Supplementary Materials

Figure S1. HRESIMS spectrum of compound 1.

Figure S2. IR spectrum of compound 1.

Figure S3. UV spectrum of compound 1.

Figure S4. CD spectrum of compound 1.

Figure $\mathbf{S 5} .{ }^{1} \mathrm{H}$-NMR spectrum of compound 1 .

Figure S6. ${ }^{13} \mathrm{C}$-NMR spectra of compound $\mathbf{1}$.

Figure S7. DEPT spectra of compound 1.

Figure S8. HSQC spectrum of compound $\mathbf{1 .}$

Figure S9. COSY spectrum of compound 1.

Figure S10. HMBC spectrum of compound 1.

Figure S11. GS analysis of the sugar of compound $\mathbf{1}$ (A: L-glucose, $\mathrm{t}_{\mathrm{R}}=3.632 \mathrm{~min}$; B: $\mathrm{D}-$ Glucose, $\mathrm{t}_{\mathrm{R}}=3.090 \mathrm{~min} ; \mathbf{C}$: sugar of compound $\left.\mathbf{1}, \mathrm{t}_{\mathrm{R}}=3.090 \mathrm{~min}\right)$.

Figure S12. HRESIMS spectrum of compound 2.

Figure S13. IR spectrum of compound 2.

Figure S14. UV spectrum of compound 2.

Figure S15. ${ }^{1} \mathrm{H}$-NMR spectrum of compound 2.

Figure S16. ${ }^{13} \mathrm{C}$-NMR spectra of compound 2.

$\stackrel{1}{\circ} \mathrm{C}$
$\stackrel{\rightharpoonup}{2}$
$\stackrel{1}{1}$

Figure S17. DEPT spectra of compound 2.

\circ
$\stackrel{0}{2}$
$\stackrel{+}{1}$
$\stackrel{1}{1}$

$\begin{array}{ll}\text { च } & \text { ふे } \\ \stackrel{\rightharpoonup}{1} & \stackrel{\rightharpoonup}{1}\end{array}$

Figure S18. HSQC spectrum of compound 2.

Figure S19. COSY spectrum of compound 2.

Figure S20. HMBC spectrum of compound 2.

Figure S21. NOSEY spectrum of compound 2.

Figure S22. GS analysis of the sugar of compound 2 (A: l-rhamnose, $\mathrm{t}_{\mathrm{R}}=2.607 \mathrm{~min}$; B: sugar of compound $\mathbf{2}, \mathrm{t}_{\mathrm{R}}=2.573 \mathrm{~min} ; \mathbf{C}$: A mixture 1:1 of L -rhamnose and sugar of compound $2, \mathrm{t}_{\mathrm{R}}=2.573 \mathrm{~min}$).

Figure S23. Pictures of the colony and the culture of T. marneffei.

Figure S24. Phylogenetic analysis of ITS1-4 gene sequence.
GATGATGTATACTCCAACCCATGTGACATACCTCATGTTGCCTCGGCAGGTCGTGCCTCCCT CGTAGGTCCTACCCTGTAGGCTCCTACCCGGAAGGCGCGGGTACCCCTGCCGGTGGCCCAG GAAACTCTGTCTCATCGTTGAATTCTGAACCTATAACTAAATAAGTTAAAACTTTCAACAAC GGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTG CAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCATTAGTATTCTAGTGGGC ATGCCTGTTCGAGCGTCATTTCAACCCTTAAGCCCTTGTTGCTTAGCGTTGGGAGCCTACGG CACCGTAGCTCCCCAAAGTCAGTGGCGGAGCCGGCTCACACTCTAGACGTAGTAATTTCTC ACCTCGCCTATAGTTGGACCGGTCCCCTGCCGTAAAACGCCCCAGTATTTAAAAGGTTGAC CTCGAATCAGGTAGGAATACCCGCTGAACTTAAGCATATCAATAAGCGGAGGA

