Article

Synthesis of Tricyclic Condensed Rings Incorporating the Pyrazole or Isoxazole Moieties Bonded to a 4-Piperidinyl Substituent

Giansalvo Pinna ${ }^{1, \%}$, Giovanni Loriga ${ }^{2}$, Gérard A. Pinna ${ }^{1}$ and Giorgio Chelucci ${ }^{3}$
${ }^{1}$ Dipartimento di Chimica e Farmacia, Università di Sassari, Via F. Muroni 23/A, 07100 Sassari, Italy; E-Mail: pinger@uniss.it
${ }^{2}$ C.N.R. Istituto di Farmacologia Traslazionale, UOS Cagliari, Edificio 5, Loc Piscinamanna, 09010 Pula (CA), Italy; E-Mail: giovanni.loriga@ift.cnr.it
${ }^{3}$ Dipartimento di Agraria, Università di Sassari, Viale Italia 39, 07100 Sassari, Italy; E-Mail: chelucci@uniss.it
* Author to whom correspondence should be addressed; E-Mail: pinlab@uniss.it; Tel.: +39-079-228721; Fax: +39-079-22872.

Received: 3 June 2013; in revised form: 1 July 2013 / Accepted: 2 July 2013 /
Published: 10 July 2013

Abstract

In this paper we report the synthesis of new compounds based on the pyrazole and isoxazole framework fused to a cycloalkene unit, and bearing as a substituent the 1-piperidinyl group as new examples of potential antipsychotic molecules. The general synthesis involves the acylation of a chloro-substituted cyclic ketone with a 1 -substituted piperidine-4-carboxylate derivative, followed by heterocyclization of the formed 1,3-dioxo compound with a hydrazine or hydroxylamine.

Keywords: heterocyclization; hydrazine; hydroxylamine; tricyclic isoxazoles; tricyclic pyrazoles

1. Introduction

Among the compounds with antipsychotic properties [1] there are the heteropentalenes $\mathbf{A}-\mathbf{C}$ [2], characterized by a pyrazole and isoxazole framework bonded to p-chlorophenyl and 4-piperidinyl substituents (Figure 1). In continuation of our interest in the field of the synthesis of biologically active
compounds [3], we have now devoted our attention to obtain tricyclic compounds \mathbf{E} related to the heteropentalenes $\mathbf{A}-\mathbf{C}$ as new potential antipsychotic compounds.

A well known strategy to affect the biological activity of organic compounds is to decrease their conformational flexibility. In fact, it has been proposed that appropriate structural constraints could restrict a pharmacophoric structural element to a sufficiently small region of conformational space thereby permitting the ligand to bind to its designated receptor with high affinity and selectivity $[4,5]$. A way to achieve this goal with heteropentalenes $\mathbf{A}-\mathbf{C}$ could be to connect the unsubstituted central carbon of the heteropentalene and the α-carbon of the phenyl group with an alkylidene bridge (formula \mathbf{D}, Figure 1).

In this line, we have developed a practical and extensible method to build compounds with a tricyclic framework incorporating the pyrazole and isoxazole framework and with the central ring that can be modulated in size, namely compounds with the general formula \mathbf{E} shown in Figure 1. These new compounds share with $\mathbf{A}-\mathbf{C}$ the chlorine on the aryl ring and the 4-(1-benzyl)- or 4-(1-phenylethyl)-piperidinyl substituents on the isoxazole and pyrazole moieties (Figure 1).

Figure 1. Leads and target molecules.

$\mathrm{n}=1,2,3$
$\mathrm{X}=\mathrm{NH}, \mathrm{N}, \mathrm{O} ; \mathrm{Y}=\mathrm{N}, \mathrm{O}$
$\mathrm{R}=\mathrm{Bn}, \mathrm{BnCH}_{2}$

The planned retrosynthesis of the derivatives \mathbf{E} is shown in Scheme 1. In this approach, the final heterocyclization of the 1,3-dioxo compounds \mathbf{F} with hydrazine or hydroxylamine is preceded by acylation of the chloro-substituted cyclic ketones \mathbf{G} with the 1-substituted piperidine-4-carboxylate derivatives \mathbf{H}.

Scheme 1. Retrosynthesis approach.

2. Results and Discussion

To begin the synthesis of the target derivatives \mathbf{E} (Scheme 1), the known cyclic ketones $\mathbf{1 a - c}[6,7]$ were acylated by reaction of the corresponding sodium enolate, obtained by reaction with sodium hydride, with the reagent formed by reaction of the N-Boc protected isonipecotic acid 9 with 1,1 '-carbonyldiimidazole [8] (Scheme 2). In this way, 1,3-dicarbonyl derivatives 2a-c were obtained in $62-63 \%$ yields. Next, these compounds were submitted to N-deprotection by treatment with trifluoroacetic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. However, while 2b and 2c were easily deprotected giving compounds $\mathbf{3 b}$ and $\mathbf{3 c}$ in high yields ($92-95 \%$), the removal of the N-Boc group from 2a failed. Further attempts to deprotect $\mathbf{2 a}$ with $\mathrm{HCOOH}, 3 \mathrm{~N} \mathrm{HCl}$ in $\mathrm{AcOEt}, \mathrm{CF}_{3} \mathrm{COOH}$ and $\mathrm{Et}_{3} \mathrm{SiH}$, and SnCl_{4} in AcOEt all failed unexpectedly, therefore, alternative approaches to the target compounds 6a, 7a and 8a were investigated next (see below).

Compounds 3b,c were converted in $59-72 \%$ yields into the related N-benzyl and N-phenylethyl derivatives $\mathbf{4 b}, \mathbf{c}$ and $\mathbf{5 b}, \mathbf{c}$ by reaction with benzyl chloride and 2-phenyl-1-iodoethane, respectively. With the key 1,3-dicarbonyl derivatives $\mathbf{4 b}, \mathbf{c}$ and $\mathbf{5 b}, \mathbf{c}$ in hand, their conversion into the desired derivatives \mathbf{E} was pursued according to the planned retrosynthetic scheme. Compounds $\mathbf{4 b}, \mathbf{c}$ and hydrazine in methanol were stirred at room temperature to afford the pyrazole derivatives $\mathbf{6 b}$ and $\mathbf{6 c}$ in good yields (78% and 50%, respectively). Treatment of $\mathbf{5 b}, \mathbf{c}$ with hydroxylamine hydrochloride in $\mathrm{EtOH} / \mathrm{AcOH}$ at $80^{\circ} \mathrm{C}$ gave isoxazoles $\mathbf{7 b}, \mathbf{c}$ and $\mathbf{8 b}, \mathbf{c}$ as mixtures of regioisomers in moderate to good yields. With $\mathbf{5 b}$ isoxazoles $\mathbf{7 b}$ and $\mathbf{8 b}$ were obtained in a $4 / 1$ ratio, while $\mathbf{5 c}$ gave isoxazoles $\mathbf{7 c}$ and $\mathbf{8 c}$ in a $3.2 / 1$ ratio [9].

Scheme 2. Synthesis of compounds $\mathbf{6 b}, \mathbf{6 c}, 7 \mathbf{b}, \mathbf{7 c}, \mathbf{8 b}$ and $\mathbf{8 c}$.

Reagents and conditions: (a) (i) NaH , DMF, rt; (ii) 9, 1, 1'-carbonyldiimidazole, DMF, rt, 45 min ; (iii) $120{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (b) $\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 2 \mathrm{~h}$; (c) BnCl or $\mathrm{BnCH}_{2} \mathrm{I}$. DMF, i-Pr $2 \mathrm{NEt}, 25-60^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (d) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2}, \mathrm{MeOH}$, rt, 12 h ; (e) $\mathrm{NH}_{2} \mathrm{OH}, \mathrm{EtOH}, \mathrm{AcOH}, 80^{\circ} \mathrm{C}$, 12 h .

