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Abstract: 1-Trimethylsilyl, 1-R (R = Me, Et, i-Bu)-2,3,4,5-tetraphenyl-1-silacyclopentadiene 

[Ph4C4Si(SiMe3)R] are synthesized from the reaction of 1-trimethylsilyl,1-lithio-2,3,4,5-

tetraphenyl-1-silacyclopentadienide anion [Ph4C4SiMe3]
−•[Li]+ (3) with methyl iodide, ethyl 

iodide, and i-butyl bromide. The versatile intermediate 3 is prepared by hemisilylation of the 

silole dianion [Ph4C4Si]−2•2[Li]+ (2) with trimethylsilyl chloride and characterized by 1H-, 
13C-, and 29Si-NMR spectroscopy. 1,1-bis(R)-2,3,4,5-tetraphenyl-1-silacyclopentadiene 

[Ph4C4SiR2] {R = n-Bu (7); t-Bu (8)} are synthesized from the reaction of 2 with n-butyl 

bromide and t-butyl bromide. Reduction of 7 and 8 with lithium under sonication  

gives the respective 3-silolenide 2,5-carbodianions {[Ph4C4Si(n-Bu)2]
−2•2[Li]+ (10) and 

[Ph4C4Si(t-Bu)2]
−2•2[Li]+ (11)}, which are characterized by 1H-, 13C-, and 29Si-NMR 

spectroscopy. Polarization of phenyl groups in 3 is compared with those of silole 

anion/dianion, germole anion/dianion, and 3-silolenide 2,5-carbodianions 10 and 11. 
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1. Introduction 

Cyclopentadienyl anion, the most representative aromatic compound, has for a long time played 

important roles in organic and organometallic chemistry [1–3]. Therefore it has been a challenge  
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to synthesize the analogue framework [4–7], in which one of carbon atoms is replaced by a  

heavier group 14 atom, and the ultimate question is to find out how its aromaticity changes  

and is maintained [8–15]. Since the first silacyclopentadienide dianion was reported [16], the 

aromaticity of sila- and germa-cyclopentadienide dianion has been suggested by NMR chemical shift 

changes upon reduction [17,18]. Their aromatic structures [19,20] and the related structures  

have been confirmed by X-ray crystallography [21–27]. Heavier metallic dianion equivalents, the 

stannacyclopentadienide dianion [28–30] and plumbacyclopentadienide dianion [31], are also reported 

to display aromaticity [32–37]. 

The principal heavier congener of the cyclopentadienide anion, 1-tert-butyl-2,3,4,5-tetraphenyl-1-

silacyclopentadienide anion, has been reported to have aromaticity according to NMR chemical shift 

changes upon reduction [38]. Meanwhile 1-methyl-2,3,4,5-tetraphenyl-1-silacyclopentadienide anion was 

synthesized and crystallized in THF as a [2+2] dimer of its Si = C bond in aromatic ring structures [39], the 

dimer of which is dissociated to the original silole anions when it is reacted with alkyl halides or 

trimethylchlorosilane in THF [40]. Even the analogue frameworks of trimetallic anion {[C2GeSi2]
−, 

[C2Si3]
−} and divalent germanium containing anion {[C3NGe:]−}, in which more than one carbon atom 

of the cyclopentadienyl anion are replaced by heavier group 14 atoms of Si and/or Ge, are synthesized 

and characterized to have aromaticity [41–43], making it possible to form heavy analogues of 

ferrocene with them [44,45]. 

In contrast spectroscopic and X-ray crystallographic data [22,23] for 1-trimethylsilyl-tetramethyl/ethyl-

1-silacyclopentadienide anions have revealed that they possess pyramidal silicon centers and bond 

localization in their butadiene moieties. Nevertheless the heavy analogues of ferrocene are synthesized 

with them [24,27,46,47]. Therefore it is interesting to study 1-trimethylsilyl-2,3,4,5-tetraphenyl-1-

silacyclopentadienide anion [Ph4C4Si(SiMe3)]
− to compare it with other metallole anions [48]. 

