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Abstract: Based on the bulkiness of the iodine atom, a non-planar conformation was 

expected for the title compound. Instead, its molecular structure is planar, as 

experimentally determined using single crystal X-ray diffraction, and confirmed 

theoretically by DFT calculations on the single molecule and the halogen pair paired 

molecules, therefore ruling out crystal packing forces as a principal factor leading to 

planarity. Indeed, planarity is ascribed to the carbonyl double bond, as when this bond is 

saturated on forming the related alcohol derivative, the molecule loses planarity. The X-ray 

molecular structure shows an intermolecular separation between the iodine and the oxygen 

of the carbonyl shorter than the corresponding van der Waals distance suggesting a weak 

halogen bond interaction. DFT minimization of this 2-molecule arrangement shows the 

iodine--oxygen distance much shorter than that observed in the crystal interaction and 

confirming its stronger halogen bond nature. A trend between increasing I•••O(carbonyl) 

separation and decreasing C-I•••O(carbonyl) angle is demonstrated, further confirming the 

existence of a halogen bond. 
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1. Introduction 

The iodo moiety in α-iodo-enals and -enones is the preferred halogen in the asymmetric synthesis of 

several important biologically-active compounds such as (−)-brunsvigine [1], (−)-manthine [1],  
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(−)-strychnine [2], shikimic acid analogues [3], fluoroneplanocin A [4] and (−)-tetrodotoxin [5]. Due 

to the ease, compared to other halogens, with which it undergoes carbon-carbon coupling, the iodine of 

α-iodo-enals and -enones is also the preferred halogen substrate of choice in the Stille, Heck and 

Suzuki Pd-catalysed coupling reactions [6–10]. During the characterization of one of these aldehydes 

synthesized by our group, which involved a determination of the X-ray crystal structure of the title 

compound [(Z)-2-iodocinnamaldehyde], an intermolecular halogen interaction C−I•••O=C was seen 

and is reported herein. 

The definition of halogen bonds, shares many features with that of hydrogen bonds: they are 

attractive noncovalent interactions occurring when a covalently bound electron-deficient halogen atom 

pairs with nearby Lewis bases, in our case the carbonyl oxygen atom. Computational studies have 

shown that halogen bound organic donors produce weaker halogen bonds that are more electrostatic in 

nature [11]. Evidence for a weak electrostatic interaction between the positively polarized iodine atom 

and the nucleophilic carbonyl O atom is seen, experimentally, from the single crystal X-ray structure, 

and in calculations using DFT methods. The I•••O distance is less than the sum of the van der Waals 

radii for iodine and oxygen and the C−I•••O angle [149.33(5)°] suggest a weak halogen bond in  

our molecule. 

2. Results and Discussion 

2.1. Chemistry 

The direct synthesis of α-iodoenones or α-iodo-α,β-unsaturated ketones from enones is well 

established [12–22]. However, examples of direct synthesis of linear α-iodo-α,β-unsaturated 

aldehydes (α-iodoenals) from enals are scarce and only two, those of (Z)-2-iodobutenal [23] and  

(Z)-2-iodocinnamaldehyde [24], are known thus far.  

For the synthesis of (Z)-2-iodocinnamaldehyde (2), a published procedure for the synthesis of  

(Z)-2-bromocinnamaldehyde was adopted [24] (Scheme 1). N-iodosuccinimide (NIS) was employed as 

the source of iodine in the reaction, analogous to N-bromosuccinimide acting as the bromine donor in 

the synthesis of (Z)-2-bromocinnamaldehyde. In the iodination of trans-cinnamaldehyde (1), pyridine 

was more effective than pyridine-N-oxide and was utilised in the n-heptane-methanol solvent system, 

which consistently gave high yields of 2 (52% isolated yield) compared to those obtained from a single 

organic solvent system. The specificity for the Z-isomer is extremely high, with a Z/E isomer ratio, as 

determined by GC-MS, of 405:1. Evidence for iodination at the α-position of the enal comes from the 

absence of α-hydrogen 1H-NMR absorptions in compound 2. Doublets, observed for the aldehyde 

hydrogens in 1 (caused by coupling of the α-geminal vinyl hydrogen), were also absent in 2. These 

were instead replaced by singlets, which would be consistent with substitution of the α-hydrogen by an 

iodine atom. The splitting pattern of the β-hydrogens of 2 was less complicated, becoming a triplet 

(due to the trans α-hydrogen and the allyl hydrogen couplings). Nevertheless, iodo substitution at the 

α-position can still furnish two geometric isomers, the Z-isomer 3, shown in an s-trans conformation, 

and the E-isomer 4. Furthermore, 3 can also exist in another conformation, the s-cis (5) (Figure 1).  
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Scheme 1. Synthesis of 2 via direct α-iodination of trans-cinnamaldehyde.  