To obtain compound 6a the synthetic routes outlined in Scheme 3 were followed. Firstly, the sodium enolate of the ketone 1a was reacted with phenyl 1-benzylpiperidine-4-carboxylate 12, but the 1,3-dicarbonyl intermediate $\mathbf{4 a}$ failed to give the expected pyrazole $\mathbf{6 a}$ by treatment with hydrazine in $\mathrm{AcOH} / \mathrm{MeOH}$ at $80^{\circ} \mathrm{C}$. However, when the same enolate was treated with phenyl 1-(phenylcarbonyl)-piperidine-4-carboxylate $\mathbf{1 3}$ [10], obtained by esterification with phenol of the parent acid (Scheme 5), the formed 1,3-dicarbonyl $\mathbf{1 0 b}$ afforded by treatment with hydrazine in $\mathrm{AcOH} / \mathrm{MeOH}$ at $80{ }^{\circ} \mathrm{C}$ the substituted pyrazole 11 in 82% yield. Finally, LiAlH_{4} reduction of the carbonyl group to the methylene unit afforded the target pyrazole $\mathbf{6 a}$ in 80% yield (66% overall yield from $\mathbf{1 a}$).

This satisfactory result appeared to open a way to isoxazoles 7a and 8a by simple replacing of the piperidine derivative 13 with the analogue 16 (Scheme 4). However, the treatment of the 1,3-dicarbonyl intermediate $\mathbf{1 4}$, obtained in turn by reaction of $\mathbf{1 a}$ with 16, with hydroxylamine hydrochloride in $\mathrm{EtOH} / \mathrm{AcOH}$ at $80^{\circ} \mathrm{C}$ failed to afford the expected isoxazoles 15. This unexpected result prompted us to verify another route based on the on the use of the N-benzylpyperidine $\mathbf{1 7}$ that was obtained by esterification with phenol of the parent acid (Scheme 5). We were pleased to find that the 1,3-dicarbonyl intermediate 5a, formed by reaction of the enolate of the ketone $\mathbf{1 a}$ with 17, could be directly converted in the usual way into a mixture of isoxazoles $\mathbf{7 a}$ and $\mathbf{8 a}$ in 41% and 12% yield, respectively (Scheme 4).

Scheme 3. Synthesis of compound 6a.

Reagents and conditions: (a) (i) NaH , benzene, rt, (b) 12, reflux, 3.5 h ; (c) 13, reflux, 3.5 h ; (d) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2}, \mathrm{AcOH}, \mathrm{EtOH}, 80^{\circ} \mathrm{C}, 4 \mathrm{~h}$; (e) $\mathrm{LiAlH}_{4}, \mathrm{THF}, \mathrm{rt}, 12 \mathrm{~h}$.

Scheme 4. Synthesis of compounds 7a and 8a.

Reagents and conditions: (a) (i) NaH , benzene, rt, (ii) 16, reflux; (b) $\mathrm{NH}_{2} \mathrm{OH}, \mathrm{AcOH}$, $\mathrm{EtOH}, 80^{\circ} \mathrm{C}$; (c) (i) NaH , benzene, rt, (ii) 17, reflux, 4 h ; (b) $\mathrm{NH}_{2} \mathrm{OH}$, AcOH, EtOH, $80^{\circ} \mathrm{C}, 7 \mathrm{~h}$.

Scheme 5. Synthesis of compounds 13 and 17.

Reagents and conditions: (a) $\mathrm{PhOH}, \mathrm{EDC}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}, 14 \mathrm{~h}$.

3. Experimental

3.1. General

All reagents and solvents were purchased from commercial suppliers and used as received. Low boiling petroleum ether corresponds to the fraction collected between 40 and $60^{\circ} \mathrm{C}$. THF was distilled from sodium-benzophenone ketyl and degassed thoroughly with dry nitrogen directly before use. Melting points were determined on a Büchi 510 capillary apparatus and are uncorrected. IR spectra were recorded on a J ASCO FT/IR-460 plus equipment.The NMR spectra were obtained with a Varian VXR-300 spectrometer at 200 MHz for ${ }^{1} \mathrm{H}$ and 50 MHz for ${ }^{13} \mathrm{C}$. Chemical shifts are reported in ppm downfield from internal $\mathrm{Me}_{4} \mathrm{Si}$ in CDCl_{3}. The following abbreviations were used to describe peak patterns where appropriate: singlet (s), doublet (d), triplet (t), multiplet (m) and broad resonances (br). Elemental analyses were performed on a Perkin-Elmer 240 B analyser. TLC was performed on Merck silica gel 60 TLC plates F254 and visualized using UV or phosphomolibdic acid. Flash chromatography was carried out on silica gel ($40-60 \mathrm{mesh}$). The chloroketone 1a was a commercial compound. 6-Chloro-3,4-dihydronaphthalen-1-one (1b) [6], 7-chloro-2,3,4,5-tetrahydrobenzocyclo-
heptan-1-one (1c) [7], N-Boc-nipecotic acid [8] and the piperidines $\mathbf{1 8}$ [10] and $\mathbf{1 9}$ [11] were obtained following the corresponding literature procedures.

