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Abstract: A series of 4-methoxybenzoylhydrazones 1–30 was synthesized and the 

structures of the synthetic derivatives elucidated by spectroscopic methods. The compounds 

showed a varying degree of antiglycation activity, with IC50 values ranging between 216.52 

and 748.71 µM, when compared to a rutin standard (IC50 = 294.46 ± 1.50 µM). Compounds 1 

(IC50 = 216.52 ± 4.2 µM), 3 (IC50 = 289.58 ± 2.64 µM), 6 (IC50 = 227.75 ± 0.53 µM), 7 

(IC50 = 242.53 ± 6.1) and 11 (IC50 = 287.79 ± 1.59) all showed more activity that the 

standard, and these compounds have the potential to serve as possible leads for drugs to 

inhibit protein glycation in diabetic patients. A preliminary SAR study was performed. 

Keywords: 4-methoxybenzoylhydrazones; antiglycation activity; rutin; AGEs;  

protein glycation inhibition; diabetes 

 

1. Introduction 

Benzoylhydrazones have many applications in medicinal and analytical chemistry [1–3]. 

Benzoylhydrazones of different heterocyclic compounds were reported to possess antiproliferative [4], 
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anticonvulsant [5], antioxidant [6], cytotoxicity and anti-HIV activities [7,8]. Numerous benzoylhydrazones 

have shown interesting bioactivities, such as antibacterial, antifungal, antiinflammatory, antimalarial, 

analgesic, antiplatelet, anticancer, antituberculosis [9–17], insecticidal, antiplasmodium, and 

antimycobacterial effects, as adriamycin immunoconjugates, proteinase inhibitors and activity against the 

parasite Trypanosoma brucei [18–22]. Their hydrazide derivatives have shown β-glucuronidase 

inhibition activity [23]. In addition, substituted acylhydrazide Schiff bases are reported to have a wide 

range of bioactivities, including anticancer [24], antitubercular, and anti-inflammatory activities [25]. 

Hydrazine derivatives also have several commercial applications [26]. 

Glycation is a non-enzymatic chemical process in which biomolecules (such as proteins, human 

DNA, and lipids) are damaged by the attachment of reducing sugars (e.g., glucose), finally leading to 

the formation of highly reactive so-called advanced glycation end products (AGEs). This process has 

been associated with deleterious health effects. Protein glycation has been implicated in the 

development of pathologies associated with diabetes and ageing etc. [27]. Therefore, the discovery of 

anti-glycation agents is among the most promising approaches for the management of late diabetic 

complications. At present only a few glycation inhibitors are known and the requirement of novel 

glycation inhibitors is still unmet [28]. With the epidemic-like spread of type-2 diabetes, the onsets of 

late diabetic complications, such as cardiopathy, retinopathy, neuropathy, nephropathy, are on rise. 

This is largely due to the formation of advanced glycation end products (AGEs) [29,30]. Major efforts 

have recently been focused on the discovery of new, safe and effective glycation inhibitors [31].  

Few molecules are reported to cleave cross-links formed by AGEs, and possibly provide the exciting 

opportunity of reversing the process of late diabetic complications [32]. It has been discovered that 

aged garlic extract possess excellent antiglycation potential in vitro [33,34]. Aminoguanidine was 

found to inhibit AGE formation and prevent retinopathy and diabetic vascular complications in diabetic 

animals, but it showed toxicity problems in phase III clinical trials [35]. Some other molecules  

(e.g., spermine, spermidine and polyamines) were also reported to have potent anti-glycation potential, 

similar to those of aminoguanidine and carnosine, but these compounds have to be addressed in future 

in vivo studies [36]. In the search of new, effective and safe antiglycation agents, we have reported several 

classes of compounds from natural flora, such as cyclopeptide alkaloids from Ziziphus oxyphylla Edgw, 

polyphenolic compounds from Parmotrema cooperi, kaempferol-7-β-D-glucopyranoside from  

Carum petroselinum, flavanones and flavones from Iris tenuifolia and Otostegia persica (Burm.) Boiss, 

respectively [37–40]. Along with natural compounds we have also reported different classes of 

synthetic compounds having antiglycation properties in the recent past, such as acylhydrazide [41], 

benzophenonehydrazone [42], 2,4,6-trichlorophenylhydrazones [43], oxindole derivatives [44], bis-Schiff 

bases of isatin [45] and metronidazole esters [46]. The work reported here is in continuation of this 

same systematic study. 

2. Results and Discussion 

2.1. Chemistry 

4-Methoxybenzoylhydrazones 1–30 were synthesized from 4-methoxybenzoylhydrazide, which 

were obtained from methyl 4-methoxybenzoate by refluxing with hydrazine hydrate for 2 h.  
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The 4-methoxybenzoylhydrazide obtained was recrystallized from methanol. 4-Methoxy- benzoylhydrazones 

1–30 were prepared by refluxing 4-methoxybenzoylhydrazide with different aldehydes in methanol for 

3 to 4 h (Scheme 1). The crude products were further recrystallized from methanol and mostly needle-

like crystals were obtained in 78%–92% yield. The structures of the 4-methoxybenzoylhydrazones 

were deduced using various spectroscopic techniques and CHN analyses. The configuration of C=N 

double bond is E, which can be seen by various crystal structures of similar structures we have 

published [47–56]. 

Scheme 1. Synthesis of 4-Methoxybenzoylhydrazones 1–30. 
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Scheme 1. Cont. 
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2.2. Antiglycation Activity 

Structure Activity Relationship 
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14 (IC50 = 649.18 ± 18.5 µM), 10 (IC50 = 657.75 ± 14.0 µM), 18 (IC50 = 718.96 ± 10.7 µM) and  

15 (IC50 = 748.71 ± 7.8 µM) were only weakly active (Table 1). 

Table 1. In vitro protein glycation inhibitory activity of compounds 1–30. 

