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Abstract: The convenient, high yielding and diastereoselective synthesis of  

α-amino-β-substituted-γ,γ-disubstituted butyric acid derivatives was carried out by a  

three-component tandem reaction of a chiral equivalent of nucleophilic glycine. The 

reaction was performed smoothly under mild conditions and enabled the construction of 

two or three adjacent chiral centers in one step, thus affording a novel and convenient route 

to α-amino-β-substituted-γ,γ-disubstituted butyric acid derivatives. 

Keywords: multi-component reaction; nickel(II); glycine; diastereoselectivity; unnatural 

amino acids 

 

1. Introduction 

Chiral α-amino-γ,γ-disubstituted fragments are frequently found in various bioactive compounds, 

such as anti-infective agents (compound 1), anti-tuberculosis agents (compound 2), modulators of 

RNA binding proteins (compound 3) and compositions for specific inhibition of protein splicing by 

small molecules, and used in the treatment of tuberculosis and other conditions (compound 4)  
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(Figure 1) [1–4]. Catalytic diastereoselective synthesis of these chiral α-amino-β-substituted butyric 

acid derivatives rely on many reactions, for example, addition of α,β-unsaturated acyloxazolidinones, 

then the removal of the oxazolidinone portions [5], cycloaddition of chiral nitrones with  

(E)-1,4-dichlorobut-2-ene, followed by acid-catalyzed hydrolysis and then by amide hydrolysis [6],  

but the Michael addition should be considered the main method to get these products when a chiral 

equivalent of glycine is used. Indeed, several examples of such reactions using chiral auxiliaries have 

been reported [7–15]. However, to our knowledge, there are no reports about the synthesis of chiral  

α-amino-β-substituted-γ,γ-disubstituted butyric acid derivatives. 

Figure 1. Structures of some biologically important compounds containing α-amino-β-

substituted γ,γ- disubstituted butyric acid motifs. 

 

The chiral Ni(II) complex of the Schiff base of glycine (abbreviated as (S)-BPB) is commonly used 

in the asymmetric syntheses of unnatural amino acids. Product mixtures with a high excess of the  

(S)-amino acid diastereomer are always generated by the addition using (S)-BPB as a ligand [16–18]. 

The products can be easily isolated by column chromatography, and decomposed by acid to get chiral 

pure amino acids. Moreover, the recovery of (S)-BPB can be high (up to 85%). To the best of our 

knowledge, a variety of glutamic acid and proline derivatives with a high ee values can be synthesized 

through Michael additions of activated olefins to Ni(II) glycinate [19–21]. Recently, Liu et al. reported 

the efficient synthesis of β-substituted α,γ-diaminobutyric acid derivatives using asymmetric Michael 

addition reactions of chiral nickel(II) glycinate with nitroalkenes [22–27], Schneider et al. reported the 

stereoselectivity synthesis of γ-carboxyglutamic acids using asymmetric Michael addition reactions of 

chiral copper(II) glycinate with di-tert-butyl methylenemalonate [28]. This report focuses on the 

synthesis of α-amino-β-substituted-γ,γ-disubstituted butyric acid derivatives through the reaction of 

aromatic aldehydes, a chiral Ni(II) glycinate complex, and an α-carbanion of two electron-withdrawing 

groups (malononitrile or ethyl cyanoacetate) as a continuation of our previous research on new methods 

for the preparation of potentially bioactive compounds by multi-component reactions [29–33]. In the 
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process, two carbon-carbon bonds were constructed and two or three chiral centers were generated in a 

convenient one-pot reaction with a high stereoselectivity. 

2. Results and Discussion 

The Michael addition reaction was considered as an effective way to get the products. Firstly, the 

optimization of the reaction conditions was undertaken using a model reaction of chiral nickel(II) 

glycinate with 2-benzylidenemalononitrile (Table 1). The reaction with 1,8-diazabicyclo[5.4.0]undec-

7-ene (DBU), triethylamine(TEA), 4-methylmorpholine (NMM) and piperidine gave a little lower 

diastereoselectivities (Entries 1–5, Table 1) than Hunig’s base (DIEA) did, and all the reactions gave 

satisfactory yields, except the one in NMM. 