3.2. General Procedure for the Synthesis of the Compounds 2a-2c

A solution of 1-(tert-butoxycarbonyl)piperidine-4-carboxylic acid (9, $2.85 \mathrm{~g}, 12.45 \mathrm{mmol}$) and $1,1^{\prime}$-carbonyldiimidazole ($2.29 \mathrm{~g}, 14.11 \mathrm{mmol}$) in DMF (3 mL) was stirred at room temperature for 45 min . This solution was added dropwise to a solution prepared by stirring for 20 min the suitable ketone $\mathbf{1 a}, \mathbf{1 b}$ or $\mathbf{1 c}(7.64 \mathrm{mmol})$ with $\mathrm{NaH}(60 \%$ in oil, $0.93 \mathrm{~g}, 23.20 \mathrm{mmol})$ in DMF $(20 \mathrm{~mL})$. The resulting mixture was heated for the appropriate time. After cooling, $\mathrm{H}_{2} \mathrm{O}$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The residue was purified by flash chromatography.
tert-Butyl 4-(5-chloro-1-oxo-2,3-dihydro-1H-indene-2-carbonyl)piperidine-1-carboxylate
(2a).
According to the general procedure, the reaction between 1a and 9 was carried out at $30{ }^{\circ} \mathrm{C}$ for 7 h . The residue was purified by flash chromatography (petroleum ether/EtOAc $=9: 1$) affording 2a: yield 66%; red solid; Mp 102-103 ${ }^{\circ} \mathrm{C} . R_{f}=0.10$ (petroleum ether/ $\mathrm{AcOEt}=9: 1$). ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 1.48(\mathrm{~s}, 9 \mathrm{H})$, $1.60-1.95(\mathrm{~m}, 4 \mathrm{H}), 2.40-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.98(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 4.13-4.33(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}$, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 13.80(\mathrm{brs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta 27.9\left(\mathrm{CH}_{2}\right), 28.4$ $\left(3 \times \mathrm{CH}_{3}\right), 29.8\left(2 \times \mathrm{CH}_{2}\right), 41.8(\mathrm{CH}), 43.4\left(2 \times \mathrm{CH}_{2}\right), 79.7(\mathrm{C}), 108.8(\mathrm{C}), 124.2(\mathrm{CH}), 126.0(\mathrm{CH})$, $128.1(\mathrm{CH}), 136.7(\mathrm{C}), 139.1(\mathrm{C}), 148.6(\mathrm{C}), 154.7(\mathrm{CO}), 182.7(\mathrm{CO}), 191.3(\mathrm{COH})$. IR: (nujol) v 1703 (CO), $1655(\mathrm{CO}), 1605(\mathrm{CO}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{ClNO}_{4}: \mathrm{C}, 63.57 ; \mathrm{H}, 6.40 ; \mathrm{N}, 3.71$. Found: C, 63.65; H, 6.49; N, 3.81.
tert-Butyl 4-(6-chloro-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carbonyl)piperidine-1-carboxylate (2b). According to the general procedure, the reaction between $\mathbf{1 b}$ and $\mathbf{9}$ was carried out at $110{ }^{\circ} \mathrm{C}$ for 7 h . The residue was purified by flash chromatography (petroleum ether/EtOAc $=8: 2$) affording $\mathbf{2 b}$: yield 63%; red solid; Mp $120-121^{\circ} \mathrm{C} . R_{f}=0.43$ (petroleum ether/AcOEt $=8: 2$). ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 1.47(\mathrm{~s}, 9 \mathrm{H})$, $1.59-1.87(\mathrm{~m}, 5 \mathrm{H}), 2,67(\mathrm{~d}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 2.80-2.88(\mathrm{~m}, 4 \mathrm{H}), 4.18(\mathrm{~d}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.24(\mathrm{~d}, 1 \mathrm{H}$, $J=10.2 \mathrm{~Hz}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 16.65(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta 21.9\left(\mathrm{CH}_{2}\right), 27.8$ $\left(\mathrm{CH}_{2}\right), 28.4\left(3 \times \mathrm{CH}_{3}\right), 29.3\left(2 \times \mathrm{CH}_{2}\right), 41.4(\mathrm{CH}), 43.3\left(2 \times \mathrm{CH}_{2}\right), 79.6(\mathrm{C}), 104.6(\mathrm{C}), 126.2(\mathrm{CH})$, $127.2(\mathrm{CH}), 127.3(\mathrm{CH}), 127.5(\mathrm{C}), 136.7(\mathrm{C}), 142.2(\mathrm{C}), 157.3(\mathrm{CO}), 179.0(\mathrm{CO}), 197.8(\mathrm{COH}) . \mathrm{IR}:$ (nujol) v $1707(\mathrm{CO}), 1650(\mathrm{CO}), 1611(\mathrm{CO}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{ClNO}_{4}: \mathrm{C}, 64.36 ; \mathrm{H}, 6.69$; N, 3.57. Found: C, 64.88; H, 6.65; N, 3.59.
tert-Butyl 4-(2-chloro-5-oxo-6,7,8,9-tetrahydro-5H-benzo[7]annulene-6-carbonyl)piperidine-1carboxylate (2c). According to the general procedure the reaction between 1c and 9 was carried out at $70{ }^{\circ} \mathrm{C}$ for 7 h . The residue was purified by flash chromatography (petroleum ether/EtOAc $=9: 1$) affording 2c: yield 63%; yellow solid; Mp $134-136{ }^{\circ} \mathrm{C} . R_{f}=0.31$ (petroleum ether/ $\mathrm{AcOEt}=9: 1$). ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.53-1.92(\mathrm{~m}, 7 \mathrm{H}), 1.92-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.55-2.90$ $(\mathrm{m}, 3 \mathrm{H}), 4.10-4.31(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 16.78(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}: \delta 22.7\left(\mathrm{CH}_{2}\right), 28.3\left(3 \times \mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{3}\right), 31.1\left(\mathrm{CH}_{2}\right), 31.3\left(2 \times \mathrm{CH}_{2}\right), 40.9(\mathrm{CH}), 43.2$ $\left(2 \times \mathrm{CH}_{2}\right)$, $79.5(\mathrm{C}), 108.2(\mathrm{C}), 126.8(\mathrm{CH}), 128.7(\mathrm{CH}), 129.0(\mathrm{CH}), 131.0(\mathrm{C}), 136.4(\mathrm{C}), 141.4(\mathrm{C})$,
$154.5(\mathrm{CO}), 186.2(\mathrm{CO}), 194.4(\mathrm{COH})$. IR: (nujol) v $1706(\mathrm{CO}), 1652(\mathrm{CO}), 1613(\mathrm{CO}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{ClNO}_{4}$: C, 65.10; H, 6.95; N, 3.45. Found: C, 66.08; H, 6.98; N, 3.42.

3.3. General Procedure for the Synthesis of Compounds 3b, 3c

A solution of $\mathrm{CF}_{3} \mathrm{COOH}(1.46 \mathrm{~g}, 12.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.6 \mathrm{~mL})$ was added dropwise to a solution of the 1,3-dicarbonyl compound $\mathbf{2 b}$ or $\mathbf{2 c}(1.28 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.2 \mathrm{~mL})$. After stirring 2 h at room temperature, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The resulting mixture was washed two times with a 10% solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and then with $\mathrm{H}_{2} \mathrm{O}$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The residue was purified by flash chromatography.

6-Chloro-2-(piperidine-4-carbonyl)-3,4-dihydronaphthalen-1(2H)-one (3b). Compound 2b was converted into the title product $\mathbf{3 b}$ according to the general procedure. The residue was purified by flash chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=8: 2\right)$ affording $\mathbf{3 b}$: yield 63%; yellow solid; Mp $150-154{ }^{\circ} \mathrm{C}$. $R_{f}=0,10\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 8: 2\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 2.62-2.85(\mathrm{~m}, 4 \mathrm{H}), 2.58-2.77(\mathrm{~m}, 4 \mathrm{H}), 2.80-2.95(\mathrm{~m}, 4 \mathrm{H})$, $3.10-3.34(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.86(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 8.52-9.20$ (brs, 1 H$)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}: ~ \delta 21.9\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right), 31.3\left(2 \times \mathrm{CH}_{2}\right), 42.0(\mathrm{CH}), 45.1\left(2 \times \mathrm{CH}_{2}\right), 109.2(\mathrm{C}), 126.3$ (CH), $127.4(\mathrm{CH}), 129.1(\mathrm{CH}), 137.0(\mathrm{C}), 137.2(\mathrm{C}), 144.5(\mathrm{C}), 189.0(\mathrm{CO}), 192.4$ (COH) IR: (nujol) v $3453(\mathrm{NH}), 1701(\mathrm{CO}), 1680(\mathrm{CO}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ClNO}_{2}$: C, 65.86; H, 6.22; N, 4.80. Found: C, 65.56; H, 6.26; N, 4.83.

2-Chloro-6-(piperidine-4-carbonyl)-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (3c). Compound 2c was converted into the title product $\mathbf{3 c}$ according to the general procedure. The residue was purified by flash chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=8: 2\right)$ affording 3c: yield 63%; white solid; $\mathrm{Mp} 138-142{ }^{\circ} \mathrm{C}$. $R_{f}=0,11\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=8: 2\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 1.60-1.92(\mathrm{~m}, 4 \mathrm{H}), 1.92-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{t}, 2 \mathrm{H}$, $J=6.2 \mathrm{~Hz}), 2.58-2.85(\mathrm{~m}, 5 \mathrm{H}), 2.90-2.98(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.28(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, 1 \mathrm{H}$, $J=8.0 \mathrm{~Hz}), 7.56(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 8.00-9.00(\mathrm{brs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta 22.8\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 31.1$ $\left(2 \times \mathrm{CH}_{2}\right), 31.5(\mathrm{CH}), 40.6\left(\mathrm{CH}_{2}\right), 45.1\left(2 \times \mathrm{CH}_{2}\right), 108.2(\mathrm{C}), 126.8(\mathrm{CH}), 128.7(\mathrm{CH}), 129.0(\mathrm{CH})$, 136.0 (C), $136.8(\mathrm{C}), 141.5(\mathrm{C}), 188.0(\mathrm{CO}), 194.4(\mathrm{COH})$. IR: (nujol) v 3,430(NH), 1,703(CO), $1,680(\mathrm{CO}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{ClNO}_{2}: \mathrm{C}, 66.77 ; \mathrm{H}, 6.59 ; \mathrm{N}, 4.58$. Found: C, 67.37; H, 6.64; N, 4.53.