Compounds IC50 (µM ± SEM a) Compounds IC50 (µM ± SEM a) 

1 216.52 ± 4.2 16 NA b 
2 394.76 ± 3.35 17 474.97 ± 19.14 
3 289.58 ± 2.64 18 718.96 ± 10.7 
4 307.1 ± 6.08 19 NA b 
5 420.40 ± 3.3 20 NA b 
6 227.75 ± 0.53 21 NA b 
7 242.53 ± 6.1 22 NA b 
8 347.62 ± 5.8 23 NA b 
9 NA b 24 NA b 
10 657.75 ± 14.0 25 NA b 
11 287.79 ± 1.59 26 NA b 
12 399.90 ± 7.9 27 NA b 
13 NA b 28 NA b 
14 649.18 ± 18.5 29 NA b 
15 748.71 ± 7.8 30 NA b 

Standard Rutin c 294.5 ± 1.50 
a SEM is the standard error of the mean. b NA Not active. c Rutin: standard inhibitor for antiglycation activity. 

The preliminary structure activity relationship data suggests that the activity mainly depends on the 

number, as well as the position of hydroxyl substituent’s on the phenyl moiety. Compounds 1 and 2 are 

both trihydroxy substituted, but compound 1 showed better activity (IC50 = 216.52 ± 4.2 µM) than the 

standard rutin. The activity of these compounds might be due to their capacity to inhibit glycoxidation. 

Compound 2 showed very low activity (IC50 = 394.76 ± 3.35 µM), as compared to compound 1.  

This may be due to the intra-molecular hydrogen bonding in compound 2, which reduce its chances to 

inhibit glycoxidation as compared to compound 1 (Figure 1). 

Figure 1. Comparison of the anti-glycation activity of compounds 1 and 2. 

 
The five compounds having dihydroxy substituents (i.e., 6, 7, 3, 4 and 5) showed excellent to moderate 

activity, depending upon the position of the hydroxyl groups. Compounds 6 (IC50 = 227.75 ± 0.53 µM),  

7 (IC50 = 242.53 ± 6.1 µM) and 3 (IC50 = 289.58 ± 2.64 µM) showed more potent activity than the 

standard (rutin), whereas compounds 4 (IC50 = 307.1 ± 6.08 µM) showed activity comparable to the 

standard. Compound 5 showed moderate activity (Table 1). As discussed earlier, the antiglycation 

activity mainly depends on the position and potential of hydroxy groups to inhibit glycoxidation.  
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In compounds 6, the 2,4-dihydroxy groups, being far apart from each other, have no hydrogen bonding 

with each other. para-Hydroxy groups easily inhibit glycoxidation and hence a potent anti-glycation 

activity was observed. In compound 7, both hydroxys are at the meta position and it showed potent  

anti-glycation activity, with an IC50 value of 242.53 ± 6.1 µM. In compounds 3 and 4, the meta-hydroxy 

moieties are still free to inhibit glycoxidation, but the activity was decreased with IC50 values of  

289.58 ± 2.64 and 307.1 ± 6.08 µM, respectively. In compound 5, the ortho-hydroxyl groups are 

involved in intramolecular hydrogen bonding therefore a weak activity was observed as compared to 

its analogs, i.e., compounds 6, 7, 3 and 4 (Table 1). 

The monohydroxyl-substituted analogues showed varied activities, mainly depending on the 

position of the hydroxyl group. Compound 8 (IC50 = 347.62 ± 5.8 µM) is the most active analogue 

among the monohydroxy derivatives, with a hydroxyl group at the para position. When the hydroxy group 

is at the meta position, the activity is reduced by half as compared to compound 8, (compound 10;  

IC50 = 657.75 ± 14.0 µM). Interestingly when the hydroxy is at the ortho position, as in compound 9, 

the activity was completely lost. 

Compounds 11–13 having one hydroxy and one methoxy group showed varied activity, depending 

upon the position of the hydroxyl substituent. Compound 11 (IC50 = 287.79 ± 1.59 µM) having a  

para-hydroxy, showed better activity than the standard, whereas its analogue 12 (IC50 = 399.90 ± 7.9 µM) 

with a meta hydroxy showed a moderate activity against protein glycation. Compound 13 with an 

ortho hydroxy was found to be inactive. 

Compounds 14–16 possess diverse pyridine rings. The most active among the pyridine derivatives 

was compound 14 (IC50 = 649.18 ± 18.5 µM), with the nitrogen at position-3, near to the hydrazine 

bridge. The activity decreases sharply when the nitrogen shifts to position-4, as in case of compound 

15 (748.71 ± 7.8 µM). Compound 16 with the nitrogen at position-2was found to be completely 

inactive (Table 1). 

Compounds 17 and 18 showed a weak activity. Compound 17 possess a furfuryl ring and its low 

activity may be due to the weak interaction of the ring oxygen to inhibit glycoxidation. Furthermore, 

compound 18 possess an ester moiety, which again interacts weakly with the amino group of the 

proteins and hence showed a weak activity. Additionally compounds 9, 13 and 18–30 were also found 

to be inactive. 

In conclusion, compounds having hydroxy groups at suitable positions, especially at the para position, 

can inhibit glycoxidation, and thus exhibit a potent antiglycation activity. However, structural 

modifications can be optimized to achieve the desired activity in this class of compounds. 

3. Experimental 

3.1. General Information 

NMR experiments were performed on a Bruker Ultra Shield FT NMR 500 MHz (Wissembourg, 

Switzerland). CHN analysis was performed on a Carlo Erba Strumentazione-Mod-1106 (Milan, Italy). 

Electron impact mass spectra (EI-MS) were recorded on a Finnigan MAT-311A instrument (Bremen, 

Germany). Thin layer chromatography (TLC) was performed on pre-coated silica gel aluminum plates 



Molecules 2014, 19  

 

 

1292

(Kieselgel 60, 254, E. Merck, Darmstadt, Germany). Chromatograms were visualized by UV at 254  

and 365 nm. 