 

Figure 1. Isomers and conformations of 2. 

 

NOE experiments were performed to establish both the geometries and the conformations of 2. 

Irradiation of the β-hydrogen (Hβ) of 2 gave a 6.9% intensity enhancement of the aldehyde hydrogen 

(H1), and an 8.0% intensity enhancement for Hβ was observed, when H1 was irradiated. The intensity 

enhancements of H1 and Hβ, when either was irradiated, are consistent with structure 3 thereby 

confirming the geometries of 2 as Z. In contrast, the geometric isomer 4 is not expected to show any 

intensity enhancements when either H1 or Hβ is irradiated. Furthermore, the observed NOE effects 

firmly established that the conformation of 2 is s-trans, which would be consistent with 3 and not 5. 

2.2. Single Crystal X-ray Diffraction Study 

The X-ray structure of (Z)-2-Iodocinnamaldehyde shows the s-trans conformation of the enal 

structure, confirming the aforementioned COSY study and a wealth of information available on the 

conformation of enals (and enones) [25]. The almost planar molecular structure is depicted in Figure 2; 

the torsion angles O-C-C-I [−3.9(2)°] and C-C-C-I [2.8(3)°] are close to 0°, whereas the iodo-propenal 

fragment is out of the plane of the benzene ring, C-C-C-H torsion angle 10.35(3)° and similar to the 

unhalogenated cinnamaldehyde [26] C-C-C-H torsion angle 9.36(2)°. Also, we see a long C(aryl)–C(sp2) 

1.464(2) Å similar to that seen in [26] (1.466(2) Å) and indicating in both cases, poor resonance 

between the propenal fragment and the aromatic ring. The C-I bond length 2.085(2) Å is expected for a 

C(sp2)-I, according to values seen in CSD. In [26] the carbonyl O atom has weak, 3.304(2) Å, 

hydrogen bond with the para-H—C(aryl). 

Figure 3 shows two out of eight molecules in the unit cell and an interaction between the iodine and 

the O(carbonyl) is seen. The I•••O separation of 3.418(2) Å is shorter than the sum of the O and I van 

der Waals radii of 3.50 Å, indicating a potential halogen bond. To exclude the possibility of this 

feature resulting from packing forces which could constrain the molecules to be closer than expected, a 

theoretical study was carried out.  

2.3. Theoretical Study 

It is known that in a C-X bond, the halogen atom often acts as a Lewis acid since positive 

electrostatic potential is observed on it and directly opposite to the C-X bond (the σ-hole). An example 

has been described for CF3Br [27].  



Molecules 2013, 18 8715 

 

Figure 2. X-ray molecular structure of the title compound including the two torsion 

angles, −3.9° and 2.8° surrounding the iodine. These values, although small, are greater 

than the unsubstituted cinnamaldehyde [26] (1.06° and 0.85°, respectively) due to the 

bulky iodine atom. 

 

Figure 3. Intermolecular I--O separation (3.418 Å) in the crystal, non-hydrogen atoms 

shown with their ellipsoids; C-I•••O(carbonyl) = 149.33(5)°. 

 

To verify the ability of Dmol3 to describe halogen bonds, we performed an ab-initio geometry 

optimization on a CF3Br molecule and obtained its electrostatic potential, as depicted in Figure 4. The 

area on the bromine atom but opposite to the C-Br bond (left part) appears positively charged  

(red color), consistent with published results.  
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Figure 4. CF3Br electrostatic potential, obtained after its geometry optimization, and using 

the same conditions for the title compound; the Br atom is located on the left, only two F 

atoms are visible on the right, and the C atom is seen as green shaded in the center.  

Color range blue-green-red (more negative (blue) …green…less negative (red)). 