3.4. General Procedure for the Synthesis of the Compounds $\mathbf{4 b}, \mathbf{4 c}$ and $\mathbf{5 b}, \mathbf{5 c}$

To a solution of the 1,3-dicarbonyl compound $\mathbf{3 b}$ or $\mathbf{3 c}(3.27 \mathrm{mmol})$ in DMF (18.25 mL) was added $i-\operatorname{Pr}_{2} \mathrm{NEt}(0.59 \mathrm{~g}, 4.58 \mathrm{mmol})$ and then the appropriate halide (1.1 eq). The mixture was then stirred at room temperature or heated under reflux for the necessary time. Water was added and the mixture was extracted with AcOEt. The organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The residue was purified by flash chromatography.

2-(1-Benzylpiperidine-4-carbonyl)-6-chloro-3,4-dihydronaphthalen-1(2H)-one (4b). A solution of the ketone 3b and benzyl chloride in DMF was stirred at room temperature for 12 h . After workup the residue was purified by flash chromatography (petroleum ether/EtOAc $=1: 1$) affording $\mathbf{4 b}$: yield 59%; brown oil; $R_{f}=0.46$ (petroleum ether/EtOAc $=1: 1$); ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta 1.51-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.90(\mathrm{~d}, 2 \mathrm{H}$,
$J=11 \mathrm{~Hz}), 2.03(\mathrm{~d}, 2 \mathrm{H}, J=13.2 \mathrm{~Hz}), 2.58-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 3.00(\mathrm{~d}, 2 \mathrm{H}, J=9.6 \mathrm{~Hz})$, $3.55(\mathrm{~s}, 2 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.86(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 16.68(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta 22.8$ $\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 32.1\left(2 \times \mathrm{CH}_{2}\right), 33.5(\mathrm{CH}), 45.1\left(2 \times \mathrm{CH}_{2}\right), 64.5\left(\mathrm{CH}_{2}\right), 118.4(\mathrm{C}), 126.7(\mathrm{CH})$, $126.9(\mathrm{CH}), 127.5(\mathrm{CH}), 128.3(2 \times \mathrm{CH}), 128.6(\mathrm{CH}), 128.9(\mathrm{CH}), 129.1(\mathrm{C}), 129.3(\mathrm{CH}), 131.2(\mathrm{C})$, $139.6(\mathrm{C}), 142.3(\mathrm{C}), 184.9(\mathrm{CO}), 195.3(\mathrm{COH})$ IR: (nujol) v 1,710(CO), 1,682(CO) cm ${ }^{-1}$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{ClNO}_{2}$: C, 72.34; H, 6.33; N, 3.67. Found: C, $72.41 ; \mathrm{H}, 6.38 ; \mathrm{N}, 3.75$.

6-(1-Benzylpiperidine-4-carbonyl)-2-chloro-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (4c). A solution of the ketone $\mathbf{3 c}$ and benzyl chloride in DMF was stirred at room temperature for 12 h . After workup, the residue was purified by flash chromatography (petroleum ether/EtOAc $=1: 1$) affording 4c: yield 72%; brown oil; $R_{f}=0.37$ (petroleum ether/EtOAc $=1: 1$); ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 1.61-2.24(\mathrm{~m}, 8 \mathrm{H})$, 2.53-2.76 (m, 2H), 2.76-3.11 (m, 5H), $3.54(\mathrm{~s}, 2 \mathrm{H}), 7.00-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.55(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 8.00$ $(\mathrm{s}, 1 \mathrm{H}), 16.8(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta 22.9\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right), 31.0\left(2 \times \mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 31,6(\mathrm{CH}), 52.8$ $\left(2 \times \mathrm{CH}_{2}\right), 62.9\left(\mathrm{CH}_{2}\right), 108.4(\mathrm{C}), 126.6(\mathrm{CH}), 126.8(\mathrm{CH}), 127.2(\mathrm{CH}), 127.5(\mathrm{CH}), 128.0(\mathrm{CH}), 128.3$ $(2 \times \mathrm{CH}), 128.7(\mathrm{CH}), 129.3(\mathrm{C}), 131.0(\mathrm{C}), 139.6(\mathrm{C}), 145.1(\mathrm{C}), 194.9(\mathrm{CO}), 195.3(\mathrm{COH})$. Anal. IR: (nujol) v $1,705(\mathrm{CO}), 1,682(\mathrm{CO}) \mathrm{cm}^{-1}$. Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{ClNO}_{2}$: C, $72.81 ; \mathrm{H}, 6.62$; N, 3.54. Found: C, 72.21; H, 6.65; N, 3.57.

6-Chloro-2-(1-phenethylpiperidine-4-carbonyl)-3,4-dihydronaphthalen-1(2H)-one (5b). A solution of the ketone 3b and phenylethyl iodide in DMF was heated at $60^{\circ} \mathrm{C}$ for 12 h . After workup, the residue was purified by flash chromatography (petroleum ether/EtOAc $=2: 8$) affording $\mathbf{5 b}$: yield 70%; brown oil; $R_{f}=0.42$ (petroleum ether/EtOAc $=1: 1$); ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 1.26-2.53(\mathrm{~m}, 11 \mathrm{H}), 2.54-2.75(\mathrm{~m}, 2 \mathrm{H})$, $2.75-2.99(\mathrm{~m}, 2 \mathrm{H}), 3.04-3.23(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.49(\mathrm{~m}, 1 \mathrm{H}), 7.71(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz})$, 14,27 ($\mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: ~ \delta 22.8\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{2}\right), 32.6\left(2 \times \mathrm{CH}_{2}\right), 33.5(\mathrm{CH}), 45.3\left(2 \times \mathrm{CH}_{2}\right)$, $64.5\left(\mathrm{CH}_{2}\right), 117.9(\mathrm{C}), 126.6(\mathrm{CH}), 128.3(\mathrm{CH}), 128.8(\mathrm{CH}), 128.9(2 \times \mathrm{CH}), 129.1(2 \times \mathrm{CH}), 129.2$ (CH), 131.2 (C), 139.6 (C), 141.5 (C), 142.3 (C), 194.9 (CO), 195.3 (COH) Anal. IR: (nujol) v 1,700 (CO), $1,681(\mathrm{CO}) \mathrm{cm}^{-1}$. Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{ClNO}_{2}$: C, $72.81 ; \mathrm{H}, 6.62 ; \mathrm{N}, 3.54$. Found: C, $72.11 ; \mathrm{H}, 6.66$; N, 3.58.

2-Chloro-6-(1-phenethylpiperidine-4-carbonyl)-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (5c). A solution of the ketone $3 \mathbf{c}$ and phenylethyl iodide in DMF was heated at $60^{\circ} \mathrm{C}$ for 12 h . After workup, the residue was purified by flash chromatography $\left(\mathrm{CHCl}_{3} /\right.$ acetone $\left.=9: 1\right)$ affording $\mathbf{5 c}$: yield 62%; brown oil; $R_{f}=0.33\left(\mathrm{CHCl}_{3} /\right.$ acetone $\left.=9: 1\right) ;{ }^{1} \mathrm{H}$-NMR: $\delta 1.72-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.95-2.28(\mathrm{~m}, 7 \mathrm{H})$, $2.53-2.92(\mathrm{~m}, 7 \mathrm{H}), 3.12(\mathrm{~d}, 2 \mathrm{H}, J=9.6), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.56(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz})$, $16.7(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$-NMR: $\delta 22.8\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{2}\right), 31.7\left(2 \times \mathrm{CH}_{2}\right), 33.5\left(\mathrm{CH}_{2}\right), 41.0(\mathrm{CH})$, $53.2\left(2 \times \mathrm{CH}_{2}\right), 60.7\left(\mathrm{CH}_{2}\right), 108.3(\mathrm{CH}), 126.0(\mathrm{CH}), 126.6(\mathrm{CH}), 126.8(\mathrm{CH}), 127.5(2 \times \mathrm{CH}), 128.3$ $(\mathrm{CH}), 128.6(2 \times \mathrm{CH}), 128.7(\mathrm{C}), 129.1(\mathrm{C}), 131.0(\mathrm{C}), 141.5(\mathrm{C}), 187.9(\mathrm{CO}), 195.3(\mathrm{COH}) . \mathrm{IR}:$ (nujol) v $1,699(\mathrm{CO}), 1,676(\mathrm{CO}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{ClNO}_{2}: \mathrm{C}, 73.25 ; \mathrm{H}, 6.88 ; \mathrm{N}, 3.42$. Found: C, 73.76; H, 6.84; N, 3.46.