3.2. Experimental Protocol 

3.2.1. Synthesis of 4-Methoxybenzohydrazide 

Methyl 4-methoxybenzoate (10g) was refluxed with the mixture of hydrazine hydrate (10 mL) and 

methanol (25 mL) for 6 h. The excess hydrazine and methanol were evaporated to give the crude 

product which was recrystallized from methanol to yield 92% pure 4-methoxybenzohydrazide. 

3.2.2. General Procedure for the Synthesis of 4-Methoxybenzohydrazone Derivatives 

The 4-methoxybenzohydrazide derivatives were synthesized by refluxing in methanol a mixture of 

2 mmol each of 4-methoxybenzohydrazide with different aldehydes and a catalytic amount of acetic 

acid for 3 h. After the completion of the reaction, the solvent was evaporated under vacuum to afford 

the crude products which were further recrystallized from methanol to afford needle-like pure products 

in most of the cases in good to excellent yields. 

N'-(2,4,6-Trihydroxybenzylidiene)-4-methoxybenzohydrazide (1). Solid, M.p.: >250 °C; 1H-NMR 

(DMSO-d6):  11.77 (s, 1H, NH), 11.12 (s, 2H, OH), 9.81 (s, 1H, OH), 8.80 (s, 1H, N=CH-Ar),  

7.93 (d, 2H, J2,6/3,5 = 9.0 Hz, H-2, H-6), 7.07 (d, 2H, J3,5/2,6 = 9.0 Hz, H-3, H-5), 5.85 (s, 2H, H-3, H-5), 

3.83 (s, 3H, OCH3); Anal. Calcd for C15H14N2O5: C = 59.60, H = 4.67, N = 9.27, O = 26.46, Found  

C = 59.58, H = 4.65, N = 9.24, O = 26.44; EI MS m/z (% rel. abund.): 302. (M+, 10), 284 (45),  

167 (25), 135 (100). 

N'-(3,4,5-Trihydroxybenzylidiene)-4-methoxybenzohydrazide (2). Solid, M.p.: >250 °C; 1H-NMR 

(DMSO-d6):  11.46 (s, 1H, NH), 11.32 (s, 2H, OH), 9.61 (s, 1H, OH), 8.16 (s, 1H, N=CH-Ar),  

7.89 (d, 2H, J2,6/3,5 = 9.0 Hz, H-2, H-6), 7.07 (d, 2H, J3,5/ 2,6 = 9.0 Hz, H-3, H-5), 6.70 (s, 2H, H-2, H-6), 

3.83 (s, 3H, OCH3); Anal. Calcd for C15H14N2O5: C = 59.60, H = 4.67, N = 9.27, O = 26.46, Found  

C = 59.57, H = 4.64, N = 9.25, O = 26.43; EI MS m/z (% rel. abund.): 302 (M+, 5), 284 (25), 139 (20), 

135 (100). 

N'-(2,3-Dihydroxybenzylidene)-4-methoxybenzohydrazide (3). Solid, M.p.: 231°C; 1H-NMR (DMSO-d6):  

 12.01 (s, 1H, NH), 11.26 (s, 1H, OH), 9.61 (s, 1H, OH), 8.58 (s, 1H, N=CH-Ar), 7.95 (d, 2H,  

J2,6/3,5 = 9.0 Hz, H-2 , H-6), 7.10 (d, 2H, J3,5/2,6 = 9.0 Hz, H-3, H-5), 6.96 (dd, 1H, J4,5 = 6.5,  

J4,6 = 2.0 Hz, H-4), 6.86 (dd, 1H, J6,5 = 6.5, J6,4 = 2.0 Hz, H-6), 6.76 (t, 1H, J5(4,6) = 6.5 Hz, H-5),  

3.85 (s, 3H, OCH3); Anal. Calcd for C15H14N2O4: C = 62.93, H = 4.93, N = 9.79, O = 22.35, Found  

C = 62.91, H = 4.90, N = 9.77, O = 22.32; EI MS m/z (% rel. abund.): 286 (M+, 12), 268 (20),  

135 (100), 109 (15). 

N'-(2,5-Dihydroxybenzylidene)-4-methoxybenzohydrazide (4). Solid, M.p.: 237 °C; 1H-NMR (DMSO-d6): 

 12.01 (s, 1H, NH), 11.27 (s, 1H, OH), 9.22 (s, 1H, OH), 8.57 (s, 1H, N=CH-Ar),  

7.95 (d, 2H, J2,6/ 3,5 = 9.0 Hz, H-2 , H-6), 7.09 (d, 2H, J3,5/2,6 = 9.0 Hz, H-3, H-5), 6.96 (dd, 1H, J4,3 = 8.0,  
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J4,6 = 2.0 Hz, H-3), 6.86 (d, 1H, J6,4 = 2.0 Hz, H-6), 6.75 (d, 1H, J3,4 = 8.0 Hz, H-3), 3.85 (s, 3H, OCH3);  

Anal. Calcd for C15H14N2O4: C = 62.93, H = 4.93, N = 9.79, O = 22.35, Found C = 62.91, H = 4.90,  

N = 9.77, O = 22.31; EI MS m/z (% rel. abund.): 286 (M+, 6), 268 (18), 135 (100), 109 (18). 