Table 1. Optimization of the reaction conditions a. 

 

Entry Base Solvent Yield (%) b de c 

1 DBU d CH3CN 94 88% 
2 TEA CH3CN 97 94% 
3 DIEA CH3CN 94 96% 
4 NMM CH3CN 63 92% 
5 Piperidine CH3CN 89 96% 
6 DIEA DMF 99 88% 
7 DIEA EA 98 80% 
8 DIEA MeOH 99 88% 
9 DIEA DCM 97 58% 
10 DIEA dioxane 91 97% 
11 DIEA CHCl3 59 90% 
12 DIEA DMSO 91 76% 

a All the reactions were conducted at ambient temperature; b Yield of the major products after silica gel 

column chromatography; c Determined by HPLC analysis; d DBU was used in 0.15 equiv.; and other bases 

were used in 3 equiv. 

The reaction proceeded smoothly in most of the solvents tested, although the one in chloroform 

gave a bad yield and the one in dichloromethane (DCM) gave poor diastereoselectivity. Good 

diastereoselectivities and yields were observed with the use of acetonitrile, N,N-dimethylformamide 

(DMF), ethyl acetate (EA), methanol, dioxane and dimethyl sulfoxide (DMSO). Above all, 

diastereoselectivity was not obviously influenced by the kind of the bases used, and polar solvents 

seemed to be better than nonpolar ones. As 2-benzylidenemalononitrile can be easily generated from 
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benzaldehyde and malononitrile under alkaline conditions, domino reaction of these three components 

was thought to be feasible. In fact, TLC showed that when these three components were mixed 

together under basic conditions, benzaldehyde first reacted quickly with malononitrile, then added to 

the nickel(II) glycinate and the product 7a appeared. The results showed no big difference with those 

in Table 1, so the substrate scope was investigated using DIEA as the base and dioxane as the solvent 

(entry 11, Table 1) without further optimization. 

The aromatic aldehydes with substituents at different positions were introduced into this reaction 

(Table 2). Whether functionalized with either electron-withdrawing or electron-donating groups, these 

aldehydes gave the products in good to high yields. As the result obtained with malononitrile was 

inspiring, ethyl cyanoacetate was introduced into the reaction, and gave a satisfactory result, so the 

reactions with malononitrile and ethyl cyanoacetate could be looked as two series. The results of the 

ethyl cyanoacetate series seemed a little better than the malononitrile series on average, despite the fact 

three chiral centers are newly generated. In both series, the naphthyl-functionalized aldehydes had the 

best diastereoselectivities (Table 2, enties 9 and 10), and ortho-functionalized aromatic aldehydes gave 

relatively high yields and diastereoselectivities (Table 2, entries 12, 14 and 18). The results were quite 

different in this two series when t-Bu- and 3-Cl-substituted substrates were involved (Table 2, entries 2 

and 22, 3 and 15). However, furaldehyde and thienaldehyde were not tolerated (Table 2, enties 13 and 14). 

To elucidate the relative and absolute configurations of the products, X-ray single crystal structures of 

(S,2S,3R)-7a (CCDC 951535) and (S,2S,3R,4S)-7q (CCDC 949234) are given below (Figure 2). 

To further confirm the structure, diastereoselectivity and regioselectivity, detailed NMR spectral 

and X-ray analyses were carried out. The structures proposed for all products were in agreement with 

their NMR spectra, as discussed for compounds 7a and 7q as examples. In the 1H-NMR spectrum of 

7a and 7q, the α-C proton of glycine exhibited double(d) peaks at δ 4.57 (d, J = 4 Hz, 1H) and  

δ 4.60 (d, J = 3.6 Hz, 1H), respectively. The α-C proton of malononitrile in 7a appeared as a doublet at 

δ 5.19 (d, J = 12 Hz, 1H), and the corresponding proton of ethyl cyanoacetate in 7q appeared as a 

doublet at δ 4.51 (d, J = 12.1 Hz, 1H). The relative configuration of these structures should be as same 

as compound 7a and 7q shown in Figure 2a,c, the configurations were further confirmed by the X-ray 

study of single crystals (Figure 2b,d). The 13C-NMR of compound 4b supported the proposed structure 

as well. 