3.5. General Procedure for the Synthesis of Compounds 6b, 6c

A solution of the 1,3 -dicarbonyl compound $\mathbf{4 b}$ or $\mathbf{4 c}(0,68 \mathrm{mmol})$ and hydrazine hydrate $(0.32 \mathrm{~g}$, $6,39 \mathrm{mmol})$ in $\mathrm{MeOH}(9 \mathrm{~mL})$ was stirred overnight at room temperature. Water was added and the mixture was extracted with ethyl acetate. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The residue was purified by flash chromatography.

3-(1-Benzylpiperidin-4-yl)-7-chloro-4,5-dihydro-1H-benzo[g]indazole (6b). Compound 4b was converted into the title product $\mathbf{6 b}$ according to the general procedure. After workup, the residue was purified by flash chromatography $\left(\mathrm{CHCl}_{3} /\right.$ acetone $\left.=9: 1\right)$ affording $\mathbf{6 b}$: yield 78%; yellow solid; Mp $173-174{ }^{\circ} \mathrm{C} ; R_{f}=0.51\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=95: 5\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 1.80-2.27(\mathrm{~m}, 6 \mathrm{H}), 2.71-2.82(\mathrm{~m}, 3 \mathrm{H})$, $2.91(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.01(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 7.20-7.40(\mathrm{~m}, 7 \mathrm{H}), 7.64-7.71(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}: \delta 18.9\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 31.3\left(2 \times \mathrm{CH}_{2}\right), 33.7(\mathrm{CH}), 53.6\left(2 \times \mathrm{CH}_{2}\right), 63.3\left(\mathrm{CH}_{2}\right), 111.2(\mathrm{C})$ $123.2(\mathrm{CH}), 126.9(\mathrm{CH}), 127.1(\mathrm{CH}), 127.4(\mathrm{CH}), 127.5(\mathrm{C}), 128.2(2 \times \mathrm{CH}), 129.2(2 \times \mathrm{CH}), 132.7$ (C), 137.8 (C), 138.3 (C). 142.3 (CN), 142.8 (CN). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{ClN}_{3}$: C, 73.10; H, 6.40; N, 11.12. Found: C, 73.91 ; H, 6.43; N, 11.07.

3-(1-Benzylpiperidin-4-yl)-8-chloro-1,4,5,6-tetrahydrobenzo[3,4]cycloepta[2,1-c]pyrazole (6c).
Compound $4 \mathbf{c}$ was converted into the title product $\mathbf{6 c}$ according to the general procedure. After elaboration, the residue was purified by flash chromatography $\left(\mathrm{CHCl}_{3} /\right.$ acetone $\left.=9: 1\right)$ affording $\mathbf{6 c}$: yield 50%; yellow solid; Mp $165-166{ }^{\circ} \mathrm{C} ; R_{f}=0.51\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=95: 5\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 1.68-2.32$ $(\mathrm{m}, 8 \mathrm{H}), 2.51-2.90(\mathrm{~m}, 5 \mathrm{H}), 3.04(\mathrm{~d}, 2 \mathrm{H}, J=9.8 \mathrm{~Hz}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 7.10-7.42(\mathrm{~m}, 7 \mathrm{H}), 7.60-7.72$ $(\mathrm{m}, 1 \mathrm{H}), 9.10-10,01($ brs, 1 H$) .{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta 24.1\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 31.0\left(2 \times \mathrm{CH}_{2}\right), 34.8$ $(\mathrm{CH}), 53.8\left(2 \times \mathrm{CH}_{2}\right), 63.2\left(\mathrm{CH}_{2}\right), 112.5(\mathrm{C}), 125.7(\mathrm{CH}), 126.4(\mathrm{CH}), 127.1(\mathrm{CH}), 127.4(\mathrm{CH}), 127.5$ $(2 \times \mathrm{CH}), 128.2(2 \times \mathrm{CH}), 129.3(2 \times \mathrm{C}), 129.6(\mathrm{C}), 134.5(\mathrm{C}) 141.3(\mathrm{CN}, 142.8(\mathrm{CN})$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{ClN}_{3}$: C, 73.55 ; H, 6.69; N, 10.72 Found: C, $73.25 ; \mathrm{H}, 6.88 ; \mathrm{N}, 10.42$.
3.6. 1H-1-Oxa-2-aza-7-chloro-3-(1-phenethylpiperidin-4-yl)-4,5-dihydronaphto[2,1-d]isoxazole (7b) and 1H-1-oxa-2-aza-8-chloro-3-(1-phenethylpiperidin-4-yl)-5,6-dihydro-4H-benzo[3,4]cycloepta[1,2d]isoxazole (7c)

A solution of the 1,3-dicarbonyl compound $\mathbf{5 b}$ or $\mathbf{5 c}(2.44 \mathrm{mmol})$ and hydroxylamine hydrochloride $(1.02 \mathrm{~g}, 14.64 \mathrm{mmol})$ in $\mathrm{EtOH}(12.2 \mathrm{~mL})$ containing 4 drops of AcOH was heated under reflux for 24 h . Water was added and the mixture was extracted with CHCl_{3}. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The residue was purified by flash chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=97: 3\right)$ to give $\mathbf{7 b}$ or $\mathbf{7 c}$.

Compound 7b. Yield 20\%; brown solid; Mp 170-172 ${ }^{\circ} \mathrm{C} ; R_{f}=0.11\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=97: 3\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d $)_{6}$: $\delta 1.50-1.80(\mathrm{~m}, 9 \mathrm{H}), 1.42-2.10(\mathrm{~m}, 4 \mathrm{H}), 2.48(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.69(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz})$, $7.12-7.42(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta 28.4\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 32.7\left(\mathrm{CH}_{2}\right), 38.2\left(2 \times \mathrm{CH}_{2}\right), 40.7(\mathrm{CH}), 52.7$ $\left(2 \times \mathrm{CH}_{2}\right), 59.7\left(\mathrm{CH}_{2}\right), 117.8(\mathrm{C}), 125.0(\mathrm{CH}), 125.4(\mathrm{CH}), 125.8(\mathrm{CH}), 126.5(\mathrm{CH}), 127.9(2 \times \mathrm{CH})$, $128.2(2 \times \mathrm{CH}), 128.6(\mathrm{C}), 130.9(\mathrm{C}), 136.4(\mathrm{C}), 144.1(\mathrm{C}), 157.3(\mathrm{CN}), 166.1(\mathrm{CO})$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}: \mathrm{C}, 73.36 ; \mathrm{H}, 6.41$; N, 7.13. Found: C, 73.96; H, 6.44; N, 7.10.