N'-(3,4-Dihydroxybenzylidene)-4-methoxybenzohydrazide (5). Solid, M.p.: 239 °C; 1H-NMR (DMSO-d6): 

 11.47 (s, 1H, NH), 9.41 (s, 2H, OH),  8.25 (s, 1H, N=CH-Ar), 7.90 (d, 2H, J2,6/3,5 = 9.0 Hz, H-2, H-6), 

(s, 1H, H-6), 7.06 (d, 2H, J3,5/2,6 = 9.0 Hz, H-3, H-5), 6.93 (d, 1H, J3,2 = 8.0 Hz, H-4),  

6.79 (d, 1H, J2,3 = 8.0 Hz, H-2), 3.84 (s, 3H, OCH3); Anal. Calcd for C15H14N2O4, C = 62.93, H = 4.93, 

N= 9.79, O = 22.35, Found C = 62.91, H = 4.90, N = 9.77, O = 22.32; EI MS m/z (% rel. abund.):  

286 (M+, 17), 268 (22), 135 (100), 109 (9). 

N'-(2,4-Dihydroxybenzylidene)-4-methoxybenzohydrazide (6). Solid, M.p.: >250 °C; 1H-NMR 

(DMSO-d6):  11.85 (s, 1H, OH) 11.56 (s, 1H, OH), 9.98 (s, 1H, OH), 8.41 (s, 1H, N=CH-Ar),  

7.92 (d, 2H, J2,6/3,5 = 9.0 Hz, H-2, H-6), 7.30(d, 1H, J6,5 = 8.5 Hz, H-6), 7.08 (d, 2H, J3,5/2,6 = 9.0 Hz,  

H-3, H-5), 6.37 (dd, 1H, J5,6 = 8.5, J5,3 = 2.0 Hz, H-5), 6.32 (d, 1H, J3,5 = 2.0 Hz, H-3), 3.89 (s, 3H, OCH3); 

Anal. Calcd for C15H14N2O4: C = 62.93, H = 4.93, N = 9.79, O = 22.35, Found C = 62.91, H = 4.90,  

N = 9.77, O = 22.31; EI MS m/z (% rel. abund.): 286 (M+, 11), 268 (13), 135 (100), 109 (25). 

N'-(3,5-Dihydroxybenzylidene)-4-methoxybenzohydrazide (7). Solid, M.p.: >250 °C; 1H-NMR 

(DMSO-d6):  11.60 (s, 1H, OH) 9.49 (s, 2H, OH), 8.23 (s, 1H, N=CH-Ar), 7.92 (d, 2H, J2,6/3,5 = 9.0 Hz, 

H-2, H-6), 7.06 (d, 2H, J3,5/2,6 = 9.0 Hz, H-3, H-5), 6.60 (s, 2H, H-2,H-6), 6.26 (t, 1H, J4(2,6) = 2.0 Hz, 

H-4), 3.83 (s, 3H, OCH3); Anal. Calcd for Anal. Calcd for C15H14N2O4: C = 62.93, H = 4.93,  

N= 9.79, O = 22.35, Found C = 62.91, H = 4.90, N = 9.77, O = 22.31; EI MS m/z (% rel. abund.):  

286 (M+, 6), 268 (17), 135 (100), 109 (22). 

N'-(4-Hydroxybenzylidene)-4-methoxybenzohydrazide (8). Solid, M.p.: >250 °C; 1H-NMR (DMSO-d6): 

 11.54 (s, 1H, NH), 9.93 (s, 1H, OH), 8.32 (s, 1H, N=CH-Ar), 7.90 (d, 2H, J2,6/3,5 = 9.0 Hz, H-2, H-6), 

7.57 (d, 2H, J2,6/3,5 = 8.5 Hz, H-2/H-6), 7.06 (d, 2H, J3,5/2,6 = 9.0 Hz, H-3, H-5) 6.84 (d, 2H J3,5/2,6 = 8.5 Hz, 

H-3/H-5), 3.83 (s, 3H, OCH3); Anal. Calcd for C15H14N2O3: C = 66.66, H = 5.22, N= 10.36, O = 17.76, 

Found C = 66.64, H = 5.20, N = 10.33, O = 17.73; EI MS m/z (% rel. abund.): 270 (M+, 30), 268 (15), 

135 (100), 93 (45). 

N'-(2-Hydroxybenzylidiene)-4-methoxybenzohydrazide (9). Solid, M.p.: 183 °C; 1H-NMR (DMSO-d6):  

 12.02 (s, 1H, NH), 11.40 (s, 1H, OH), 8.62 (s, 1H, N=CH-Ar), 7.95 (d, 2H, J2,6/3,5 = 9.0 Hz, H-2, H-6), 

7.53 (d, 1H, J3,4 = 7.5, H-3), 7.32 (t, 1H, J5(4,6) = 8.5 Hz, H-5), 7.09 (d, 2H, J3,5/2,6 = 9.0 Hz, H-3, H-5), 

6.95–6.90 (m, 2H, H-4/H-6), 3.84 (s, 3H, OCH3); Anal. Calcd for C15H14N2O3: C = 66.66, H = 5.22, 

N= 10.36, O = 17.76, Found C = 66.63, H = 5.19, N = 10.32, O = 17.74; EI MS m/z (% rel. abund.): 

270 (M+, 70), 268 (14), 135 (100), 93 (15). 

N'-(3-Hydroxybenzylidene)-4-methoxybenzohydrazide (10). Solid, M.p.: 219 °C; 1H-NMR (DMSO-d6):  

 11.63 (s, 1H, NH), 9.66 (s, 1H, OH), 8.37 (s, 1H, N=CH-Ar), 7.91 (d, 2H, J2,6/3,5 = 8.5 Hz, H-2, H-6), 

7.32 (t, 1H, J5(4,6) = 8.5 Hz, H-5), 7.36 (s, 1H, H-2), 7.62 (d, 1H, J6,5 = 8.0 Hz, H-6), 7.07 (d, 2H,  

J3,5/2,6 = 8.5 Hz, H-3, H-5), 6.83 (d, 1H, J4,5 = 6.5 Hz, H-4), 3.88 (s, 3H, OCH3); Anal. Calcd for 
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C15H14N2O3: C = 66.66, H = 5.22, N= 10.36, O = 17.76, Found C = 66.63, H = 5.19, N = 10.32,  

O = 17.74; EI MS m/z (% rel. abund.): 270 (M+, 87), 268 (15), 135 (100), 93 (25). 

