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Abstract: Polyphenols are able to trap free radicals, which contributes to their known 

antioxidant capacity. In plant extracts, these secondary metabolites may act in concert, in a 

way that their combined activities will be superior to their individual effects (synergistic 

interaction). Several polyphenols have demonstrated clear antioxidant properties in vitro, 

and many of their biological actions have been attributed to their intrinsic reducing 

capabilities. As so, the intake of these compounds at certain concentrations in the diet 

and/or supplementation may potentiate the activity of reduced form glutathione  

(GSH), thus better fighting oxidative stress. The aim of this work was to predict a 

structure-antioxidant activity relationship using different classes of flavonoids and to 

assess, for the first time, possible synergisms and antagonisms with GSH. For these 

purposes a screening microassay involving the scavenging of DPPH• was applied.  

In general, among the tested compounds, those lacking the catechol group in B ring 

showed antagonistic behaviour with GSH. Myricetin displayed additive effect, while 

quercetin, fisetin, luteolin, luteolin-7-O-glucoside, taxifolin and (+)-catechin demonstrated 

synergistic actions. Furthermore, adducts formed at C2′ and C5′ of the B ring seem to be 

more important for the antioxidant capacity than adducts formed at C6 and C8 of the A ring. 
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1. Introduction 

The most important endogenous antioxidant defence systems are composed of the thiol-containing 

tripeptide glutathione and small thiol-containing proteins, such as thioredoxin, glutaredoxin, and 

peroxiredoxin. Of these, glutathione is found at millimolar concentrations in most cells and is the 

major contributor to the cell’s redox state. Glutathione occurs in cells in both reduced (GSH) and 

oxidized (GSSG) forms. It may also covalently bind to proteins through glutathionylation [1,2]. One 

important task of cellular glutathione is to scavenge free radicals and peroxides produced during 

normal cellular respiration, which would otherwise oxidize proteins, lipids and nucleic acids [3,4]. 

Phenolic compounds, characterized by hydroxylated aromatic rings, are ubiquitous in plants. 

Simple phenolics and flavonoids are important constituents of plants, showing a wide range of 

antioxidant activities in vitro [5]. Flavonoids, in particular, have characteristics that make them the 

phenolic compounds with the strongest antioxidant capacity [6]. In contrast to GSH, flavonoids cannot 

be synthesized by humans, but are obtained through the diet; so, free radicals that are originated during 

body metabolism and their presence in blood can be neutralized by regular intake of foods containing a 

high content of these antioxidants, such as fruits and vegetables [7]. For flavonoids, in general it is 

assumed that they are absorbed as their aglycones after prior hydrolysis of the glycosides along the 

digestive tract. Small amounts of aglycones can also be present in the diet. Moreover, the health food 

industry is now providing increasing numbers of flavonoid aglycones as food supplements [8]. 

Classified as chain breaking antioxidants, these flavonoid aglycones are reported to quench free 

radicals by donating a hydrogen atom and/or an electron to free radicals [9]. Many studies revealed 

that the mentioned properties bear preventive potential against several degenerative diseases, such as 

cancer or cardiovascular diseases [10,11]. 

Chemical reactions involving the transfer of an electron and a proton can occur by means of 

concerted or stepwise mechanisms. The position and degree of hydroxylation, polarity, solubility  

and reducing potential are the main factors influencing the antioxidant activity of phenolic  

compounds [12–14]. In most methods used to evaluate antioxidant properties, the ability of the 

antioxidants to trap free radicals is assessed by the kinetic of their reactions with a radical. The 

methods applying chromogenic compounds are commonly used due to their ease, speed and 

sensitivity, the most popular being those employing the stable 2,2-diphenyl-1-picrylhydrazyl radical 

(DPPH•) and 2,2-azinobis(3-ethyl-benzothiazoline-6-sulphonicacid) cation radical (ABTS•+) [15,16]. 

For this study flavonoids were considered. This type of molecules comprises a broad collection of 

plant metabolites possessing a C6-C3-C6 skeleton, or, more specifically, a phenylbenzopyran function. 

The typical flavone ring is the backbone of the flavonoid structure, or the nucleus of diverse flavonoid 

molecules [17]. 

The scavenging of free radicals by flavonoids often involves the formation of a phenoxyl radical 

that after is converted to a quinone. For example, quercetin (Table 1) is oxidized to a quinone when 

serving as an antioxidant, and this quinone reacts with thiols [18]. On the other hand, the chemical 

properties of some antioxidants may also confer them with pro-oxidant properties and this should be 

considered with respect to mechanisms for induction of cellular antioxidant defences. Flavonoids can 

auto-oxidize and products of auto-oxidation can possibly react with or otherwise reduce cellular 

concentrations of glutathione [19]. 
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Table 1. Structures of the studied flavonoids. 
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Table 1. Cont. 