There are several routes for silole syntheses, via 1,4-dilithio-butadienides by using 

diphenylacetylene [16,17,49] and 1,4-dihalobutadienes [23,50,51], the intramolecular reductive cyclization 

of diethynylsilanes [52,53], metallacyclic transfer reactions [54], and organoboration [55–58]. However 

those synthetic methods are not applicable to synthesizing of various siloles derivatives at the Si atom, 

especially for preparing 1-trimethylsilyl group substituted siloles due to the feasibility of the 

nucleophilic attack on the Si-Si bond by carbanions [22,24,27,59,60] and silole anion [39]. Coversely 

all metallole dianions are potential and useful intermediates for the synthesis of various di-substituted 

metallole derivatives, polysiloles, and silole-containing polymers [61–66]. 

Herein we report that silole dianion is a versatile intermediate to synthesize [Ph4C4Si(SiMe3)(R)]  

(R = Me, Et, i-Bu) via [Ph4C4Si(SiMe3)]
−, which is prepared by hemisilylation of the silole dianion and 

characterized by 1H-, 13C-, and 29Si-NMR spectroscopy, and [Ph4C4SiR2] (R = i-Bu, t-Bu). 

2. Results and Discussion 

2.1. Preparation of 1-Trimethylsilyl,1-lithio-2,3,4,5-tetraphenyl-1-silacyclopentadienide Anion (3) and 

Its Reaction with Methyl Iodide, Ethyl Iodide and i-Butyl Bromide 

1-Trimethylsilyl-2,3,4,5-tetraphenyl-1-silacyclopentadienide anion [Ph4C4Si(SiMe3)]
−•[Li]+ (3) was 

prepared from the reaction of the silole dianion [Ph4C4Si]−2•2[Li]+ (2) with one equivalent of 
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trimethylsilyl chloride. The silole dianion 2 was generated by the sonication of 1,1-dichloro-2,3,4,5-

tetraphenyl-1-silacyclopentadiene [Ph4C4SiCl2] (1) with lithium in THF [17]. Compound 3 in THF was 

reacted with the alkyl halides of methyl iodide, ethyl iodide, and i-butyl bromide to provide 

[Ph4C4Si(SiMe3)(R)] [R = Me (4) , Et (5), i-Bu (6)], respectively (Scheme 1). 

Scheme 1. Synthesis and alkylation of 3 via silole dianion 2. 
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Silylation of 2 with trimethylsilyl chloride is a novel reaction to synthesize 1-trimethylsilyl substituted 

silole anion 3; the similar alkylation of stannole dianion with t-butyl chloride was reported to give 1-t-butyl 

substituted stannole anion, oxidation of which in the air provided 1,1-bis(1-t-butyl-stannole) [67,68]. 

Oxidation of stannole dianion were reported to give bistannole-1,2-dianion or terstannole-1,3-dianion 

[69,70]. But the silole anion 3 decomposes in the air to give the ring opening products of 1,2,3,4-

tetraphenylbutadiene and silicate. Preparation of 4 is interesting since addition of trimethylsilyl 

chloride to the silole anion [Ph4C4Si(Me)]−•[M]+ (M = Li, Na) in THF has given 1,1-bi(1-methyl-

silole) [Ph4C4Si(Me)]2, but addition of the silole dianion to trimethylsilyl chloride in THF has provided 

[Ph4C4Si(SiMe3)(Me)] (4) [40]. 

2.2. Synthesis of 1,1-Bis(n-butyl/t-butyl)-2,3,4,5-tetraphenyl-1-silacyclopentadiene and NMR-Study of  

3-Silolenide-2,5-carbodianions 

1,1-bis(n-Butyl/t-butyl)-2,3,4,5-tetraphenyl-1-silacyclopentadiene {[Ph4C4Si(n-Bu)2] (7) and [Ph4C4Si 

(t-Bu)2] (8)} are prepared in good yield from the reactions of silole dianion 2, which is generated by 

the sonication of 1 with lithium in THF, with n-bromobutane and t-butyl bromide. In the case of  

t-butyl bromide, [Ph4C4Si(t-Bu)2] (8) is produced along with 1,1-bi[(t-Bu)SiC4Ph4] (9) in the ratio of 3 

to 1 (Scheme 2). Until now there is one report of the synthesis of 1,1-bis(t-butyl)-substituted silole, 

which has been prepared photochemically in low yield [71]. 