N'-(4-Hydroxy-3-methoxybenzylidene)-4-methoxybenzohydrazide (11). Solid, M.p.: 181.0 °C; 1H-NMR 

(DMSO-d6):  11.57 (s, 1H, NH), 9.56 (s, 1H, OH), 8.33 (s, 1H, N=CH-Ar), 7.91 (d, 2H, J2,6/3,5 = 8.5 Hz, 

H-2, H-6), 7.33 (s, 1H, H-2), 7.09 (d, 1H, J6,5 = 8.0 Hz, H-6), 7.06 (d, 2H, J3,5/2,6 = 8.5 Hz, H-3, H-5), 

6.83 (d, 1H, J5,6 = 8.0 Hz, H-5), 3.83 (s, 3H, OCH3), 3.68 (s, 3H, OCH3); Anal. Calcd for C16H16N2O4: 

C = 63.99, H = 5.37, N = 9.33, O = 21.31, Found C = 63.94, H = 5.35, N = 9.31, O = 21.29;  

EI MS m/z (% rel. abund.): 300 (M+, 90), 135 (100), 122 (25). 

N'-(3-Hydroxy-4-methoxybenzylidene)-4-methoxybenzohydrazide (12). Solid, M.p.: 213 °C; 1H-NMR 

(DMSO-d6):  11.56 (s, 1H, NH), 9.33 (s, 1H, OH), 8.29 (s, 1H, N=CH-Ar), 7.90 (d, 2H, J2,6/3,5 = 9.0 Hz, 

H-2, H-6), 7.27 (s, 1H, H-2), 7.09 (d, 1H, J6,5 = 8.5 Hz, H-6), 7.06 (d, 2H, J3,5/2,6 = 9.0 Hz, H-3, H-5), 

6.98 (d, 1H, J5,6 = 8.5 Hz, H-5), 3.84 (s, 3H, OCH3), 3.81 (s, 3H, OCH3); Anal. Calcd for C16H16N2O4: 

C = 63.99, H = 5.37, N = 9.33, O = 21.31, Found C = 63.94, H = 5.35, N = 9.31, O = 21.29;  

EI MS m/z (% rel. abund.): 300 (M+, 70), 135 (100), 122 (30). 

N'-(2-Hydroxy-5-methoxybenzylidene)-4-methoxybenzohydrazide (13). Solid, M.p.: 202 °C; 1H-NMR 

(DMSO-d6): 11.99 (s, 1H, NH), 10.77 (s, 1H, OH),  8.60 (s, 1H, N=CH-Ar), 7.94 (d, 2H, J2,6/3,5 = 8.5 Hz, 

H-2, H-6), 7.12 (d, 1H, J3,4 = 8.5 Hz, H-3), 7.09 (d, 2H, J3,5/2,6 = 8.5 Hz, H-3, H-5), 6.95 (dd, 1H,  

J4,3 = 8.5, J4,6 = 2.0 Hz, H-4), 6.88 (d, 1H, J6,4 = 2.0 Hz, H-6), 3.84 (s, 3H, OCH3), 3.74 (s, 3H, OCH3); 

Anal. Calcd for C16H16N2O4: C = 63.99, H = 5.37, N = 9.33, O = 21.31, Found C = 63.97, H = 5.34,  

N = 9.30, O = 21.28; EI MS m/z (% rel. abund.): 300 (M+, 90), 135 (100), 122 (21). 

4-Methoxy-N-((pyridine-2-methylene)benzohydrazide (14). Solid, M.p.: 107 °C; 1H-NMR (DMSO-d6):  

 11.96 (s, 1H, NH), 8.62 (d, 1H, J6,5 = 5.0Hz, H-6), 8.46 (s, 1H, N=CH-Ar), 7.99 (d, 1H, J3,4 = 8.0 Hz, 

H-3), 7.94 (d, 2H, J2,6/3,5 = 8.5 Hz, H-2, H-6), 7.90 (m, 1H, H-4), 7.60 (t, 1H, J5(4,6) = 8.0 Hz, H-6),  

7.09 (d, 2H, J3,5/2,6 = 8.5 Hz, H-3, H-5), 3.87 (s, 3H, OCH3); Anal. Calcd for C14H13N3O2: C = 65.87,  

H = 5.13, N= 16.46, O = 12.54, Found C = 65.84, H = 5.09, N = 16.44, O = 12.52; EI MS m/z  

(% rel. abund.): 255 (M+, 88), 135 (100), 78 (21). 

4-Methoxy-N'-(pyridin-4-methylene)benzohydrazide (15). Solid, M.p.: 180 °C; 1H-NMR (DMSO-d6):  

 12.04 (s, 1H, NH), 8.65 (d, 2H, J2,6/3,5 = 6.0 Hz, H-2, H-6), 8.42 (s, 1H, N=CH-Ar), 7.93 (d, 2H, 

J2,6/3,5 = 8.5 Hz, H-2, H-6), 7.67 (d, 2H, J3,5/2,6 = 6.0 Hz, H-3, H-5), 7.09 (d, 2H, J3,5/2,6 = 8.5 Hz, H-3, H-5), 

3.84 (s, 3H, OCH3); Anal. Calcd for C14H13N3O2: C = 65.87, H = 5.13, N= 16.46, O = 12.54,  

Found C = 65.83, H = 5.11, N = 16.43, O = 12.52; EI MS m/z (% rel. abund.): 255 (M+, 80), 135 (100), 

78 (27). 