Compound Structure 

Luteolin-7-O-glucoside 

 

Taxifolin 

 

 

(+)-Catechin 

 

 

To shed some light on the knowledge about the behaviour of these exogenous antioxidants when in 

the presence of this endogenous antioxidant, in the present work several classes of flavonoids were 

mixed with GSH and the resulting DPPH• scavenging ability was assessed for the first time to find 

synergistic or antagonistic interactions. 

2. Results and Discussion 

2.1. DPPH• Scavenging Activity of Flavonoids 

The antioxidant mechanisms of flavonoids comprise free radical scavenging, but also enzyme 

inhibition/induction, metal chelation, interaction with receptors and modulation of gene expression [20]. 

The direct scavenging of radicals is believed to occur in cells, but, to avoid the interference of other 

mechanisms, this work was developed using a cell-free system. 

The past few decades of structure-activity relationships research have generated several consistent 

lines of evidence supporting the role of specific structural components as requisites for antioxidant 

activity. Some characteristics of flavonoids are important to the antioxidant capacity: o-dihydroxy 

structure in the B ring, which confers higher stability to the radical form and participates in electron 

delocalization [21]; C2=C3 double bond in conjugation with a 4-oxo function in the C ring, 

responsible for electron delocalization of the aromatic nucleus; 3- and 5-OH groups with 4-oxo 

function in the A and C rings, required for maximum radical scavenging potential [22–24]. 
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The structures of the studied flavonoids are presented in Table 1. A concentration dependent effect 

was observed for all of them under the assay conditions (Figures 1 and 2). Quercetin, recognized as a 

reference compound, contains all the above mentioned features for antioxidant capacity [25] and 

showed an IC50 of 18.30 ± 0.14 µM (Figure 1). In order to establish structure-antioxidant activity 

relationships, other flavonoids, with few structural changes relatively to quercetin, were examined. 

Figure 1. Dose-response curves of the tested flavonols (mean ± SEM of three determinations). 
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Figure 2. Dose-response curves of tested flavonoids from other classes (mean ± SEM of 

three determinations). 

 

2.1.1. Modifications in A Ring 

To evaluate the importance of hydroxyl groups in the A ring, quercetagetin and fisetin (Table 1) 

were analysed. The presence of a pyrogallol A ring increased the antioxidant activity, as observed with 

quercetagetin (IC50 to 10.41 ± 0.93 µM, p < 0.05) (Figure 1). On the other hand, the hydroxyl group at 

C5 does not seem to be really important for the DPPH• scavenging activity. Fisetin, lacking this 

substituent, presented an IC50 of 19.37 ± 0.73 (Figure 1), which is not significantly different from that 

obtained with quercetin (p > 0.05). 

2.1.2. Modifications in the B Ring 

As it was observed with the A ring, the presence of an additional hydroxyl group (pyrogallol B 

ring) in myricetin decreased the IC50 to 9.77 ± 1.52, p < 0.05 (Figure 1). Thus, by increasing the 

hydroxylation pattern in the B ring, the ability of the flavonoid to scavenge DPPH radical was also 

increased. Comparing quercetagetin with myricetin, no significant differences were verified between 

the presence of the pyrogallol in the A or B rings, respectively (p > 0.05). 

Galangin and isorhamnetin were analysed to clarify the effect of the o-dihydroxy substitution in the 

B ring. As referred above, the catecholic B ring is important for the antioxidant activity, which is 

consistent with our results: the methoxylation of C3′ turned isorhamnetin less active than quercetin 

(IC50 of 36.26 ± 0.76 µM, p < 0.01) (Figure 1), which is in accordance with Rice-Evans et al. [6]; the 

lack of hydroxyl groups in the B ring, as occurs in galangin, had a more negative effect, as 

demonstrated the IC50 value found for this compound (138.80 ± 3.44 µM, p < 0.001) (Figure 1). 



Molecules 2013, 18 8864 

 

 

2.1.3. Modifications in C Ring 

The importance of the C2=C3 double bond to the antioxidant capacity was observed when taxifolin, 

lacking this feature, was tested. This compound displayed an IC50 of 37.97 ± 0.13 (Figure 2), which is 

c.a. 2-fold higher than that of quercetin (p < 0.001). 

By comparing taxifolin with (+)-catechin, the importance of the 4-oxo group could be evaluated. 