Compound 7c. yield 35%; brown solid; Mp 114-117 ${ }^{\circ} \mathrm{C} ; R_{f}=0.24\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=8: 2\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}): $\delta 1.82-2.10(\mathrm{~m}, 4 \mathrm{H}), 2.11-2.33(\mathrm{~m}, 4 \mathrm{H}), 2.60-2.76(\mathrm{~m}, 5 \mathrm{H}), 2.70-2.98(\mathrm{~m}, 4 \mathrm{H})$, $3.10-3.21(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.20(\mathrm{~m}, 7 \mathrm{H}), 7.88(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta 23.9\left(\mathrm{CH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right)$, $29.8\left(2 \mathrm{x} \mathrm{CH}_{2}\right), 33.6\left(\mathrm{CH}_{2}\right), 35.2(\mathrm{CH}), 53.5\left(2 \mathrm{x} \mathrm{CH}_{2}\right), 60.7\left(\mathrm{CH}_{2}\right), 113.8(\mathrm{C}), 126.1(\mathrm{CH}), 126.7(\mathrm{CH})$, $128.1(\mathrm{CH}), 128.2(\mathrm{CH}), 128.3(2 \mathrm{CH}), 128.6(2 \times \mathrm{CH}), 129.6(\mathrm{C}), 134.7(\mathrm{C}), 141.5(\mathrm{C}), 142.1(\mathrm{C})$, 161.2 (CN), 166.6 (CO) Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}: \mathrm{C}, 73.79 ; \mathrm{H}, 6.69$; N, 6.88. Found: C, 73.25; H, 6.71; N, 6.91.
3.7. 2H-1-Aza-2-oxa-7-chloro-3-(1-phenethylpiperidin-4-yl)-4,5-dihydronaphto[1,2-c]isoxazole (8b) and 2H-1-aza-2-oxa-8-chloro-3-(1-phenethylpiperidin-4-yl)-5,6-dihydro-4H-benzo[3,4]cycloepta [2,1c〕isoxazole (8c)

A solution of the 1,3-dicarbonyl compound $\mathbf{5 b}$ or $\mathbf{5 c}(2.44 \mathrm{mmol})$ and hydroxylamine hydrochloride $(1.02 \mathrm{~g}, 14.64 \mathrm{mmol})$ in $\mathrm{EtOH}(12.2 \mathrm{~mL})$ containing 15 drops of AcOH was heated under reflux for 24 h . After cooling, $\mathrm{H}_{2} \mathrm{O}$ was added and the mixture was extracted with CHCl_{3}. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The residue was purified by flash chromatography $\left(\mathrm{CHCl}_{3} /\right.$ acetone $\left.=8: 2\right)$ to give $\mathbf{8 b}$ or $\mathbf{8 c}$.

Compound 8b. Yield 5\%; brown solid; Mp 165-166 ${ }^{\circ} \mathrm{C}$; $R_{f}=0.24\left(\mathrm{CHCl}_{3} /\right.$ acetone $\left.=97: 3\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3} / \mathrm{DMSO}_{\mathrm{d}}\right): \delta 1.43-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.71-1.93(\mathrm{~m}, 4 \mathrm{H}), 1.95-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.65(\mathrm{~m}, 4 \mathrm{H})$, $2.52(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.65(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.05-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.42-7.84(\mathrm{~m}, 2 \mathrm{H}), 8.32(\mathrm{~d}, 1 \mathrm{H}$, $J=9.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 28.3\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 32.6\left(\mathrm{CH}_{2}\right), 38.2\left(2 \times \mathrm{CH}_{2}\right), 40.7$ $(\mathrm{CH}), 53.1\left(2 \times \mathrm{CH}_{2}\right), 59.8\left(\mathrm{CH}_{2}\right), 118.0(\mathrm{C}), 120.2(\mathrm{CH}), 124.1(\mathrm{CH}), 125.4(\mathrm{CH}), 125.0(\mathrm{CH}), 125.8$ $(2 \times \mathrm{CH}), 127.9(2 \times \mathrm{CH}), 128.6$ (C), 131.2 (C), 134.8 (C), 140.3 (C), $161.2(\mathrm{CN}), 167.9(\mathrm{CO})$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}$: C, 73.36; H, 6.41; N. 7.13. Found: C, 72.86; H, 6.44; N. 7.01.

Compound 8c. Yield 12\%; light brown solid; Mp 125-126 ${ }^{\circ} \mathrm{C} ; R_{f}=0.47\left(\mathrm{CHCl}_{3} /\right.$ acetone $\left.=8: 2\right)$; ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 1.95-2.38(\mathrm{~m}, 8 \mathrm{H}), 2.52-2.78(\mathrm{~m}, 5 \mathrm{H}) 2.78-3.01(\mathrm{~m}, 4 \mathrm{H}), 3.15(\mathrm{~d}, 2 \mathrm{H}, J=9.6 \mathrm{~Hz})$, $7.08-7.40(\mathrm{~m}, 7 \mathrm{H}), 7.89(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta 20.7\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 33.0$ $\left(2 \times \mathrm{CH}_{2}\right), 33.2,\left(\mathrm{CH}_{2}\right), 39.3(\mathrm{CH}), 53.1\left(2 \times \mathrm{CH}_{2}\right), 60.4\left(\mathrm{CH}_{2}\right), 111.2(\mathrm{C}), 126.3(\mathrm{CH}), 126.7(\mathrm{CH})$, $126.8(\mathrm{CH}), 127.8(\mathrm{CH}), 128.5(2 \times \mathrm{CH}), 128.7\left(2 \times \mathrm{CH}_{2}\right), 129.2(\mathrm{C}), 129.7(\mathrm{C}), 135.2(\mathrm{C}), 142.7(\mathrm{C})$, $161.8(\mathrm{CN}), 170.4$ (CO). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}: \mathrm{C}, 73.79$; H, 6.69; N, 6.88. Found: C, 73.19; H, 6.62; N, 6.83 .
(4-(6-Chloro-1,4-dihydroindeno[1,2-c]pyrazol-3-yl)piperidin-1-yl)(phenyl)metanone (11). 5-Chloro-2,3-dihydro- $1 H$-inden-1-one $1 \mathrm{a}(0.2 \mathrm{~g}, 1.23 \mathrm{mmol})$ and $\mathrm{NaH}(60 \%$ in oil, $0.12 \mathrm{~g}, 3.08 \mathrm{mmol})$ were added in sequence to a solution of phenyl 1-(phenylcarbonyl)piperidine-4-carboxylate $\mathbf{1 3}$ (0.33 g , 1.23 mmol) and the resulting mixture was heated under reflux for 3.5 h . After cooling a 50% aqueous solution of acetic acid was added and the resulting mixture was concentrated under reduced pressure. The residue was taken up in $\mathrm{EtOH}(4 \mathrm{~mL})$ and $\mathrm{AcOH}(0.21 \mathrm{~mL}, 3.69 \mathrm{mmol})$. Hydrazine hydrate $(0.09 \mathrm{~mL}, 1.85 \mathrm{mmol})$ was added and the resulting mixture was heated under reflux for 4 h . After cooling, the solvent was evaporated under reduced pressure and the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent removed under reduced pressure.

The residue was purified by flash chromatography $\left(\mathrm{CHCl}_{3} /\right.$ acetone $\left.=95: 5\right)$ affording 11: yield 82%; yellow solid; Mp $167-170{ }^{\circ} \mathrm{C} ; R_{f}=0,24\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=95: 5\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 1.58-2.21(\mathrm{~m}, 6 \mathrm{H})$, $2.90-3.21(\mathrm{~m}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 7.33(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.37-7.50(\mathrm{~m}, 6 \mathrm{H}), 7.6(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$-NMR: $\delta 27.3\left(\mathrm{CH}_{2}\right), 29.1\left(2 \times \mathrm{CH}_{2}\right), 29.4(\mathrm{CH}), 34.2\left(2 \times \mathrm{CH}_{2}\right), 120.7(\mathrm{C}), 126.2(\mathrm{CH}), 126.9$ $(\mathrm{CH}), 127.3(\mathrm{CH}), 128.5(2 \times \mathrm{CH}), 129.8\left(2 \times \mathrm{CH}_{2}\right), 129.9(\mathrm{CH}), 132.1(\mathrm{C}), 132.7(\mathrm{C}), 133.8(\mathrm{C}), 141.6$ (C), $150.1(\mathrm{CN}) 157.3(\mathrm{CN}), 170.5(\mathrm{CO})$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}: \mathrm{C}, 69.93 ; \mathrm{H}, 5.33 ; \mathrm{N}, 11.12$. Found: C, 70.34; H, 5.31; N, 11.17.