 

In our case, two molecules, as shown in Figure 3, were input in Dmol3 program and geometrically 

optimized. The converged system depicted in Figure 3 is at a minimum of energy. It is clear that an 

attractive interaction is present between both molecules; otherwise the geometry optimization would 

separate the molecules. In addition, this 2-molecule calculated arrangement displays a I•••O separation 

much shorter than in the crystal [3.083 Å vs. 3.418(2) Å, respectively]. This suggests the packing in 

the crystal is not responsible for the short I•••O intermolecular distance. Furthermore, halogen bonds 

display strong directionality according to Resnati and Metrangolo [28], and so we expect the O•••I-C 

angle to be close to 180°, as confirmed in Figure 5.  

Figure 5. After geometry optimization of the two-molecule arrangement in the crystal, the 

resulting DFT minimum arrangement is shown; green distance, yellow angle and light blue 

torsion angles. 

 

Comparing energies of two single molecules and the two-molecule arrangement of Figure 3, the 

latter is favored by 4.6 kcal/mol. An additional calculation included a different two-molecule 

arrangement found in the crystal where I and O(carbonyl) were not related by intermolecular 

interactions; this arrangement was also more stable than two times the single molecule (3.4 kcal/mol) 

but not as much as the previous one. 
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The single molecule, and the two-molecule arrangement (both as found in the crystal), were input in 

Dmol3 and the electrostatic potential calculated. Results are depicted in Figures 6 and 7 and appear 

consistent with earlier studies on halogen bonded compounds. 

Figure 6. Electrostatic potential for the title compound in the crystal, the iodine atom is 

located in the upper right area and clearly shows and positive (red) σ-hole. 

 

 

Figure 7. Electrostatic potential for the two-molecule arrangement in the crystal  

(also shown in Figure 3). 
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To further detect a halogen bond in the title compound we performed an additional calculation on 

the two-molecule arrangement. We selected and fixed several C-I•••O(carbonyl) angles and performed 

geometry optimization calculations. For a C-I•••O(carbonyl) angle of about 140º the I•••O(carbonyl) 

separation becomes 3.323 Å, which is longer than that of the real minimum (171.1°, 3.083 Å). For a 

fixed C-I•••O(carbonyl) angle of about 120°, the I•••O(carbonyl) separation (3.595 Å) increases and is 

slightly longer than the van der Waals separation (3.5 Å), whereas a fixed C-I•••O(carbonyl) angle of 

about 90° results in even longer (3.862 Å) I•••O(carbonyl) separation, suggesting both molecules 

drifting apart. Since halogen bonds, like hydrogen bonds, are more effective with angles about 180° 

and absent for small angles, these results are consistent with halogen bond existence in the title compound. 

In addition, in this series of calculation the smaller the angle the higher the energy, which indicates 

more stability for the non-fixed angle minimization (C-I•••O(carbonyl) angle = 171.1°, Figure 5). 

Additional calculations were performed on the crystal, the cell was minimized using the same bases 

and functional. Variation in cell dimensions are found, a = 11.262 Ǻ (11.473 Ǻ, Xray); b = 8.849 Ǻ 

(8.674 Ǻ Xray) c = 16.316Ǻ (16.827 Å, Xray). The calculated shrunken cell makes the I•••O(carbonyl) 

separation shorter (3.347 Å) than in the crystal, even shorter than van der Waals separation. We also 

calculated the lattice energy whose value is −27.7 kcal/mol. 

As described above, the crystal structure of the title compound shows marked co-planarity in the 

molecule, in spite of the bulky iodine atom that might induce steric hindrance with the ortho-hydrogens of 

the phenyl ring. The question arises whether this co-planarity of the phenyl ring (with respect to the 

enal moiety) is due to both the carbonyl and the alkene, or is one of them sufficient to overcome the 

hindrance posed by the iodine? It seems obvious that saturating the alkene moiety should remove the 

co-planarity, but a carbonyl variation might disrupt the conjugation of the phenyl ring to the enal. In 

order to answer this question, a theoretical study on a variation of the carbonyl, the alcohol derivative, 

was undertaken. Figure 8 shows the co-planar DFT geometry optimized minimum carbonyl species, 

whereas the alcohol derivative optimized structure, Figure 9, loses co-planarity (torsion angle = 22.4°). 

Therefore, the effect of co-planarity is driven by the carbonyl moiety, which is an interesting example 

of long-range structural influence. The co-planarity finding is consistent with that described by 

Liljefors and Allinger [29], which showed enals possessing co-planarity conformation, even for those 

enals with methyl groups located geminal to the aldehyde or cis to the aldehyde. The calculations done 

by Liljefors and Allinger using molecular method (VESCF) predicted these enals to have an  

aldehyde-alkene dihedral angle of 180°. Furthermore the co-planar finding from the crystal structure of 

2 is also consistent with the dipole study [30] and the findings from spectroscopic studies [31–34]. 

