125.0 (q, J = 4.0 Hz), 128.0, 128.5, 128.8, 130.0, 130.5 (q, J = 33.0 Hz), 

130.7, 132.3, 133.9, 138.9, 142.5 (q, J = 238.9 Hz), 145.6, 147.5. trans-isomer; white solid; mp 164 °C; 
1H-NMR (200 MHz, CDCl3) δH 2.40 (s, 3H), 4.25 (d, 1H, J = 4.3 Hz), 4.35 (d, 1H, J = 4.3 Hz),  

7.20–7.25 (m, 4H), 7.54–7.65 (m, 4H), 7.97 (d, 2H, J = 8.8 Hz), 8.20 (d, 2H, J = 8.8 Hz). 13C-NMR 

(50 MHz, CDCl3) δC 21.5, 48.5, 50.1, 123.7, 125.3 (q, J = 3.7Hz), 125.8 (q, J = 3.7 Hz), 127.5, 129.1, 
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129.7, 130.1, 130.9 (q, J = 32.6 Hz), 131.6, 133.1, 136.1, 140.1, 140.5 (q, J = 238.1 Hz), 144.9, 148.1. 

Anal. Calcd for C22H17F3N2O4S: C, 57.14; H, 3.71; N, 6.06; S, 6.93. Found: C, 55.46; H, 3.74; N, 5.92; 

S, 6.71. 

trans-2-(2-Nitrophenyl)-3-o-tolyl-1-tosylaziridine (6b). White solid; mp 160 °C; 1H-NMR (200 MHz, 

CDCl3) δH 2.27 (s, 3H), 2.41 (s, 3H), 3.87 (d, 1H, J = 4.8 Hz), 5.16 (d, 1H, J = 4.8 Hz), 7.16–7.20 (m, 

4H), 7.26–7.32 (m, 1H), 7.48–7.77 (m, 6H), 8.15 (dd, 1H, J = 8.1, 1.1 Hz). 13C-NMR (50 MHz, 

CDCl3) δC 19.3, 21.5, 43.6, 51.9, 124.9, 125.7, 127.9, 128.5, 128.6, 129.1, 129.2, 129.4, 129.7, 129.8, 

131.4, 134.2, 135.4, 139.6, 144.3, 148.1. Anal. Calcd for C22H20N2O4S: C, 64.69; H, 4.94; N, 6.86; S, 

7.85. Found: C, 64.81; H, 4.96; N, 6.82; S, 7.57. 

trans-2-(2-Chlorophenyl)-3-(2-nitrophenyl)-1-tosyl-aziridine (6c). White solid; mp 153 °C; 1H-NMR 

(200 MHz, CDCl3) δH 2.42 (s, 3H), 4.25 (d, 1H, J = 4.8 Hz), 5.04 (d, 1H, J = 4.8 Hz), 7.21–7.35 (m, 

5H), 7.51–7.72 (m, 5H), 7.87 (d, 1H, J = 7.6 Hz), 8.20 (d, 1H, J = 7.6 Hz). 13C-NMR (50 MHz, 

CDCl3) δC 21.6, 46.0, 49.3, 125.0, 126.4, 127.8, 129.1, 129.5, 129.6, 129.9, 130.0, 130.1, 130.2, 130.3, 

134.2, 135.7, 136.0, 144.6, 148.5. Anal. Calcd for C21H17ClN2O4S: C, 58.81; H, 4.00; N, 6.53; S, 7.48. 

Found: C, 58.72; H, 3.99; N, 6.50; S, 7.46. 

trans-2-(2-Bromophenyl)-3-(2-nitrophenyl)-1-tosyl-aziridine (6d). White solid; mp 153 °C; 1H-NMR 

(200 MHz, CDCl3) δH 2.41 (s, 3H), 4.26 (d, 1H, J = 4.9 Hz), 5.00 (d, 1H, J = 4.9 Hz), 7.21–7.26 (m, 

2H), 7.29–7.42 (m, 2H), 7.51–7.72 (m, 6H), 7.89–7.92 (m, 1H), 8.18 (dd, 1H, J = 8.1 Hz, J = 1.0 Hz). 
13C-NMR (50 MHz, CDCl3) δC 21.5, 46.4, 51.1, 125.0, 127.3, 127.8, 128.1, 129.4, 129.6, 129.7, 129.8, 