A plausible mechanism for the high diastereoselectivity of the reaction could be explained as 

follows (Scheme 1): malononitrile or cyanide ethyl acetate first reacted with aromatic aldehyde, and 

the intermediate formed continued to react with the complex. When (S)-N-benzylproline was used, the 

benzyl group was on a certain side of this complex, so the steric hindrance was large on this side, and 

the intermediate would prefer attacking from the other side. Still, steric hindrance from the phenyl 

groups of the intermediate could contribute to the diasteroselectivity, this may explain why 

naphthaldehydes provided a high de value. As the diastereoselectivity was mainly controlled by the 

substrates, the reaction was easy to carry, making it a convenient way to get chiral α-amino-β-

substituted-γ,γ-disubstituted butyric acid derivatives. 
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Table 2. Asymmetric Michael reactions of chiral nickel(II) glycinate (S)-5 with aromatic 

aldehydes and α-carbanions a. 

 

Entry Product R EWG Yield (%) b de c 

1 (S,2S,3R)-7a Ph CN 91 97% 
2 (S,2S,3R)-7b 4-(t-Bu)-C6H4 CN 86 >99% 
3 (S,2S,3R)-7c 3-Cl-C6H4 CN 52 90% 
4 (S,2S,3R)-7d 4-F-C6H4 CN 83 93% 
5 (S,2S,3R)-7e 4-Br-C6H4 CN 44 98% 
6 (S,2S,3R)-7f 3,4-di-Cl-C6H3 CN 84 97% 
7 (S,2S,3R)-7g 3-Br-C6H4 CN 38 95% 
8 (S,2S,3R)-7h 3-OMe-C6H4 CN 82 >99% 
9 (S,2S,3R)-7i 2-naphthyl CN 80 98% 
10 (S,2S,3R)-7j 1-naphthyl CN 26 98% 
11 (S,2S,3R)-7k 3-OH-C6H4 CN 46 98% 
12 (S,2S,3R)-7l 2-F-4-Br-C6H3 CN 90 >99% 
13 (S,2S,3R,4S)-7m Ph COOEt 78 98% 
14 (S,2S,3R,4S)-7n 2-Br-C6H4 COOEt 88 >99% 
15 (S,2S,3R,4S)-7o 3-Cl-C6H4 COOEt 89 97% 
16 (S,2S,3R,4S)-7p 4-F-C6H4 COOEt 75 96% 
17 (S,2S,3R,4S)-7q 3,4-di-Cl-C6H3 COOEt 82 98% 
18 (S,2S,3R,4S)-7r 2,4-di-Cl-C6H3 COOEt 96 98% 
19 (S,2S,3R,4S)-7s 4-CH3-C6H4 COOEt 76 >99% 
20 (S,2S,3R,4S)-7t 4-OCH3-C6H4 COOEt 77 97% 
21 (S,2S,3R,4S)-7u 4-NO2-C6H4 COOEt 69 97% 
22 (S,2S,3R,4S)-7v 4-(t-Bu)-C6H4 COOEt 51 97% 
23 (S,2S,3R,4S)-7w 1-naphthyl COOEt 67 >99% 
24 (S,2S,3R)-7x 3-Br-thienyl CN NR d NR d 
25 (S,2S,3R)-7y 4-Me-Furyl CN NR d NR d 

a All the reactions were conducted at ambient temperature, 3 equiv. of all the bases were used; b Yield of the 

major products after silica gel column chromatography; c Determined by HPLC analysis; d Not Reaction. 
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Figure 2. (a) Selected 1H- and 13C-NMR chemical shifts of (S,2S,3R)-7a; (b) Single crystal 

X-ray diffraction study of (S,2S,3R)-7a; (c) Selected 1H- and 13C-NMR chemical shifts of 

(S,2S,3R,4S)-7q and (d) Single crystal X-ray diffraction study of (S,2S,3R,4S)-7q. 