1,1-bis(n-Butyl/t-butyl)-2,3,4,5-tetraphenyl-1-silacyclopentadiene {[Ph4C4Si(n-Bu)2] (7) and 

[Ph4C4Si(t-Bu)2] (8)} are sonicated in THF-d8 with lithium in the 5 mm NMR tube for 2 h. During this 

time the color of the mixture becomes red and/or purple. The NMR study of the reduced species in 

THF-d8 shows clearly that the only one species is formed and is assigned to the respective reduced  

3-silolenes with 2,5-carbodianions {[Ph4C4Si(n-Bu)2]
−2•2[Li]+ (10) and [Ph4C4Si(t-Bu)2]

−2•2[Li]+ (11)}. 

Each of their 13C-NMR spectra presents ten peaks, consistent with C2 symmetry, and the 29Si spectrum 

of each compound shows only one resonance. The respective 1H-NMR spectrum of 10 and 11 shows 

two kinds of protons, 20 phenyl protons and 18 butyl protons. Even if they are sonicated further, they 

show the same peaks with no change. 
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Scheme 2. Synthesis of 7 and 8 and their reduction to 10 and 11. 
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Both chemical shifts of the two tert-C− groups (73.18 ppm for (10), 78.12 ppm for (11)) are 

consistent with those of the reported 3-silolenides with 2,5-carbodianions, [Ph4C4Si(R1)(R2)]
−2  

(77.4 ppm for R1 = R2 = Me [72], 76.42 ppm for R1 = Me, R2 = H [73]), and 1,1-R1,R2-2-lithio-2,3,4,5-

tetraphenyl-1-silacyclopenta-3-enide anion (77.78 ppm for R1 = R2 = H [74]). The 13C-NMR chemical 

shifts of two Ciα, Ciβ and two Cpα, Cpβ show at 151.51, 147.68 ppm and 108.49, 120.80 ppm for 10 and 

at 152.59, 147.36 ppm and 110.87, 120.25 ppm for 11 (Table 1). The localized carbanions polarize the 

phenyl groups more than those of the aromatic silole/germole dianions and silole anions. The extent of 

polarization [Sum(Ci-Cp)/2] in those species shows in narrow range: 3-silolenides 2,5-carbodianions 

(34.42 to 35.00 ppm), silole/germole dianions [Ph4C4E]−2 [E = Si (2), Ge] (28.60 to 28.64 ppm), and 

silole anion [Ph4C4Si(t-Bu)]− (24.65 ppm). In case of the phenyl group on germanium atom in the localized 

germole anion [Me4C4GePh]−•[Li]+ [75], the extent of polarization {[Sum(Ci-Cp)/2] = 35.3 ppm} is very 

close to those of the localized 3-silolenide 2,5-carbodianions (Tables 1 and 2). 

Upon lithiation of 8 to 11 the 29Si-NMR chemical shift of 11 is not changed much (16.49 ppm (8) to 

13.69 ppm (11) since there is no change of its hybridization with the same substituents on the silicon 

atom (Table 1). 