The presence of this group did not affect the antioxidant activity: (+)-catechin showed an IC50 of  

45.20 ± 2.01, p > 0.05 (Figure 2), which is not significantly different than that of taxifolin. Analyzing 

the C2=C3 double bond in conjugation with a 4-oxo group, by comparing (+)-catechin with quercetin, 

significant differences were found (p < 0.01), which confirmed the importance of this conjugation as 

described by other authors [6]. 

As for the role of the 3-OH group in the C ring, luteolin displayed an IC50 of 26.43 ± 1.78 (Figure 2), 

which is c.a. 1.5-fold higher than that of quercetin (p < 0.05). This result is consistent with other works 

reporting that this group is really important to the antioxidant activity [26]. 

Previous studies [27,28] reported that aglycones are more potent antioxidants than their 

corresponding glycosides. This observation is based on the presence of glycosyl residues at C3 of the 

C ring. However, our findings indicated that the glycosylation of luteolin at C7 of the A ring increased 

its capacity to scavenge DPPH radical (IC50 of 14.66 ± 0.46, p < 0.05) (Figure 2). Other researchers 

observed the same behaviour when these two compounds were tested against DPPH• [29]. 

2.2. DPPH• Scavenging Activity of Flavonoids in Mixtures with GSH 

Additive effect is not a simple arithmetic sum of two (or more) compounds. If compounds A and B 

each inhibit 30%, then the additive effect is not 60%, because if A and B each inhibit 60%, the 

combined additive effect cannot be 120%. For this reason the simulation formula presented in the 

Experimental section was applied. Chou and Talalay [30] called it the fractional product method and it 

will never lead to a combination effect exceeding 100% inhibition. Those authors indicated that 

Webb’s method [31] is valid only when both compounds have hyperbolic curves, as happens with the 

compounds tested. If A and B each inhibit 60%, than it is oversimplification to say that the additive 

effect is 84% inhibition [31]. 

The antioxidant activity of flavonoids and their interaction with GSH in vitro depends upon the 

arrangement of functional groups about the nuclear structure. Based on the quinone/quinone methide 

isomerization chemistry involved in the formation of the A ring type glutathionyl adducts from 

quercetin o-quinone/quinone methide, it can be postulated that especially the presence of the  

C2=C3 double bond, the 3-OH group, the 4-oxo moiety, and the 5-OH and/or 7-OH groups are 

required for efficient quinone methide formation and GSH adduct formation in the A ring instead of in 

the B ring [32]. 

Among the flavonoids tested, those having a catechol group in the B ring, namely quercetin, fisetin, 

luteolin, luteolin-7-O-glucoside, taxifolin, and (+)-catechin (Table 1), showed synergistic effects with 

glutathione (Figures 3 and 4). An exception was noted with quercetagetin (Figure 3B) which presents 

one additional hydroxyl group at C6 of the A ring compared to quercetin. This hydroxyl seems to be 

really important to its behaviour in mixtures with GSH, because the insertion of this group in quercetin 
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to form quercetagetin, although it increases the activity of the isolated compound (p < 0.05), it makes 

the compound an antagonist of GSH (Figure 3A,B). On the other hand, myricetin with an additional 

OH group at C5′ of the B ring showed an additive effect with GSH (p ≥ 0.05) (Figure 3C). 

Quercetagetin and myricetin with a pyrogallol configuration in one of the rings can auto-oxidize and 

form superoxide radical (O2
•−) [33]. Like our DPPH• system, at neutral pH, GSH is partially present in 

its highly nucleophilic thiolate form, and the quercetin o-quinone loses its most acidic proton at 7-OH, 

followed by an efficient mesomeric equilibrium of the quercetin o-quinone monoanion with its 

corresponding quinone methide isomers. Quinone methide formation in the A ring is thus favoured, 

which gives rise to glutathionyl adduct formation in the A ring, leading to 6- and 8-glutathionyl 

quercetin adducts [34,35] (Scheme 1). Thus, the presence of the hydroxyl group at C6 of quercetagetin 

can create a steric hindrance to form active adducts with GSH and so being not able to offset the 

generation of O2
•− from auto-oxidation processes. On the other hand, it seems that myricetin, which 

presents the same structure in the A ring, can form the same adducts as quercetin and this can 

compensate O2
•− formation. This may explain why myricetin showed an additive effect. 

Figure 3. Antioxidant activity of binary mixtures of six flavonols ((A) Quercetin;  

(B) Quercetagetin; (C) Myricetin; (D) Isorhamnetin; (E) Galangin; (F) Fisetin) with GSH 

(mean ± SEM of three determinations). * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Figure 3. Cont. 