3-(1-Benzylpiperidin-4-yl)-6-chloro-1,4-dihydroindeno[1,2-c]pyrazole (6a). A solution of the amide $11(0.14 \mathrm{~g}, 0.37 \mathrm{mmol})$ in THF (2 mL) was added dropwise to a suspension of $\mathrm{LiAlH}_{4}(56.0 \mathrm{mg}$, $1.48 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring at room temperature for 12 h the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(2,5 \mathrm{~mL})$ and then $\mathrm{NaOH}(1 \mathrm{M}, 0.1 \mathrm{~mL})$ e $\mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{~mL})$ were added. The formed solid was filtered and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The residue was purified by flash chromatography $\left(\mathrm{CHCl}_{3} /\right.$ acetone $\left.=95: 5\right)$ affording 6a: yield 80%; yellow solid; $\mathrm{Mp} 146-148{ }^{\circ} \mathrm{C} ; R_{f}=0.25$ $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 95: 5\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.75-2.16(\mathrm{~m}, 6 \mathrm{H}), 2.60-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H})$, $3.53(\mathrm{~s}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 7.17-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 9.25-10.35$ (brs, $1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: ~ \delta 28.7\left(\mathrm{CH}_{2}\right), 30.3\left(2 \times \mathrm{CH}_{2}\right), 31.0(\mathrm{CH}), 52.5\left(2 \times \mathrm{CH}_{2}\right), 62.3\left(\mathrm{CH}_{2}\right), 119.7(\mathrm{C}), 125.3$ $(\mathrm{CH}), 126.2(\mathrm{CH}), 126.6(\mathrm{CH}), 127.6(2 \times \mathrm{CH}), 128.8(2 \times \mathrm{CH}), 130.8(\mathrm{CH}), 133.0(\mathrm{C}), 136.5(\mathrm{C})$, $141.1(\mathrm{C}), 141.4(\mathrm{C}) 143.6(\mathrm{CN}) 149.7(\mathrm{CN})$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClN}_{3}: \mathrm{C}, 72.62 ; \mathrm{H}, 6.09 ; \mathrm{N}, 11.55$. Found: C, 72.70; H, 6.15; N, 11.59.

3.8. 1H-1-Oxa-2-aza-6-chloro-3-(1-phenethylpiperidin-4-yl)-1,4dihydroindeno[2,1-d]isoxazole (7a) and 2H-1-aza-2-oxa-6-chloro-3-(1-phenethylpiperidin-4-yl)-1,4dihydroindeno[1,2-c]isoxazole (8a)

To a solution of phenyl 1-(phenylethyl)piperidine-4-carboxylate $17(0.50 \mathrm{~g}, 1.23 \mathrm{mmol})$ were added in sequence 5 -chloro-2,3-dihydro- $1 H$-inden-1-one $\mathbf{1 a}(0.2 \mathrm{~g}, 1.23 \mathrm{mmol})$ and $\mathrm{NaH}(60 \%$ in oil, 0.12 g , 3.08 mmol). The resulting mixture was heated under reflux for 4 h . After cooling a 50% aqueous solution of acetic acid was added and the resulting mixture was concentrated under reduced pressure. To the residue was taken up in $\mathrm{EtOH}(5 \mathrm{~mL})$, $\mathrm{AcOH}(0.21 \mathrm{~mL}, 3.69 \mathrm{mmol})$ and hydroxylamine hydrochloride ($0.128 \mathrm{mg}, 1.85 \mathrm{mmol}$) was added. The resulting mixture was heated under reflux for 8 h. The solvent was evaporated under reduced pressure and the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent removed under reduced pressure. The residue was purified by flash chromatography $\left(\mathrm{CHCl}_{3} /\right.$ acetone $\left.=8: 2\right)$ to give $\mathbf{7 a}$ and $\mathbf{8 a}$.

Compound 7a. Yield 12%; brown solid; Mp 149-151 ${ }^{\circ} \mathrm{C} ; R_{f}=0,20\left(\mathrm{CHCl}_{3} /\right.$ acetone $\left.=8: 2\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$: $\delta 1.60-2.04(\mathrm{~m}, 9 \mathrm{H}), 2.49(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.62(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.55(\mathrm{~s}, 2 \mathrm{H}) 7.23-7.42(\mathrm{~m}, 8 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}: \delta 28.8\left(\mathrm{CH}_{2}\right), 30.6\left(\mathrm{CH}_{2}\right), 31.1\left(2 \times \mathrm{CH}_{2}\right), 31.7(\mathrm{CH}), 52.5\left(2 \times \mathrm{CH}_{2}\right), 62.4\left(\mathrm{CH}_{2}\right), 119.7$ (C), $125.4(\mathrm{CH}), 126.2(\mathrm{CH}), 126.7(\mathrm{CH}), 127.8(2 \times \mathrm{CH}), 128.8(2 \times \mathrm{CH}), 130.9(\mathrm{CH}), 134.0(\mathrm{C})$, 136.0 (C), 142.5 (C), 153.7 (C), 161.0 (CN), 166.4 (CO). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}: \mathrm{C}, 72.91$; H, 6.12; N, 7.39. Found: C, 73.12; H, 6.10; N, 7.43.

Compound 8a. Yield 41%; brown solid; Mp 157-160 ${ }^{\circ} \mathrm{C}$; $R_{f}=0.41\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 8: 2\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}): $\delta 1.82-2.10(\mathrm{~m}, 5 \mathrm{H}), 2.11-2.33(\mathrm{~m}, 4 \mathrm{H}), 2.60-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.88(\mathrm{~m}, 2 \mathrm{H}), 3.57$ (s, 2H), 7.12-7.28 (m, 8H). ${ }^{13} \mathrm{C}-\mathrm{NMR}: \delta 28.8\left(\mathrm{CH}_{2}\right), 30.5\left(\mathrm{CH}_{2}\right), 31.2\left(2 \mathrm{x} \mathrm{CH}_{2}\right), 31.4(\mathrm{CH}), 53.2$ $\left(2 \times \mathrm{CH}_{2}\right), 62.3\left(\mathrm{CH}_{2}\right), 119.6(\mathrm{C}), 125.3(\mathrm{CH}), 126.5(\mathrm{CH}), 126.6(\mathrm{CH}), 127.8\left(2 \times \mathrm{CH}_{2}\right), 128.8$ $\left(2 \times \mathrm{CH}_{2}\right), 130.9(\mathrm{CH}) 134.1(\mathrm{C}), 136.5(\mathrm{C}), 142.4(\mathrm{C}), 151.9(\mathrm{C}), 162.3(\mathrm{CN}) 169.2(\mathrm{CO})$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}$: C, 72.91; H, 6.12; N, 7.39. Found: C, 73.10; H, 6.14; N, 7.46.