Figure 8. The geometrically optimized title compound. 
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Figure 9. The geometrically optimized alcohol derivative, showing lack of co-planarity 

between the Ph ring and C=C double bond (torsion angle = 22.45°). 

 

Our DFT optimized I--O interaction in the 2-molecule arrangement can be compared with that 

observed in the crystal structure [35] of methyl-2-chloro-5-iodo-4-(2-(1-(ethoxycarbonyl)ethylidene)-

hydrazino)benzoate [d(C=O--I) = 3.073(8) Å, O--I-C = 179.9(8)°].  

3. Experimental 

3.1. Chemistry 

trans-Cinnamaldehyde was obtained from Aldrich (St. Louis, MO, USA) and pyridine was from 

Fluka (Buchs, Switzerland). Acros Organics (Geel, Belgium) was the supplier of N-iodosuccinimide 

(NIS). The reagents were used without further purification. Methanol and n-heptane used in the 

reactions are of AR grade and were from RCI LabScan Co. Ltd. (Bangkok, Thailand). 1H- and 13C-NMR 

spectra were recorded on a Bruker Avance 300 MHz spectrometer in CDCl3 using TMS as an internal 

standard. The products composition and relative yields were carried out on a gas chromatograph-mass 

spectrometer (Agilent 6890 GC system and Agilent 5973 Mass Selective Detector) using HP-1 

capillary column (0.32 mm × 24.9 m × 017 μm). IR spectra were recorded on a Perkin–Elmer Spectrum 

100 FT-IR Spectrometer. Separations of products were carried out on a centrifugal thin-layer 

chromatography (Harrison Research, Palo Alto, CA, USA) using a plate coated with 2 mm of silica gel 

60GF254.  

Synthesis Procedure of (Z)-2-iodo-3-phenylpropenal (2).  

trans-Cinnamaldehyde (63 μL, 0.5 mmol) was dissolved in a methanol (0.5 mL)-n-heptane (9.5 mL) 

solvent system, containing pyridine (85 μL, 1.04 mmol, 2.1 equivs.). NIS (0.1284 g, 0.56 mmol) was 

then added in one portion to the solution and stirred at room temperature for 16 hours. The mixture 

was then diluted with Et2O (60 mL) and washed with 10% sodium thiosulfate (3 × 20 mL), H2O  

(2 × 20 mL) and brine (2 × 10 mL). The combined aqueous solution was re-extracted with Et2O  

(10 mL). The combined Et2O solution was dried over anhydrous Na2SO4. Purification of the iodo 

product was conducted with silica gel chromatography using 2% CH2Cl2/hexanes as the eluent.  
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Compound 2: light yellow solid (0.067 g, 52% purified yield); mp 88–89 °C (lit. [24] mp 89–90 °C); 
1H NMR (300 MHz, CDCl3): δ 7.44–7.57 (m, 3H, aromatic C-3, C-4 and C-5 Hs), 7.95–8.05 (m, 2H, 

aromatic C-2 and C-6 Hs), 8.10 (s, 1H, CH=CI, NOE, enhancement from CHO, 7.9%), 8.79 (s, 1H, 

CHO, NOE, enhancement from β-H, 6.9%); 13C-NMR (75 MHz, CDCl3): δ 105.9, 128.6, 130.4, 131.6, 

134.0, 155.8, 189.0; GC-MS (EI), m/z (rel int.): 259 (10, (M+1)+), 258 (100, M+), 257 (43, (M-1)+), 

131 (25, (M-I)+), 130 (35, (M-HI)+), 127 (5, I), 103 (76, ((M+1)-CHO)+), 102 (54, (M-CHO)+),  

77 (60, C6H5), 51 (22); IR (ATR): 1669, 1612 cm−1. 

3.2. X-ray Diffraction Study 

Suitable crystals for X-ray diffraction of the title compound were obtained from an ether/hexane 

(3:7) solution at room temperature after about a week. Diffraction data were collected at 125K using a 

Bruker SMART APEX II CCD X-ray diffractometer. Structure resolution and refinement were 

performed using SHELXTL [36]; details are included in Table 1. H atoms not found in Fourier maps 

were included from models and constrained as riding on their bound atoms. CCDC 940095 contains 

the supplementary crystallographic data for this paper. These data can be obtained free of charge via 

www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, 

UK; fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk). 