2.3. NMR Study of 1-Trimethylsilyl,1-lithio-2,3,4,5-tetraphenyl-1-silacyclopentadienide Anion (3) 

[Ph4C4SiCl2] (1) is sonicated in THF-d8 with lithium in a 5 mm NMR tube for 2 h, whereby the 

color of the mixture becomes red and/or purple. NMR study of the species in THF-d8 clearly indicates 

that only one species of silole dianion [Ph4C4Si]−2•2[Li]+ (2) is generated. Upon adding one equivalent 

of trimethylsilyl chloride to 2 the 29Si-NMR chemical shift changes from 68.54 ppm (for 2) to  

−13.22 ppm with another new resonance peak of the trimethylsilyl group at −15.54 ppm 

{[Ph4C4Si(SiMe3)]
−•[Li]+ (3)}. The 13C-NMR spectrum of 3 shows ten peaks in the aromatic region, 

consistent with C2 symmetry, and one peak for the trimethylsilyl group (Table 1). In its 1H-NMR 
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spectrum of it there are two kinds of protons, 20 protons corresponding to four phenyl groups and 9 

protons of one trimethylsilyl group. 

Table 1. 13C/29Si-NMR chemical shifts of the localized 3-silolenides and germole anions. 

3-Silenes 2,5-

carbanion 

[Ph4C4SiMe2]
−2• 

2[Li]+ 

[Ph4C4SiMeH]−2•

2[Li]+ 

[Ph4C4Si(n-Bu)2]
−2•2[Li]+ 

(10) 

[Ph4C4Si(t-Bu)2]
−2  

•2[Li]+ (11) 

[Me4C4GePh]−•

[Li]+ 

Cα 77.4 76.42 73.18 78.12 138.7 

Cβ 128.5 128.82 128.06 130.34 151.5 

Sum (Cα + Cβ) 205.9 205.24 201.24 208.46 290.2 

Sum (Cβ − Cα) 51.1 52.40 73.18 78.12 12.8 

 Ph Ph Ph Ph Ph 

Ci 150.6, 147.3 150.33, 147.82 151.51, 147.68 152.59, 147.36 159.6 

Co 123.3, 125.8 132.47, 126.62 132.88, 126.61 132.75, 127.75 136.4 

Cm 126.5, 132.4 123.05, 125.98 123.58, 126.61 125.77, 125.93 127.3 

Cp 107.8, 120.5 107.65, 120.53 108.49, 120.80 110.87, 120.25 124.3 

Sum (Ci − Cp)/2 69.6/2 = 34.8 69.97/2=35.00 69.90/2 = 34.95 68.83/2 = 34.42 35.3a 
29Si-Ring − -34.14 -0.27 13.69 − 

CH3, tert-C − 2.58 14.70, 18.88, 27.34, 29.08 31.5, 33.3 (brd d) − 

Reference 72 b 73 b This Work b This Work b 75 b 
b In THF-d8, reference = 25.30 ppm. 

Table 2. 13C/29Si-NMR chemical shifts of silole/germole dianions and silole anions. 

 [Ph4C4Si]−2•2[Li]+ (2) [Ph4C4Ge]−2•2[Li]+ [Ph4C4Si(t-Bu)]−•[Li]+ [Ph4C4SiSiMe3]
−•[Li]+ (3) 

Ring carbons 151.22, 129.71 a 165.57, 129.92 a 155.76, 139.51 159.67, 139.30 

 Ph Ph  Ph Ph 

Ci 151.67, 145.83 152.17, 146.30 149.29, 144.72 148.81, 145.72 

Co 129.97, 133.43 129.92, 133.49 130.50, 132.56 129.81, 132.85 

Cm 126.38, 126.38 126.38, 126.38 126.40, 126.51 126.30, 126.46 

Cp 119.48, 121.83 119.29, 121.91 121.38, 123.34 120.86, 122.86  

Sum(Ci − Cp)/2 56.19/2 = 28.10 57.27/2 = 28.64 49.29/2 = 24.65 40.81/2 = 20.41 

CH3, tert-C − − 32.78(CH3), 23.58(tert-C) -0.23 [Si(CH3)3] 
29Si-Ring 68.54 − 25.10 −13.22 

Refenence 17 b 18 b 38 b This Work b 
a The reported assignments were revised [76], the chemical shifts did not coincided with each other [77]. b In THF-d8, 

reference = 25.30 ppm. 