130.0, 130.3, 131.3, 132.3, 134.1, 135.6, 144.6, 148.5. Anal. Calcd for C21H17BrN2O4S: C, 53.29; H, 

3.62; N, 5.92; S, 6.77. Found: C, 53.36; H, 3.66; N, 5.96; S, 6.78. 

trans-2-(3-Fluorophenyl)-3-(2-nitrophenyl)-1-tosyl-aziridine (6e). White solid; mp 154 °C; 1H-NMR 

(200 MHz, CDCl3) δH 2.42 (s, 3H), 3.91 (d, 1H, J = 4.6 Hz), 5.03 (d, 1H, J = 4.6 Hz), 7.01–7.26 (m, 

4H), 7.31–7.36 (m, 2H), 7.48–7.69 (m, 5H), 8.17 (d, 1H, J = 7.9 Hz). 13C-NMR (50 MHz, CDCl3) δC 

21.6, 45.5, 51.6 (d, J = 2.2 Hz), 116.1 (d, J = 20.8 Hz), 116.5 (d, J = 22.7 Hz), 125.0, 125.3 (d, J = 2.9 Hz), 

127.8, 129.4, 129.5, 129.8, 129.9, 130.5, 133.1 (d, J = 8.0 Hz), 134.2, 135.8, 144.6, 148.2, 162.4 (d,  

J = 246.6 Hz). Anal. Calcd for C21H17FN2O4S: C, 61.16; H, 4.15; N, 6.79; S, 7.77. Found: C, 61.29; H, 

4.20; N, 6.75; S, 7.72. 

trans-2-(2-Nitrophenyl)-3-(3-(trifluoromethyl)phenyl)-aziridine (6f). White solid; mp 145 °C; 1H-NMR 

(200 MHz, CDCl3) δH 2.41 (s, 3H), 3.91 (d, 1H, J = 4.5 Hz), 5.13 (d, 1H, J = 4.5 Hz), 7.21 (d, 2H,  

J = 8.1 Hz), 7.49–7.84 (m, 9H), 8.18 (d, 1H, J = 8.4 Hz). 13C-NMR (50 MHz, CDCl3) δC 21.5, 44.9, 

51.6, 121.5 (q, J = 272.2 Hz), 125.0, 125.8 (q, J = 3.7 Hz), 126.8 (q, J = 3.7 Hz), 127.7, 128.9, 129.5, 

129.6, 129.8, 130.4 (q, J = 32.2 Hz), 130.6, 131.5, 132.8, 134.3, 135.5, 144.8, 148.1. Anal. Calcd for 

C22H17F3N2O4S: C, 57.14; H, 3.71; N, 6.06; S, 6.93. Found: C, 56.96; H, 3.72; N, 6.11; S, 6.72. 

trans-2-(4-Fluorophenyl)-3-(2-nitrophenyl)-1-tosylaziridine (6g). White solid; mp 135 °C; 1H-NMR 

(200 MHz, CDCl3) δH 2.42 (s, 3H), 3.86 (d, 1H, J = 4.6 Hz), 5.10 (d, 1H, J = 4.6 Hz), 7.04 (t, 2H,  

J = 8.4 Hz), 7.23 (t, 2H, J = 8.4 Hz), 7.47–7.63 (m, 7H), 8.15 (d, 1H, J = 7.8 Hz). 13C-NMR (50 MHz, 
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CDCl3) δC 21.6, 44.9, 52.4, 115.3 (d, J = 21.6 Hz), 125.0, 126.2 (d, J = 3.3 Hz), 127.7, 129.3, 129.5, 

129.6, 131.1, 131.7 (d, J = 8.4 Hz), 134.3, 136.0, 144.5, 148.1, 162.5 (d, J = 248.4 Hz). Anal. Calcd 

for C21H17FN2O4S: C, 61.16; H, 4.15; N, 6.79; S, 7.77. Found: C, 61.31; H, 4.20; N, 6.79; S, 7.71. 

trans-2-(4,5-Dimethoxy-2-nitrophenyl)-3-phenyl-1-tosylaziridine (7a). White solid; mp 154 °C; 1H-NMR 

(200 MHz, CDCl3) δH 2.39 (s, 3H), 3.74 (s, 3H), 3.88 (d, 1H, J = 4.4 Hz), 3.94 (s, 3H), 5.15 (d, 1H,  