 

Figure 4. Antioxidant activity of binary mixtures of other classes of flavonoids  

((A) Taxifolin; (B) (+)-Catechin; (C) Luteolin; (D) Luteolin-7-O-glucoside) with GSH 

(mean ± SEM of three determinations). * p < 0.05, ** p < 0.01, *** p < 0.001,  

**** p < 0.0001. 
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Scheme 1. Representation of the mechanism for the formation of the glutathionyl adducts 

of quercetin quinone/quinone methide at neutral pH. 
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To study the effect of methoxylation, isorhamnetin was analysed. The mixtures of this compound 

with GSH showed an antagonistic behaviour (p < 0.05) (Figure 3D). According to van der  

Woude et al. catechol-O-methylated metabolites of quercetin form covalent adducts with glutathione. 

These covalent adducts are formed in the A ring (6-glutathionyl 3′-O-methylquercetin and  

8-glutathionyl 3′-O-methylquercetin) [36]. Thus, the formation of these adducts consumes GSH, but as 

they do not have the B ring catechol free, consequently the inhibition is lower than that of the 

simulation. A similar situation occurs with galangin, which has a benzene B ring (p < 0.05) (Figure 3E). 

With taxifolin and luteolin the absence of the C2=C3 double bond and the 3-OH group, 

respectively, hamper the quinone methide isomerization of their o-quinone and deprotonation states, 

and, thus, the GSH/GS− addition preferentially occurs in the B ring. The formation of  

2′,5′-diglutathionyl adducts for taxifolin and luteolin starts to occur when the concentration and 

reactivity of the 2′-monoglutathionyl adduct starts to compete as substrate with the parent flavonoid, a 

process depending on its concentration and ionization potential (Scheme 2) [37]. Comparing the 

isolated activity of quercetin with that of luteolin, no significant differences were observed for the 

three concentrations tested (3.125, 6.25 and 12.5 µM, p ≥ 0.05). On the other hand, comparing the 

variation between experimental and simulation results of the same concentrations of quercetin  

(Δ1 = 12.64 ± 0.85, Δ2 = 11.63 ± 1.25, Δ3 = 1.95 ± 0.09) and luteolin (Δ1 = 33.74 ± 2.55, Δ2 = 28.75 ± 2.08, 

Δ3 = 21.42 ± 1.58), significant differences were observed (p < 0.05) (Figures 3A and 4C). With these 

results it seems possible to expect the presence of this 2’-monoglutathionyl adduct and diglutathionyl 

adducts in the B ring to favour more the antioxidant activity than 6-glutathionyl and 8-glutathionyl 

adducts in the A ring. 

To observe the impact of the glycosylation, luteolin-7-O-glucoside was also studied. For three 

concentrations tested (3.125, 6.25 and 12.5 µM) no significant differences were found between the 



Molecules 2013, 18 8868 

 

 

aglycone, luteolin, and its glycoside (p ≥ 0.05). However, at concentrations of 3.125 and 6.25 µM, the 

mixtures with the aglycone form are more interesting in terms of antioxidant activity (p < 0.05):  

Δ1 = 33.74 ± 2.55, Δ2 = 28.75 ± 2.08, Δ3=21.41 ± 1.58 (Figure 4C) and Δ1 = 20.97 ± 0.13,  

Δ2 = 17.69 ± 1.03, Δ3 = 20.42 ± 1.74 (Figure 4D) for luteolin and its glucoside, respectively. 

With fisetin, the lack of the 5-OH group in relation to quercetin did not affect the antioxidant 

activity at concentrations tested (p ≥ 0.05). An interesting aspect is that these two compounds also 

exhibited the same behaviour when in mixture with GSH, as no significant differences of the variation 

between experimental and simulation results were observed (p ≥ 0.05): the Δ values found for fisetin 

were Δ1 = 12.26 ± 0.76, Δ2 = 9.63 ± 0.31, Δ3 = 2.07 ± 0.33 (Figure 3F). These results seem to suggest 

that fisetin and quercetin form the same adducts in C6 and C8 or originate different adducts with the 

same antioxidant activity. 

Taxifolin and (+)-catechin presented synergistic effect in mixtures with GSH (p < 0.05)  

(Figure 4A,B). Moridani et al. [38] verified the formation of mono- and biglutathionyl adducts in 2′ 

and 5′ in B ring of (+)-catechin, as it happened with taxifolin. The same variation observed between 

experimental and simulation results with these two compounds (Δ1 = 20.88 ± 1.25, Δ2 = 14.89 ± 0.41, 

Δ3 = 3.17 ± 0.45 for taxifolin (Figure 4A) and Δ1 = 21.68 ± 1.89, Δ2 = 14.74 ± 0.85, Δ3 = 4.22 ± 0.35 

for (+)-catechin (Figure 4B) perhaps may be explained by the formation of the same glutathionyl 

adducts, that consequently could have the same activity. 