Upon adding trimethylsilyl chloride to 2 the chemical shifts of Cα and Cβ in 2 are shifted far 

downfield from 151.22 ppm and 129.71 ppm to 159.67 ppm and 139.30 ppm in 3. The chemical shifts 

of Ciα and Ciβ in 3 are observed at 145.72 ppm and 148.81 ppm, while the chemical shifts of Cpα and 

Cpβ in 3 are observed at 122.86 ppm and 120.86 ppm respectively. These carbon peaks of four phenyl 

groups indicate that the phenyl groups of 3 are still polarized, and the average chemical shift difference 

of Ci and Cp is 20.41 ppm [Sum(Ci − Cp)/2] (Table 2). Such polarizations of phenyl groups are 

generally observed due to the absence of the significant π-conjugation between their phenyl groups and  

5-membered ring because of their bulkiness and the congestion of four phenyl groups. The  

average chemical shift difference of 20.41 ppm for 3 is smaller than those of the silole dianion 

[Ph4C4Si]−2•2[Li]+ (2) (28.10 ppm) [17], [Ph4C4Si]−2•2[Na]+ (29.17 ppm) [16], the germole dianion 
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[Ph4C4Ge]−2•2[Li]+ (28.64 ppm) [18], and even the silole anion [Ph4C4Si(t-Bu)]−•[Li]+ (24.65 ppm) [38]. 

The difference is also significantly smaller than those of the localized 3-silolenes (the reduced siloles to 

2,5-carbodianions); [Ph4C4SiMe2]
−2•2[Li]+ (34.8 ppm) [72], [Ph4C4SiHMe]−2•2[Li]+ (35.00 ppm) [75], 

[Ph4C4Si(n-Bu)2]
−2•2[Li]+ (34.95 ppm) (10), [Ph4C4Si(t-Bu)2]

−2•2[Li]+ (34.42 ppm) (11), and that of the 

phenyl group in the localized germole anion [Me4C4GePh]−•[Li]+ (35.3 ppm) [75] (Table 1). This trend 

implies that the electron density in the silole ring carbons of 3 is significantly lower than those in the 

rings of the localized 3-silolenes, the high aromatic silole/germole dianions {[Ph4C4Si]−2, [Ph4C4Ge]−2} and 

the silole anion [Ph4C4Si(t-Bu)]− due to its low aromaticity and/or sp3 hydridization character on Si 

atom in 3. 

X-ray crystallographic data for 1-trimethylsilyl-2,3,4,5-tetramethyl/ethyl-1-silacyclopentadienide 

anion) [R4C4Si(SiMe3)]
− (R = Me, Et) have revealed that the anionic rings possess a pyramidal silicon 

center and bond localization in the butadiene moiety of the ring, the 29Si-NMR chemical shifts of these 

pyramidal ring Si atoms in those anions are observed from −41 ppm to −54 ppm [23]. However in the 

case of 3 the 29Si-NMR chemical shift is observed at −13.22 ppm, far downfield from those of the 

pyramidal Si atoms in the localized silole anions and far upfield from those of silole dianions and silole 

anion (Table 3). 

Table 3. 29Si-NMR chemical shifts of silole anions and dianion. 

Silole Anion [Me4C4SiSiMe3]−•[M]+ 
[Et4C4SiSiMe3]−• 

[M]+ 

[Et4C4Si]−2• 
2[M]+ 

[Ph4C4SiSiMe3]−•[M]+ 
(3) 

M Li K Li K Li Li 
29Si-Ring −45.38 −43.96 −42.70 −41.52 −53.12 c −47.38 24.96 −13.22 

29Si-Ring 
with crown 

ether 
− 12-CE-4 − 

18-CE-
6 

12-CE-4 − − − 

29Si-SiMe3 −12.47 −11.68 −12.44 −11.00  −14.27 −14.22 − −15.54 

Reference 22 a 22 b  22 a 22 b 22 c 22 c 51 c This work c 
a In CH2Cl2-d2. 

b In Benzene-d6. 
c In THF-d8. 