4-Methoxy-N'-(pyridin-3-methylene)benzohydrazide (16). Solid, M.p.: 222 °C; 1H-NMR (DMSO-d6):  

 11.92 (s, 1H, NH), 11.92 (s, 1H, H-6), 8.61 (d, 1H, J2,4 = 2.0 Hz, H-2), 8.36 (s, 1H, N=CH-Ar),  

8.16 (d, 1H, J4,5 = 8.0 Hz, H-4), 7.93 (d, 2H, J2,6/3,5 = 8.5 Hz, H-2, H-6), 7.51 (dd, 1H, J5,4 = 8.0  

J5,6 = 5.0 Hz, H-5), 7.08 (d, 2H, J3,5/2,6 = 8.5 Hz, H-3, H-5), 3.88 (s, 3H, OCH3); Anal. Calcd for 
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C14H13N3O2: C = 65.87, H = 5.13, N= 16.46, O = 12.54, Found C = 65.82, H = 5.10, N = 16.42,  

O = 12.52; EI MS m/z (% rel. abund.): 255 (M+,92), 135 (100), 78 (33). 

N'-((Furan-2-yl)methylene)-4-methoxybenzohydrazide (17). Solid, M.p.: 207 °C; 1H-NMR (DMSO-d6):  

 11.69 (s, 1H, NH), 8.32 (s, 1H, N=CH-Ar), 7.89 (d, 2H, J2,6/3,5 = 9.0 Hz, H-2, H-6), 7.84 (s, 1H, H-3), 

7.07 (d, 2H, J3,5/2,6 = 9.0 Hz, H-3, H-5), 6.91 (s, 1H, H-3), 6.64 (dd, 1H, J3,4 = 5.0 Hz, J3,5 = 2.0 Hz, H-3), 

3.83 (s, 3H, OCH3); Anal. Calcd for C13H12N2O3: C = 63.93, H = 4.95, N= 11.47, O = 19.65, Found  

C = 63.94, H = 4.97, N = 11.46, O = 19.64; EI MS m/z (% rel. abund.): 244 (M+, 94), 135 (100), 68 (23). 

Methyl 2-(4-methoxybenzoylimino)methyl)-3,5-dimethoxybenzoate (18). Solid, M.p.: 162 °C;  
1H-NMR (DMSO-d6):  11.64 (s, 1H, NH), 8.64 (s, 1H, N=CH-Ar), 7.92 (d, 2H, J2,6/3,5 = 8.5 Hz, H-2, 

H-6), 7.06 (d, 2H, J3,5/2,6 = 8.5 Hz, H-3, H-5), 6.76 (d, 1H, J4,6 = 2.0 Hz, H-4), 6.61 (d, 1H,  

J6,4 = 2.0 Hz, H-6), 3.89 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 3.84 (s, 3H, OCH3); Anal. Calcd for 

C19H20N2O6: C = 61.28, H = 5.41, N= 7.52, O = 25.78, Found C = 61.26, H = 5.43, N = 7.51,  

O = 25.79; EI MS m/z (% rel. abund.): 372 (M+, 25), 195 (40), 135 (100). 

N'-(3,4-Dimethoxybenzylidene)-4-methoxybenzohydrazide (19). Solid, M.p.: 179 °C; 1H-NMR 

(DMSO-d6):  11.63 (s, 1H, NH), 8.37 (s, 1H, N=CH-Ar), 7.91 (d, 2H, J2,6/3,5 = 8.5 Hz, H-2, H-6),  

7.36 (s, 1H, H-2), (d, 1H, J6,5 = 8.5 Hz, H-6), 7.07 (d, 2H, J3,5/2,6 = 8.5 Hz, H-3, H-5), 6.76 (d, 1H,  

J5,6 = 8.5 Hz, H-4), 3.84 (s, 3H, OCH3), 3.82 (s, 3H, OCH3), 3.81 (s, 3H, OCH3); Anal. Calcd for 

C17H18N2O4: C = 64.96, H = 5.77, N= 8.91, O = 20.36, Found C = 64.94, H = 5.74, N = 8.88,  

O = 20.35; EI MS m/z (% rel. abund.): 314 (M+, 90), 137 (40), 135 (100). 

N'-Benzylidene-4-methoxybenzohydrazide (20). Solid, M.p.: 202 °C; 1H-NMR (DMSO-d6):  11.74  

(s, 1H, NH), 8.44 (s, 1H, N=CH-Ar), 7.92 (d, 2H, J2,6/3,5 = 8.5 Hz, H-2, H-6), (d, 2H, J3,5/2,6 = 6.5 Hz, 

H-5 H-6), 7.48–7.44 (m, 3H, H-3, H-4 ,H-5), 7.08 (d, 2H, J3,5/2,6 = 8.5 Hz, H-3, H-5), 3.84 (s, 3H, OCH3); 

Anal. Calcd for C15H14N2O2: C = 70.85, H = 5.54, N= 11.02, O = 12.58, Found C = 70.86, H = 5.55,  

N = 11.01, O = 12.57; EI MS m/z (% rel. abund.): 254 (M+, 70), 135 (100), 77 (30). 

Methyl 4-((4-methoxybenzoylimino)methyl)benzoate (21). Solid, M.p.: 206 °C; 1H-NMR (DMSO-d6):  

11.92 (s, 1H, NH), 8.50 (s, 1H, N=CH-Ar), 8.04 (d, 2H, J2,6/3,5 = 8.0 Hz, H-2/H-6), 7.94 (d, 2H,  

J2,6/3,5 = 8.5 Hz, H-2, H-6), 7.87 (d, 2H, J3,5/2,6 = 8.0 Hz, H-3/H-5), 7.09 (d, 2H, J3,5/2,6 = 8.5 Hz, H-3, H-5), 

3.88 (s, 3H, OCH3), 3.84 (s, 3H, OCH3); Anal. Calcd for C17H16N2O4: C = 65.38, H = 5.16, N= 8.97,  

O = 20.49, Found C = 65.36, H = 5.15, N = 8.94, O = 20.47; EI MS m/z (% rel. abund.): 312 (M+, 44), 

135 (100), 76 (30). 