Scheme 2. Representation of the mechanism for the formation of the mono- and 

diglutathionyl adducts of luteolin. 
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3. Experimental 

3.1. Reagents 

GSH, DPPH•, dimethyl sulfoxide (DMSO), and quercetin, were from Sigma–Aldrich (St. Louis, 

MO, USA). Quercetagetin, luteolin, luteolin-7-O-glucoside, isorhamnetin, galangin, fisetin, myricetin, 
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(+)-catechin, and taxifolin were from Extrasynthese (Genay, France). Methanol was from Atom 

Scientific (Manchester, UK). 

3.2. Compounds Solutions and Binary Mixtures 

Stock solutions (1.8 mg/mL) of the tested flavonoids (Table 1) were prepared in methanol, 

excepting for luteolin-7-O-glucoside and isorhamnetin that were dissolved in methanol with 10% 

DMSO (no solvent interference). Glutathione stock solution (4.20 mg/mL) was prepared in water. 

The binary mixtures were prepared with three different concentrations of GSH (50, 200 and  

800 μM), corresponding to low, intermediate and high percentage of radical scavenging, as obtained 

from a dose-response curve. The flavonoids concentrations used in the mixtures were determined from 

preliminary trials, which indicated the upper and lower limits that were necessary to visualize the 

effect without complete reduction of DPPH•. 

3.3. Antioxidant Activity 

3.3.1. DPPH• Scavenging Activity 

The disappearance of DPPH• was monitored spectrophotometrically at 515 nm on a Multiskan 

Ascent plate reader (Thermo, Electron Corporation, Shanghai, China), following a described  

procedure [39]. The reaction in the sample wells consisted of 25 μL of tested solution (flavonoid, GSH 

or binary mixture) and 200 μL of 150 μM DPPH• dissolved in methanol. To guarantee the 

completeness of reactions the absorbance was measured every 5 min (data not shown). A 30 min 

period starting with the addition of the radical revealed to be sufficient for complete reaction and the 

absorbance recorded after this time was used in all calculations. 

In order to compare the activity of isolated compounds, half-maximal inhibitory concentration 

(IC50) was calculated. Three individual experiments were performed, in which each concentration was 

tested in triplicate. 

3.3.2. Determination of Mixture Effect (Simulation) 

To evaluate the behaviour of the flavonoids when combined with GSH (synergistic or antagonistic 

effects), experimental results were compared with those of a simulation, following Webb [30]: 

[Simulation (%) = 1 − ((1 − Inhibition GSH) × (1 − Inhibition flavonoid)) × 100] 

The effect was considered to be additive when no significant differences were observed between 

experimental and simulation results. On the other hand, synergistic and antagonistic effects correspond 

to the existence of significant differences between experimental and simulation results: synergism was 

considered to occur when the experimental % inhibition was higher than that of the simulation, while 

an antagonist effect corresponded to lower experimental % inhibition compared to simulation results. 

3.4. Statistical Analysis 

Results are shown as mean (±SEM) of three determinations. Experimental and simulation results 

were submitted to paired t-test (GraphPad Prism 6 Software, Inc, San Diego, CA, USA) and 
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differences at p < 0.05 were considered statistically significant. The variation (Δ) between simulation 

and experimental results was also determined and submitted to paired t-test. 

4. Conclusions  

The results obtained in the present study revealed that flavonoid intake through supplementation 

and/or diet may not always be favourable due to their different interactions with the major endogenous 

antioxidant (GSH). Although all tested flavonoids have antioxidant activity when isolated, galangin 

and ishoramnetin antagonized the effect of GSH, decreasing the endogenous antioxidant capacity. The 

presence of a catechol group in the B ring was demonstrated to be essential for synergisms with GSH, 

except when an OH group at C6 is also present (like in quercetagetin). In addition, the adducts formed 

with GSH in the B ring are more active than those in the A ring. Hereupon, as oxidative processes are 

involved in many diseases, the observed interactions are also very important for human health. Despite 

the anti-radical capacity of the tested compounds and the effects observed in vitro in the presence of 

the most important endogenous antioxidant, the potential hazards/benefits observed in vivo will depend 

on their bioavailability and biotransformation.  
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