The 13C-NMR and 29Si-NMR chemical shifts of 3 do not support its aromaticity, the introduction of 

trimethylsilyl group on the silicon atom might decrease aromaticity of silole anion with the substituent 

effect of the trimethylsilyl group enhancing the s-character of the lone pair on the silicon atom and 

decreasing the s-character of the Si-Si bond in 3 [23,48]. 

3. Experimental 

General Procedures 

All reactions were performed under an inert nitrogen atmosphere using standard Schlenk 

techniques. Air sensitive reagents were transferred in a nitrogen-filled glove box. THF and ether were 

distilled from sodium benzophenone ketyl under nitrogen. Hexane and pentane were stirred over 

concentrated H2SO4 and distilled from CaH2. NMR spectra were recorded on JEOL GSX270 and 

GSX400 spectrometers. GC-MS and solid sample MS data were obtained on a Hewlett-Packard 5988A 
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GC-MS system equipped with a methyl silicon capillary column. Elemental analyses were done by 

Desert Analytics (Tucson, AZ, USA). 

[Ph4C4Si(SiMe3)(R)] (R = Me (4), Et (5), i-Bu (6)). [Ph4C4SiCl2] (1) (0.57 g, 1.25 mmol) was 

sonicated in THF with an excess of lithium for 5 h. Then the remaining lithium was removed by 

filtration to give a red-purple solution. The solution was added to methyl iodide in THF with stirring at 

room temperature for 4 h to give a yellow solution. After removing the solvent under vacuum the 

remaining yellow solid was extracted with hexane. The concentrated solution was kept in a refrigerator 

for a couple of days to provide yellow crystals. 

[Ph4C4Si(SiMe3)(Me)] (4). Yield: 0.38 g (65%); mp. 130–132 °C (lit. [40], mp. 130–132 °C). 

[Ph4C4Si(SiMe3)(Et)] (5). Yield: 0.54 g (59%); mp. 100–102 °C, 1H-NMR (CDCl3, ref; ext.  

TMS = 0.00 ppm), 0.05 (s, SiMe3, 9H), 1.0–1.2 (brd m, ethyl, 5H), 6.68–7.15 (m, 20H); 13C-NMR 

(CDCl3, ref; solvent = 77.00 ppm), −1.40 (SiMe3), 3.06 (CH2), 8.64 (CH3); 
29Si-NMR (CDCl3, ref; ext. 

TMS = 0.00), −2.53 (ring Si), −16.15 (SiMe3); Anal. Calcd. for C33H34Si2: C, 81.42; H, 7.04, Found:  

C, 81.59; H, 7.19. 

[Ph4C4Si(SiMe3)(i-Bu)] (6). Yield: 0.44 g (68%); mp. 154–156 °C, 1H-NMR (CDCl3, ref; ext.  

TMS = 0.00 ppm), 0.03 (s, SiMe3, 9H), 0.92 (d, CMe2, 6H), 1.16 (d, CH2, 2H), 1.85 (m, CH, 1H), 

6.68–7.15 (m, 20H); 29Si-NMR (CDCl3, ref; ext. TMS = 0.00), −6.49 (ring Si), −15.88 (SiMe3); Anal. 

Calcd. for C35H38Si2: C, 81.65; H, 7.44, Found: C, 81.76; H, 7.31. 

[Ph4C4Si(n-Bu)2] (7). [Ph4C4SiCl2] (1) (0.57 g, 1.25 mmol) was sonicated with an excess of lithium for 

5 h. Then the remaining lithium was removed by filtration to give a red-purple solution of the silole 

dianion. The solution was added to a THF solution of 1-bromobutane with stirring at room temperature 

for 10 h to give a yellow solution. After removing the solvent under vacuum the remaining yellow 

solid was extracted with hexane. The concentrated solution was kept in a refrigerator for a couple of 

days to provide yellow crystals. Yield: 0.56 g (90%); mp. 85 °C (lit. [78] mp. 81 °C). 