J = 4.4 Hz), 6.91 (s, 1H), 7.19–7.23 (m, 2H), 7.34–7.37 (m, 3H), 7.59–7.63 (m, 4H), 7.71 (s, 1H).  
13C-NMR (50 MHz, CDCl3) δC 21.5, 45.3, 53.7, 56.1, 56.4, 107.8, 110.6, 126.1, 127.8, 128.2, 129.0, 

129.5, 129.9, 130.2, 136.5, 140.3, 144.2, 148.5, 153.7. Anal. Calcd for C23H22N2O6S: C, 60.78; H, 

4.88; N, 6.16; S, 7.06. Found: C, 60.80; H, 4.92; N, 6.20; S, 7.03. 

trans-2-(4,5-Dimethoxy-2-nitrophenyl)-3-o-tolyl-1-tosylaziridine (7b). White solid; mp 167 °C; 1H-NMR 

(200 MHz, CDCl3) δH 2.38 (s, 6H), 3.76 (s, 3H), 3.82 (d, 1H, J = 4.8 Hz), 3.93 (s, 3H), 5.18 (d, 1H,  

J = 4.8 Hz), 6.98 (s, 1H), 7.18 (d, 4H, J = 7.3 Hz), 7.24–7.32 (m, 2H), 7.56 (d, 1H, J = 8.2 Hz), 7.65 

(d, 1H, J = 7.3 Hz), 7.70 (s, 1H). 13C-NMR (50 MHz, CDCl3) δC 19.4, 21.4, 44.3, 52.5, 56.1, 56.4, 

107.8, 110.7, 125.7, 126.4, 127.9, 128.5, 128.7, 129.2, 129.4, 129.8, 135.9, 139.9, 140.2, 144.2, 148.4, 

153.7. Anal. Calcd for C24H24N2O6S: C, 61.52; H, 5.16; N, 5.98; S, 6.84. Found: C, 61.86; H, 5.21; N, 

5.98; S, 6.78. 

trans-2-(2-Chlorophenyl)-3-(4,5-dimethoxy-2-nitrophenyl)-1-tosylaziridine (7c). White solid; mp 144 °C; 
1H-NMR (200 MHz, CDCl3) δH 2.41 (s, 3H), 3.83 (s, 3H), 3.95 (s, 3H), 4.17 (d, 1H, J = 4.9 Hz), 5.07 

(d, 1H, J = 4.9 Hz), 7.09 (s, 1H), 7.24 (d, 2H, J = 8.2 Hz), 7.29–7.40 (m, 3H), 7.65 (d, 2H, J = 8.2 Hz), 

7.72–7.76 (m, 2H).13C-NMR (50 MHz, CDCl3) δC 21.5, 46.3, 50.0, 56.2, 56.4, 107.9, 111.3, 125.0, 

126.8, 127.9, 129.1, 129.4, 129.5, 130.1, 130.3, 136.0, 136.4, 140.8, 144.5, 148.8, 153.6. Anal. Calcd 

for C23H21ClN2O6S: C, 56.50; H, 4.33; N, 5.73; S, 6.56. Found: C, 56.44; H, 4.33; N, 5.71; S, 6.57. 

trans-2-(2-Bromophenyl)-3-(4,5-dimethoxy-2-nitrophenyl)-1-tosylaziridine (7d). White solid; mp 164 °C; 
1H-NMR (200 MHz, CDCl3) δH 2.40 (s, 3H), 3.85 (s, 3H), 3.94 (s, 3H), 4.19 (d, 1H, J = 4.8 Hz), 5.02 

(d, 1H, J = 4.8 Hz), 7.14 (s, 1H), 7.21–7.25 (m, 3H), 7.34 (t, 2H, J = 7.3 Hz), 7.53–7.72 (m, 3H), 7.74 

(s, 1H). 13C-NMR (50 MHz, CDCl3) δC 21.5, 47.0, 51.7, 56.3, 56.4, 107.9, 111.6, 124.6, 126.3, 127.4, 

127.9, 129.5, 130.1, 130.4, 131.2, 132.3, 135.9, 140.9, 144.5, 148.8, 153.4. Anal. Calcd for 

C23H21BrN2O6S: C, 51.79; H, 3.97; N, 5.25; S, 6.01. Found: C, 51.77; H, 3.93; N, 5.22; S, 5.88. 