3.9. Phenyl l-benzoylpiperidine-4-carboxylate (13) and phenyl 1-phenethylpiperidine-4-carboxylate (17)

A mixture of the acid $\mathbf{1 8}$ or $\mathbf{1 9}$ (2.19 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (40 ml), 1-3-dimethylaminopropyl)-3ethylcarbodiimide hydrochloride ($0.84 \mathrm{~g}, 4.38 \mathrm{mmol}$), dimethylaminopiridine ($0.54 \mathrm{~g}, 4.38 \mathrm{mmol}$) and phenol ($0.62 \mathrm{~g}, 6.57 \mathrm{mmol}$) was heated under reflux for 14 h . After cooling, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution ($3 \times 20 \mathrm{~mL}$). The separated organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash chromatography affording the product $\mathbf{1 3}$ or $\mathbf{1 7}$.

Compound 13. purified by flash chromatography by using as the eluent petroleum ether/EtOAc $=1: 1$); yield 62%; yellow oil; $R_{f}=0.46$ (petroleum ether/EtOAc $=1: 1$); ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 1.65-2.10(\mathrm{~m}, 6 \mathrm{H})$, $2.70-2.90(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.25(\mathrm{~m}, 2 \mathrm{H}), 7.00-7.45(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta 28.2\left(2 \times \mathrm{CH}_{2}\right), 41.1(\mathrm{CH})$, $46.8\left(2 \times \mathrm{CH}_{2}\right), 121.3(2 \times \mathrm{CH}), 125.9(\mathrm{CH}), 126.8(2 \times \mathrm{CH}), 128.4(2 \times \mathrm{CH}), 129.4(2 \times \mathrm{CH}), 129.6$ $(\mathrm{CH}), 135.8(\mathrm{C}), 150.4(\mathrm{C}), 170.4(\mathrm{CO}), 172.6(\mathrm{CO})$. IR: (nujol) v 1,752(CO), 1,628(CO) cm^{-1}. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3}$: C, 73.77; H, 6.19; N, 4.53. Found: C, $73.85 ; \mathrm{H}, 6.25 ; \mathrm{N}, 4.46$.

Compound 17. purified by flash chromatography by using as the eluent $\mathrm{CHCl}_{3} / \mathrm{MeOH}=9: 1$; yield 64%; yellow oil; $R_{f}=0,27\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=9: 1\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 1.80-2.20(\mathrm{~m}, 4 \mathrm{H}), 2.56-2.65(\mathrm{~m}, 2 \mathrm{H})$, $2.80-2.90(\mathrm{~m}, 3 \mathrm{H}), 3.00-3.15(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{t}, 2 \mathrm{H}, J=5.4 \mathrm{~Hz}), 7.06(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.20-7.42$ (m, 8H). ${ }^{13} \mathrm{C}-\mathrm{NMR}: ~ \delta 28.2,\left(2 \mathrm{xCH}_{2}\right) 33.8\left(\mathrm{CH}_{2}\right), 41.1(\mathrm{CH}), 46.8\left(2 \mathrm{x} \mathrm{CH}_{2}\right), 57.4\left(\mathrm{CH}_{2}\right), 122.5$ $(2 \times \mathrm{CH}), 126.9(2 \times \mathrm{CH}), 127.3(\mathrm{CH}), 128.4(2 \times \mathrm{CH}), 129.0(2 \times \mathrm{CH}), 129.5(\mathrm{CH}), 135.9(\mathrm{C}), 151.4$ (C), 170.4 (CO). IR: (nujol) v $1,750\left(\mathrm{CO} \mathrm{cm}^{-1}\right.$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2}: \mathrm{C}, 77.64 ; \mathrm{H}, 7.49 ; \mathrm{N}$, 4.53. Found: C, 77.75 ; H, 7.42; N, 4.58 .

4. Conclusion

In conclusion, we have reported a practical synthesis of the tricyclic heterocycles \mathbf{E} incorporating the pyrazole or isoxazole framework (Figure 1). These new products share with the antipsychotic compounds A-C two substituents, namely the chlorine on the aryl ring and the 4 -(1-benzyl)- or 4-(1-phenylethyl)piperidinyl group on the isoxazole and pyrazole moieties. The antipsychotic activity of these new compounds will be determined, thus indicating which further structural modifications should be pursued to advantageously modify their biological activity.

Acknowledgements

The authors pay their thanks to Regione Autonoma della Sardegna (RAS) for the financial support (RAS: project: CRP-26417).

Conflict of Interest

The authors declare no conflict of interest.

References and Notes

1. Ye, N.; Neumeyer, J.L.; Baldessarini, R.J.; Zhen, X.; Zhang A. Upload: Recent progress in development of dopamine receptor subtype-selective agents: Potential therapeutics for neurological and psychiatric disorders. Chem. Rev. 2013, 113, 123-178.
2. Rowley, M.; Collins, I.; Broughton, H.B.; Davery, W.B.; Baker, R.; Emms, F.; Marwood, R.; Patel, S.; Ragan, I.C.; Freedman, S.B.; Ball, R.; Leeson, P.D. 4-Heterocyclylpiperidines as selective high-affinity ligands at the human dopamine D4 receptor. J. Med. Chem. 1997, 40, 2374-2385.
3. Pinna, G.; Pinna, G.A.; Chelucci, G.; Baldino, S. Tricyclic pyrazoles: An efficient approach to cannabinoid analogues with a tricyclic framework incorporating the pyrrole and pyrazole moieties. Synthesis 2012, 44, 2798-2804.
4. Silverman, R.R. The Organic Chemistry of Drug Design and Drug Action; Academic Press: San Diego, CA, USA, 1992.
5. Wermuth, C.G. The Practice of Medicinal Chemistry; Academic Press: San Diego, CA, USA, 1996.
6. Owton, W.M.; Brunaus, M. Synthesis of 6/7 Halotetralones. Synth. Commun. 1991, 21, 981-987.
7. Murineddu, G.; Ruiu, S.; Loriga, G.; Manca, I.; Lazzari, P.; Reali, R.; Pani, L.; Toma, L.; Pinna, G.A. Tricyclic pyrazoles. 3. Synthesis, biological evaluation, and molecular modeling of analogues of the cannabinoid antagonist 8-chloro-1-(2,4-dichlorophenyl)-N-piperidin-1-yl-1,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole-3-carboxamide. J. Med. Chem. 2005, 48, 7351-7362.
8. Cossy, J.; Belotti, D.; Bouzide, A.; Thellend, A. Short and efficient access to beta-ketoamides. Bull. Soc. Chim. Fr. 1994, 131, 723-729.
9. The structures of regioisomeric isoxazoles $\mathbf{7 a}, \mathbf{b}, \mathbf{c}$ and $\mathbf{8 a}, \mathbf{b}, \mathbf{c}$ have been confidently assigned by comparing their ${ }^{13} \mathrm{C}$-NMR spectra with those of the related and known open-chain isoxazoles \mathbf{B} and \mathbf{C} (Figure 1). Thus for istance, the ${ }^{13} \mathrm{C}$ signals of the carbon bonded to oxygen in \mathbf{B} and \mathbf{C} are 166.6 ppm and 171.0 ppm , respectively, while those of 7 c and $\mathbf{8 c}$ are 166.3 ppm and 170.7 ppm .
10. Shao, D.; Zou, C.; Cheng, L.; Tang, X.; Li, Y. Synthesis and evaluation of tacrine-E2020 hybrids as acetylcholinesterase inhibitors for the treatment of Alzheimer's disease. Bioorg. Med. Chem. Lett. 2004, 14, 4639-4642.
11. Dutta, A.K.; Fei, X.S.; Beardsley, P.M.; Newman, J.L.; Reith, M.E. A. Structure-activity relationship studies of 4-[2-(diphenylmethoxy)ethyl]-1-benzylpiperidine derivatives and their N -analogues: Evaluation of behavioral activity of $\mathrm{O}-$ and N -analogues and their binding to monoamine transporters. J. Med. Chem. 2001, 44, 937-948.

Sample Availability: Not available.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