N'-(4-Fluorobenzylidene)-4-methoxybenzohydrazide (22). Solid, M.p.: 186 °C; 1H-NMR (DMSO-d6):  

 11.76 (s, 1H, NH), 8.44 (s, 1H, N=CH-Ar), 7.92 (d, 2H, J2,6/3,5 = 8.5 Hz, H-2, H-6), 7.80 (t, 2H, 

J2,6/2,6,F = 7.0 Hz, H-2/H-6), 7.32 (t, 2H, J3,5/2,6,F = 7.0 Hz, H-2/H-6), 7.07 (d, 2H, J3,5/2,6 = 8.5 Hz, H-3, H-5), 

3.84 (s, 3H, OCH3); Anal. Calcd for C15H13FN2O2: C = 66.17, H = 4.81, F = 6.98, N = 10.29,  

O = 11.75, Found C = 66.13, H = 4.79, F = 6.95, N = 10.27, O = 11.73; EI MS m/z (% rel. abund.): 

272 (M+, 78), 135 (100), 95 (30). 
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N'-(3-Methoxybenzylidene)-4-methoxybenzohydrazide (23). Solid, M.p.: 121.6 °C; 1H-NMR (DMSO-d6):  

 11.74 (s, 1H, NH), 8.41 (s, 1H, N=CH-Ar), 7.92 (d, 2H, J2,6/3,5 = 9.0 Hz, H-2, H-6), 7.40 (t, 1H,  

J5(4,6) = 7.5 Hz, H-5), 7.30–725 (m, 1H, H-4), 7.07 (d, 2H, J3,5/2,6 = 9.0 Hz, H-3, H-5), 7.81 (dd, 1H,  

J6,5 = 7.5 Hz, J6,4 = 2.0 Hz, H-6), 3.84 (s, 3H, OCH3), 3.81 (s, 3H, OCH3); Anal. Calcd for C16H16N2O3: 

C = 67.59, H = 5.67, N= 9.85, O = 16.88, Found C = 67.57, H = 5.64, N = 9.82, O = 16.85; EI MS m/z 

(% rel. abund.): 284 (M+, 55), 135 (100), 107 (30). 

N'-(4-Methoxybenzylidene)-4-methoxybenzohydrazide (24). Solid, M.p.: 174 °C; 1H-NMR (DMSO-d6):  

 11.62 (s, 1H, NH), 8.37 (s, 1H, N=CH-Ar), 7.91(d, 2H, J2,6/3,5 = 8.5 Hz, H-2, H-6), 7.68 (d, 2H,  

J2,6/3,5 = 8.0 Hz, H-2, H-6), 7.07 (d, 2H, J3,5/2,6 = 9.0 Hz, H-3, H-5), 7.03(d, 2H, J3,5/2,6 = 8.0 Hz, H-3, H-5), 

3.84 (s, 3H, OCH3), 3.81 (s, 3H, OCH3); Anal. Calcd for C16H16N2O3: C = 67.59, H = 5.67, N= 9.85,  

O = 16.88, Found C = 67.57, H = 5.64, N = 9.82, O = 16.85; EI MS m/z (% rel. abund.): 284 (M+, 85), 

135 (100), 95 (40). 

N'-(4-Chlorobenzylidene)-4-methoxybenzohydrazide (25). Solid, M.p.: 198 °C; 1H-NMR (DMSO-d6):  

 11.80 (s, 1H, NH), 8.37 (s, 1H, N=CH-Ar), 7.912 (d, 2H, J2,6/3,5 = 9.0 Hz, H-2, H-6), 7.76 (d, 2H, 

J2,6/3,5 = 8.5 Hz, H-2, H-6), 7.54 (d, 2H, J3,5/2,6 = 8.5 Hz, H-3, H-5), 7.07 (d, 2H, J3,5/ 2,6 = 9.0 Hz, H-3, 

H-5), 3.84 (s, 3H, OCH3), 3.85 (s, 3H, OCH3); Anal. Calcd for C15H13ClN2O2: C = 62.40, H = 4.54, 

N= 9.70, O = 11.08, Found C = 62.41, H = 4.53, N = 9.71, O = 11.06; EI MS m/z (% rel. abund.):  

290 (M++2, 100), 288 (M+, 32), 135 (100), 113 (15), 111 (50). 

4-Methoxy-N'-(thiophen-2-methylene)benzohydrazide (26). Solid, M.p.: 209 °C; 1H-NMR (DMSO-d6):  

 11.67 (s, 1H, NH), 8.65 (s, 1H, N=CH-Ar), 7.90 (d, 2H, J2,6/3,5 = 9.0 Hz, H-2, H-6), 7.65 (d, 1H,  

J3,4 = 5.0 Hz, H-3), 7.45 (d, 1H, J5,4 = 3.0 Hz, H-5), 7.15 (d, 1H, J4,5 = 5.0, J4,3 = 3.0 Hz, H-4),  

7.06 (d, 2H, J3,5/2,6 = 9.0 Hz, H-3, H-5), 3.84 (s, 3H, OCH3); Anal. Calcd for C13H12N2O2S: C = 59.98, 

H = 4.65, N= 10.76, O = 12.29, S = 12.32, Found C = 59.96, H = 4.63, N = 10.74, O = 12.27,  

S = 12.30; EI MS m/z (% rel. abund.): 260 (M+, 65), 135 (100), 83 (28). 