trans-2-(4,5-Dimethoxy-2-nitrophenyl)-3-(3-fluorophenyl)-1-tosylaziridine (7e). White solid; mp 161 °C; 
1H-NMR (200 MHz, CDCl3) δH 2.41 (s, 3H), 3.75 (s, 3H), 3.84 (d, 1H, J = 4.4 Hz), 3.95 (s, 3H), 5.08 

(d, 1H, J = 4.4 Hz), 6.91 (s, 1H), 7.03–7.12 (m, 1H), 7.23–7.29 (m, 3H), 7.33–7.45 (m, 2H), 7.65 (d, 

2H, J = 8.3 Hz), 7.72 (s, 1H). 13C-NMR (50 MHz, CDCl3) δC 21.6, 45.7, 52.7, 56.2, 56.5, 107.9, 110.7, 

116.2 (d, J = 20.8 Hz), 116.9 (d, J = 22.7 Hz), 125.7, 127.9, 129.5, 129.6, 129.8 (d, J = 8.0 Hz), 132.9 

(d, J = 8.0 Hz), 136.3, 144.6, 148.7, 153.8, 160.0, 162.5 (d, J = 248.6 Hz). Anal. Calcd for 

C23H21FN2O6S: C, 58.47; H, 4.48; N, 5.93; S, 6.79. Found: C, 58.55; H, 4.54; N, 5.92; S, 6.76. 

trans-2-(4,5-Dimethoxy-2-nitrophenyl)-3-(3-(trifluoromethyl)phenyl)-1-tosylaziridine (7f). White solid; 

mp 163 °C; 1H-NMR (200 MHz, CDCl3) δH 2.39 (s, 3H), 2.76 (s, 3H), 3.85 (d, 1H, J = 4.5 Hz), 3.93 
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(s, 3H), 5.14 (d, 1H, J = 4.5 Hz), 6.94 (s, 1H), 7.21 (d, 2H, J = 8.1 Hz), 7.48–7.68 (m, 5H), 7.71  

(s, 1H), 7.88 (d, 1H, J = 7.4 Hz). 13C-NMR (50 MHz, CDCl3) δC 21.4, 45.3, 52.3, 56.2, 56.4, 107.8, 

110.6, 125.5 (q, J = 272.6 Hz), 125.8 (q, J = 3.7 Hz), 126.9 (q, J = 4.0 Hz), 127.7, 128.8, 128.8, 129.6, 

130.4 (q, J = 32.6 Hz), 131.3, 133.1, 135.9, 140.2, 144.7, 148.7, 153.8. Anal. Calcd for 

C24H21F3N2O6S: C, 55.17; H, 4.05; N, 5.36; S, 6.14. Found: C, 55.21; H, 4.19; N, 5.41; S, 6.05. 

trans-2-(4,5-Dimethoxy-2-nitrophenyl)-3-(4-fluorophenyl)-1-tosylaziridine (7g). White solid; mp 158 °C; 
1H-NMR (200 MHz, CDCl3) δH 2.41 (s, 3H), 3.72 (s, 3H), 3.82 (d, 1H, J = 4.4 Hz), 3.90 (s, 3H), 5.13 

(d, 1H, J = 4.4 Hz), 6.86 (s, 1H), 7.06 (t, 2H, J = 8.6 Hz), 7.23–7.28 (m, 2H), 7.58–7.78 (m, 5H). 13C-NMR 

(50 MHz, CDCl3) δC 21.5, 45.5, 53.1, 56.1, 56.4, 107.9, 110.5, 115.3 (d, J = 21.6 Hz), 126.1 (d, J = 2.2 

Hz), 126.2, 127.8, 129.6, 131.9 (d, J = 8.4 Hz), 136.6, 140.3, 144.4, 148.6, 153.8, 162.8 (d, J = 248.8 

Hz). Anal. Calcd for C23H21FN2O6S: C, 58.47; H, 4.48; N, 5.93; S, 6.79. Found: C, 58.53; H, 4.51; N, 

5.90; S, 6.62. 

4. Conclusions  

TDAE methodology is extended here to the reaction of ortho- or para-nitro dichloromethylbenzene 

derivatives 1–3 with various aromatic N-tosylimines 4a–g, leading to the corresponding aziridines 5–7 

in good yields (61–81%). The diastereoselectivity of the reaction is shown to be sensitive to steric 

hindrance. Further research is in progress to extent this method to other dichloride derivatives and to 

explore the ring opening reactions of the aziridines. 
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