Table 1. Crystal data and refinement details of (Z)-2-iodocinnamaldehyde. 

Empirical formula C9H7INO 

Crystal color colorless 

Formula weight 258.05 

Crystal System Orthorhombic 

Space group P bca 

Temperature K 125(2) 

Wavelength (Å) 0.71073 

a (Å) 11.4372(6) 
b (Å) 8.6736(5) 
c (Å) 16.8274(9) 

Volume (Å3) 1669.31(16) 
Z, density (mg/mm3) 8, 2.053 

Absorption coefficient 3.772 
Crystal size (mm) 0.25 × 0.17 × 0.10 

θ range data collection 2.42, 30.03 
Limiting índices −16,16/−12.12/−23,23 

Data collected /unique 24123, 2436 
Max, min. Transmission 0.45/0.70 

Refinement method F2 
Refined data / parameters 2057/128 

Goodness-of-fit on F2 1.026 
Final R, Rw [I > 2sigma(I)] 0.0181/0.0408 
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3.3. DFT Study 

Calculations were done using commercial software programs from Accelrys [37]. Density 

functional theory (DFT) code DMol3 was applied to calculate geometries, energies, and frequencies, 

implemented in Materials Studio 6.1, using a PC platform [38]. We employed Double Numerical 

Polarized (DNP) basis set that includes all the occupied atomic orbitals plus a second set of valence 

atomic orbitals plus polarized d-valence orbitals [39], and correlation generalized gradient 

approximation (GGA) was applied in the manner (PBE) suggested by Perdew-Burke-Ernzerhof [40]; 

the recent inclusion of a dispersion term that deals with O•••H interactions was also applied 

(GRIMME) [41,42]. 

Spin unrestricted approach was exploited with all electrons being considered explicitly. The real 

space cutoff of 6 Å was imposed for numerical integration of the Hamiltonian matrix elements. The 

self-consistent-field convergence criterion was set to the root-mean square change in the electronic 

density to be less than 10−6 electron/Å3. The convergence criteria applied during geometry 

optimization were 2.72 10−4 eV for energy and 0.054 eV/Å for force.  

4. Conclusions 

Based on the bulkiness of the iodine atom and the potential steric hindrance posed on the  

ortho-hydrogens of the phenyl ring, the molecular structure of the title compound was expected to be 

non-planar. X-ray diffraction results demonstrated instead that the related torsion angles were close to 

0°. Packing forces were not responsible for co-planarity as confirmed by DFT calculations, which also 

show molecular co-planarity. The driving force explaining co-planarity is assigned to the carbonyl 

double bond, as when it is saturated, forming the related alcohol derivative (replacing HC=O by 

H2COH), the molecule loses co-planarity. The X-ray molecular structure shows an intermolecular 

separation between the iodine and the oxygen of the carbonyl shorter than the corresponding van der 

Waals distance. DFT minimization of the molecular arrangement of the title compound makes the 

I•••O interaction stronger as its distance is shorter than in the crystal, confirming its halogen  

bond nature. 

Supplementary Materials 

Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/18/8/8712/s1. 

Acknowledgements 

The financial support from Howard Hughes Medical Foundation, grant 52006322 to Vassar 

College. US National Science Foundation through grant 0521237 for the X-ray diffractometer. PB is 

sincerely grateful to Suchart Chaiyaroj and Chawannuch Ruaengsri of Ramathibodi Faculty of 

Medicine, Mahidol University for a life-saving operation. 

Conflict of Interest 

The authors declare no conflict of interest. 



Molecules 2013, 18 8722 

 

References and Notes 

1. Hong, A.-W.; Cheng, T.-H.; Raghukumar, V.; Sha, C.-K. An expedient route to Montanine-type 

Amaryllidaceae alkaloids: Total syntheses of (−)-brunsvigine and (−)-manthine. J. Org. Chem. 

2008, 73, 7580–7585. 

2. Ohshima, T.; Xu, Y.; Takita, R.; Shibasaki, M. Enantioselective total synthesis of (−)-strychnine: 

Development of a highly practical catalytic asymmetric carbon–carbon bond formation and 

domino cyclization. Tetrahedron 2004, 60, 9569–9588. 