N'-(3-Bromo-4-hydroxybenzylidiene)-2-methoxybenzohydrazide (27). Solid, M.p.: 209 °C; 1H-NMR 

(DMSO-d6):  11.67 (s, 1H, NH), 10.83 (s, 1H, OH), 8.30 (s, 1H, N=CH-Ar), 7.91 (d, 2H,  

J2,6/3,5 = 8.5 Hz, H-2, H-6), 7.86 (s, 1H, H-2), 7.56 (d, 1H, J6,5 = 8.0 Hz, H-6), 7.06 (d, 2H, J3,5/2,6 = 9.0 Hz, 

H-3, H-5), 7.03 (d, 1H, J5,6 = 8.0 Hz, H-5), 3.84 (s, 3H, OCH3); Anal. Calcd for C15H13BrN2O3: C = 51.60, 

H = 3.75, Br = 22.88, N= 8.02, O = 13.75, Found C = 51.57, H = 3.73, Br = 22.85, N = 7.99, O = 13.73;  

EI MS m/z (% rel. abund.): 350 (M+2, 56), 348 (M+, 57), 172 (26), 170 (25), 135 (100), 92 (20). 

N'-(3-Hydroxy-2-iodo-4-methoxybenzylidene)-4-methoxybenzohydrazide(28). Solid, M.p. = 147 °C; 
1H-NMR (DMSO-d6):  11.65 (s, 1H, NH), 9.72 (s, 1H, OH), 8.68 (s, 1H, N=CH-Ar), 7.93 (d, 2H, 

J2,6/3,5 = 8.5 Hz, H-2, H-6), 7.50 (d, 1H, J6,5 = 8.0 Hz, H-6), 7.09 (d, 1H, J5,6 = 8.0 Hz, H-5), 7.06 (d, 

2H, J3,5/2,6 = 8.5 Hz, H-3, H-5), 3.87 (s, 3H, OCH3); Anal. Calcd for C16H15IN2O4: C = 45.09, H = 3.55,  

I = 29.78, N= 6.57, O = 15.02, Found C = 45.07, H = 3.53, I = 29.77, N = 6.55, O = 14.99; EI MS m/z 

(% rel. abund.): 426 (M+, 15), 299 (36), 248 (20), 135 (100). 
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N'-(3,5-Dimethoxybenzylidene)-2-methoxybenzohydrazide (29). Solid, M.p. = 184 °C; 1H-NMR 

(DMSO-d6):  11.78 (s, 1H, NH), 8.36 (s, 1H, N=CH-Ar), 9.92 (d, 2H, J2,6/3,5 = 9.0 Hz, H-2, H-6),  

7.08 (d, 2H, J3,5/2,6 = 9.0 Hz, H-3, H-5), 6.89 (s, 2H, H-2, H-6), 6.57 (s, 1H, H-4), 3.84 (s, 3H,OCH3), 

3.79 (s, 6H, OCH3); Anal. Calcd for C17H18N2O4: C = 64.96, H = 5.77, N = 8.91, O = 20.36, Found  

C = 64.95, H = 5.77, N = 8.88, O = 20.33; EI MS m/z (% rel. abund.): 314 (M+, 81), 137 (36), 135 (100). 

N'-(4-Nitrobenzylidiene)-4-methoxybenzohydrazide (30). Solid, M.p. = 240 °C; 1H-NMR (DMSO-d6):  

 12.08 (s, 1H, NH), 8.53 (s, 1H, N=CH-Ar), 8.31 (d, 2H, J2,6/3,5 = 8.0 Hz, H-2, H-6), 8.00 (d, 2H, 

J3,5/2,6 = 8.0 Hz, H-3, H-5), 7.94 (d, 2H, J2,6/3,5 = 8.5 Hz, H-2, H-6), 7.09 (d, 2H, J3,5/ 2,6 = 8.5 Hz, H-3, 

H-5), 3.85 (s, 3H, OCH3); Anal. Calcd for C15H13N3O4: C = 60.20, H = 4.38, N= 14.04, O = 21.38, 

Found C = 60.17, H = 4.35, N = 14.02, O = 21.37; EI MS m/z (% rel. abund.): 301 (M+, 94), 135 (100). 

122 (35), 76 (20). 

3.2.3. Protocol for Antiglycation Activity 

Bovine Serum Albumin (BSA) was purchased from Merck Marker Pvt. Ltd. (Darmstadt, Germany), 

rutin and methylglyoxal (MG) (40% aqueous solution) were from Sigma Aldrich (Tokyo, Japan), 

sodium dihydrogen phosphate (NaH2PO4), disodium hydrogen phosphate (Na2HPO4) and sodium azide 

(NaN3) were purchased from Scharlau Chemie, S. A. (Barcelona, Spain), while dimethyl sulphoxide 

(DMSO) was purchased from Fischer Scientific (Loughborough, UK). Bovine Serum Albumin (10 

mg/mL), methyl glyoxal (14 mM), various concentrations of the compounds (prepared in DMSO, 10% 

final concentration), and 0.1 M phosphate buffer (pH 7.4) containing sodium azide (30 mM) was 

incubated under aseptic conditions at 37 °C for 9 days. After 9 days, each sample was examined for the 

development of specific fluorescence (excitation, 330 nm; emission, 440 nm) against sample blank [39,57]. 

Rutin was used as a positive control. All of the experiments were done in a 96-well microplate reader 

(SpectraMax M2, Molecular Devices, Sunnyvale, CA, USA). The percent inhibition of AGE formation in 

the test sample versus control was calculated for each inhibitor compound by using the following formula: 

% inhibition= (1 − fluorescence of test sample/Fluorescence of the control group) × 100 (1)

3.3. Software/Statistical 

The obtained results were analysed by SoftMaxPro 4.8 and MS-Excel. Results are presented as 

means ± SEM from three experiments. IC50 Values were determined by using EZ-FIT, Enzyme 

kinetics software by Perrella Scientific, Inc., Hillsborough, NH, USA. 

4. Conclusions 

In conclusion, compounds having hydroxy groups showed good antiglycation activity due to their 

capacity to inhibit glycoxidation. However, structural modifications can be optimized to achieve the 

desired activity in this class of compounds. 

Supplementary Materials 

Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/19/1/1302/s1. 
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