[Ph4C4Si(t-Bu)2] (8). [Ph4C4SiCl2] (1) (0.55 g, 1.21 mmol) was sonicated with an excess of lithium in 

THF for 5 h. Then the remaining lithium was removed by filtration to give a red-purple solution of 2. 

The solution was added to a THF solution of t-butyl bromide with stirring at room temperature for 24 h 

to give a yellow solution. After removing the solvent under vacuum the remaining yellow solid was 

extracted with ether. The concentrated solution was kept in a refrigerator for a couple of days to provide 

pale yellow crystals of bissilole 1,1-bi[(t-Bu)SiC4Ph4] [14]. The filtered solution was concentrated under 

vacuum, then it was kept in a refrigerator for a couple of days to give yellow crystals of [Ph4C4Si(t-Bu)2] 

(8). Yield: 0.33 g (54%); mp. 169-171 °C, 1H-NMR (CDCl3, ref; ext. TMS = 0.00 ppm), 1.16 (s, Me, 

18H), 6.68–7.15 (m, 20H), 29Si-NMR (CDCI3, ref; ext. TMS=0.00), 16.49 (ring Si); Anal. Calcd. for 

C36H38Si1: C,86.69; H,7,68, Found: C, 86.71; H, 7,75. 

1,1-Bi[(t-Bu)SiC4Ph4] (9). Yield: 0.19 g (18%); mp. 295–307 °C (lit. [16] mp. 296-307 °C), 29Si-NMR 

(THF-d8, ref; ext. TMS = 0.00), 3.62 (ring Si). 
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1,1-Bis(R)-2,5-dilithio-2,3,4,5-tetraphenyl-1-silacyclopenta-3-enide anion [R = n-Bu (10), R = t-Bu (11)]. 

The respective [Ph4C4Si(n-Bu)2] (7) (0.025 g, 0.05 mmol) and [Ph4C4Si(t-Bu)2] (8) (0.025 g,  

0.05 mmol) was transferred into 5 mm NMR tube, they were sonicated with an excess of lithium  

in THF-d8 for 2 h to give a red-purple solution. Then 1H-, 13C-, and 29Si-NMR spectroscopic study  

was performed. 

[Ph4C4Si(n-Bu)2]
-2•2[Li]+ (10); 1H-NMR (THF-d8, ref; ext. TMS = 0.00 ppm), 0.83 (t, CH3, 6H),  

0.90 (m, CH2, 4H), 1.36 (sept, CH2, 4H), 1.52 (m, CH2, 4H), 6.68–7.15 (m, 20H), 29Si-NMR (THF-d8, 

ref; ext. TMS = 0.00), −0.27 (ring Si). [Ph4C4Si(t-Bu)2]
-2•2[Li]+ (11); 1H-NMR (THF-d8, ref; ext.  

TMS = 0.00 ppm), 1.21 (brd s, Me, 18H), 6.68-7.15 (m, 20H), 29Si-NMR (THF-d8, ref; ext.  

TMS = 0.00), 13.69 (ring Si). 

4. Conclusions 

Silole dianion [Ph4C4Si]−2 (2) is a versatile intermediate to prepare symmetrically substituted siloles 

of [Ph4C4SiR2] (R = n-Bu, t-Bu) and unsymmetrically substituted siloles of [Ph4C4Si(SiMe3)(R)]  

(R = Me, Et, i-Bu). The formers are synthesized from the reaction of silole dianion 2 with the 

corresponding alkyl bromides, while the latter are synthesized via [Ph4C4Si(SiMe3)]
−•[Li] + (3) by  

hemsilylation of 2 with trimethylsilyl chloride and then by alkylation of 3 with the corresponding alkyl 

halides. The silole anion 3 and the reduced 3-silolenide 2,5-carbodianions {[Ph4C4Si(n-Bu)2]
−2•2[Li]+ 

(10) and [Ph4C4Si(t-Bu)2]
−2•2[Li]+ (11)} are characterized by 1H-, 13C-, and 29Si-NMR spectroscopy. 
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