3. Begum, L.; Box, J.M.; Drew, M.G.B.; Harwood, L.M.; Humphreys, J.L.; Lowes, D.J.;  

Morris, G.A.; Redon, P.M.; Walker, F.M.; Whitehead, R.C. Difluorinated analogues of shikimic 

acid. Tetrahedron 2003, 59, 4827–4841. 

4. Jeong, L.S.; Yoo, S.J.; Lee, K.M.; Koo, M.J.; Choi, W.J.; Kim, H.O.; Moon, H.R.; Lee, M.Y.; 

Park, J.G.; Lee, S.K.; et al. Design, Synthesis, and biological evaluation of fluoroneplanocin A as 

the novel mechanism-based inhibitor of S-adenosylhomocysteine hydrolase. J. Med. Chem. 2003, 

46, 201–203. 

5. Bamba, M.; Nishikawa, T.; Isobe, M. Stereoelectronic and steric control in chiral cyclohexane 

synthesis toward (−)-tetrodotoxin. Tetrahedron 1998, 54, 6639–6650. 

6. Negishi, E. Novel and selective α-substitution of ketones and other carbonyl compounds based on 

Pd-catalyzed cross coupling of α,β-unsaturated carbonyl derivatives containing α-halogen or  

α-metal groups. J. Organomet. Chem. 1999, 576, 179–194. 

7. Stille, J.K. The palladium-catalyzed cross-coupling reactions of organotin reagents with organic 

electrophiles. Angew. Chem. 1986, 25, 508–524. 

8. Heck, R.F. Palladium reagents in organic synthesis. Org. React. 1982, 27, 345–390. 

9. Suzuki, A.; Miyaura, N. Palladium-catalyzed cross-coupling reactions of organoboron 

compounds. Chem. Rev. 1995, 95, 2457–2483. 

10. Scott, T.L.; Söderberg, B.C.G. Palladium-catalyzed synthesis of 1,2-dihydro-4(3H)-carbazolones. 

Formal total synthesis of murrayaquinone A. Tetrahedron 2003, 59, 6323–6332. 

11. Chudzinski, M.G.; Taylor, M.S. Correlations between computation and experimental 

thermodynamics of halogen Bonding. J. Org. Chem. 2012, 77, 3483–3491. 

12. McIntosh, J.M. Reaction of Iodine azide with cyclopentenone and cyclohexenone. Can J. Chem. 

1971, 49, 3045–3047. 

13. Jirkovsky, I. Studies on Enaminoketones. Can. J. Chem. 1974, 52, 55–65. 

14. Smith, A.B.; Branca, S.J.; Guaciaro, M.A.; Wovkulich, P.M.; Korn, A. 2-Hydroxymethyl-2-

cyclopentenone. Org. Synth. Coll. Vol. VII 1990, 271–274. 

15. Kim, T.H.; Asakura, J.; Asaka, Y. Reaction of enones with iodine in the presence of Ce(IV). 

Synthesis of 2-iodovinyl ketones. Chem. Express 1990, 5, 221–224. 

16. Johnson, C.R.; Adams, J.P.; Braun, M.P.; Senanayake, C.B.; Wovkulich, P.M.; Uskokovic, M.R. 

Direct α-iodination of cycloalkenones. Tetrahedron Lett. 1992, 33, 917–918. 

17. Bovonsombat, P.; Angara, G.J.; McNelis, E. Concerning the formations of α-iodoenones. 

Tetrahedron Lett. 1994, 35, 6787–6790. 

18. Djuardi, E.; Bovonsombat, P.; McNelis, E. Formations of α-Iodoenones by iodine and catalytic 

amounts of amines. Synth. Commun. 1997, 27, 2497–2503. 



Molecules 2013, 18 8723 

 

19. Sha, C.K.; Huang, S.J. Synthesis of β-substituted α-iodocycloalkenones. Tetrahedron Lett. 1995, 

36, 6927–6928. 

20. Roush, W.R.; Barda, D.A. Second generation synthesis of the quartromicin spirotetronic acid 

subunits via a Claisen rearrangement-intramolecular aldol sequence. Tetrahedron Lett. 1997, 38, 

8785–8788. 

21. Benhida, R.; Blanchard, P.; Fourrey, J.-L. A mild and effective iodination method using iodine in 

the presence of bis-(trifluoroacetoxy)iodobenzene. Tetrahedron Lett. 1998, 39, 6849–6852. 

22. Krafft, M.E.; Cran, J.W. A convenient protocol for the α-iodination of α,β-unsaturated carbonyl 

compounds with I2 in an aqueous medium. Synlett 2005, 1263–1266. 

23. Bowman, W.R.; Bridge, C.F.; Cloonan, M.O.; Leach, D.C. Synthesis of heteroarenes via radical 

cyclisation onto nitriles. Synlett 2001, 765–768. 

24. Bovonsombat, P.; Rujiwarangkul, R.; Bowornkiengkai, T.; Leykajarakul, J. α-Bromination of 

linear enals and cyclic enones. Tetrahedron Lett. 2007, 48, 8607–8610. 

25. Patai, S.S., Rappoport, Z., Eds. The Chemistry of Enones, Part 1; Wiley: New York, NY, USA, 1989. 

26. Kirchner, M.T.; Dieter Blaser, D.; Roland Boese, R.; Thakur, T.S.; Desiraju, G.R. Weak C-H···O 

hydrogen bonds in anisaldehyde, Salicylaldehyde and cinnamaldehyde. Acta Cryst. 2011, C67, 

o387–o390.  

27. Metrangolo, P.; Meyer, F.; Pilati, T.; Resnati, G.; Terraneo, G. Halogen bonding in 

supramolecular chemistry. Angew. Chem. Int. Ed. 2008, 47, 6114–6127. 

28. Metrangolo, P.; Resnati, G., Eds. Halogen Bonding: Fundamentals and Applications, Structure 

and Bonding; Springer: Berlin, Germany, 2008; Volume 126. 

29. Liljefors, T.; Allinger, N.L. Conformational analysis. CXII. Conformations, Energies, And 

electronic absorption spectra of α,β-unsaturated aldehydes and ketones. J. Am. Chem. Soc. 1976, 

98, 2745–2749. 

30. Estok, G.K.; Dehn, J.S. Electric moments of some unsaturated carbonyl compounds. J. Am.  

Chem. Soc. 1955, 77, 4769–4770. 

31. Suzuki, M.; Kozima, K. Microwave spectra, barrier heights to internal rotation of methyl group, 

and dipole moments for conjugated chain compounds: Methacrolein J. Mol. Spectrosc. 1971, 38, 

314–321. 

32. Hsu, S.L.; Flygare, W.H. Microwave spectrum and the barrier to internal rotation of the methyl 

group in trans- crotonaldehyde. Chem. Phys. Lett. 1969, 4, 317–319. 

33. Forster, P.D.; Rao, V.M.; Curl, R.F., Jr. Microwave spectrum of Methyl Vinyl Ketone.  

J. Chem. Phys. 1965, 43, 1064–1066. 

34. Forbes, W.F.; Shilton, R. Electronic spectra and molecular dimensions. III.1 Steric Effects in 

Methyl-substituted α,β-Unsaturated Aldehydes. J. Am. Chem. Soc. 1959, 81, 786–790. 

35. Chen, Y.; Shibata, M.; Rajeswaran, M.; Srikrishnan, T.; Dugar, S.; Pandey, R.K. Utility of  

Japp-Klingemann reaction for the preparation of 5-carboxy-6-chloroindole via Fischer indole 

protocol. Tetrahedron Lett. 2007, 48, 2353–2356. 

36. Sheldrick, G.M. SHELXTL. PC version 5.1 An integrated system for solving, refining and 

displaying crystal structures from diffraction data, Bruker Analytical X-ray Systems, Karlsruhe, 

2000. 

37. Dmol3 Software; Accelrys, Inc.: San Diego, CA, USA, 2012. 



Molecules 2013, 18 8724 

 

38. Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.  

39. Delley, B. An all-electron numerical method for solving the local density functional for 

polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517. 

40. Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple.  

Phys. Rev. Lett. 1996, 77, 3865–3868. 

41. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion 

correction. J. Comput. Chem. 2006, 27, 1787–1799.  

42. Hanke, F.; Dyer, M.S.; Bjork J.; Persson, M. Structure and stability of weakly chemisorbed ethane 

adsorbed on low index Cu surfaces: Performance of density functionals with van der Waals 

interactions. J. Phys. Condensed Matter 2012, 42, 424217–424225. 

Sample Availability: Samples of the compound (Z)-2-iodo-3-phenylpropenal (2) are available from  

the authors. 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/) 