 

With high diastereoselectivities and mild reaction conditions, the synthesis of (2S,3R)-8a  

(Scheme 2) was completed by optimizing the metal complex decomposition and Fmoc-protection 

conditions. Typically, the compound (S,2S,3R)-7a was decomposed by heating a suspension in 

methanol/6N HCl. However, we found that one of the nitrile groups was partly hydrolyzed in this 

process, so suitable conditions were sought to ensure that the nitrile groups remain inert. When we 

stirred (S,2S,3R)-7a in THF with a 3N concentration HCl at ambient temperature, the complex was 

decomposed and the nitrile group preserved (Scheme 2). The chiral ligand (S)-BPB can be easily 

recovered quantitatively. (2S,3R)-8a was synthesized after (S,2S,3R)-7a was decomposed, the (S)-BPB 

was extracted with ethyl acetate (EA) and the α-amino-β-substituted γ,γ-disubstituted butyric acid 

product was protected by a Fmoc group. Ultimately, the yield of (S,2R)-5a from (S,2S,3R)-7a was 62% 

over two steps. 
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Scheme 1. Asymmetric domino reactions of chiral nickel(II) glycinate (S)-5 with aromatic 

aldehydes and α-carbanion. 

 

Scheme 2. Decomposition of Ni(II) complex 7a to release product 8a and recovery of  

the (S)-BPB. 

 

3. Experimental  

3.1. General 

The reagents (chemicals) were purchased from commercial sources, and used without further 

purification. Analytical thin layer chromatography (TLC) was GF254 (0.15–0.2 mm thickness).  

The mass spectra and high resolution mass spectra were obtained using Bruker microTOF-Q 

instrument or TOF-MS instrument. The 1H- and 13C-NMR spectra have been respectively measured in 

CDCl3 or DMSO-d6 at 400 and 100 MHz using a Bruker Avance III 400 MHz instrument with TMS as 

an internal standard. Analytical high performance liquid chromatography was carried out using the 

Waters Alliance 2695 HPLC, using the Chiralpak IA column. The loading loop was 10 μL. The eluting 
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employed was an isocratic mixture of n-hexane and i-propanol (50:50 respectively) at a flow of  

1 mL/min unless stated. Retention times are reported in minutes. The enantiomeric excess was 

calculated from the integration of the absorption peaks at 220 nm. 

3.2. Typical Procedure for the Synthesis of (S)-Nickel(II) Complex (5) [18] 

(S)-BPB (1 g, 2.60 mmol), Ni(NO3)2·6H2O (1.52 g, 5.21 mmol) and glycine (976 mg, 13.0 mmol) 

were stirred in MeOH (50 mL). Then NaH (55%–65% in oil, 1.04 g, 26 mmol) and KOH (437 mg,  

7.81 mmol) were added successively. The mixture was refluxed for 2 h then cooled to room 

temperature and neutralized with acetic acid. After 12 h the precipitate was filtered and washed with 

ethanol (100 mL), followed by stirring in methane/water (v/v) 1:2 (200 mL), then filtered to form  

a red crystalline solid (1.27 g, yield 98%). The complex was sufficiently pure for further use without  

additional purification. 

3.3. General Procedure for the Synthesis of Ni(II) (7) 

The nickel(II) complex of glycine (S)-5 (1.0 equiv.) was dissolved in dioxane, and DIEA  

(3.0 equiv.), aromatic aldehyde (1.2 equiv.) and malononitrile/ethyl cyanoacetate (1.2 equiv.) was 

added at room temperature. The mixture was then stirred at room temperature for 12 h, then poured 

into 10% citric acid solution, extracted with CH2Cl2 (three times), dried with anhydrous Na2SO4, 

concentrated, and purified on silica (petroleum ether/ethyl acetate = 1/1) to give 7 as a red solid. 

3.3.1. Ni(II)-(S)-BPB/(2S,3R)-2-Amino-4,4'-dicyano-3-phenylbutyric Acid Schiff Base Complex (7a) 

Yield = 91%, m.p. 202–204 °C. [α]18 
D  = +1602 (ca. 0.2 g/100 mL, CHCl3). 

1H-NMR (CDCl3) δ 8.25 

(d, J = 8 Hz, 1H), 7.98 (d, J = 8 Hz, 2H), 7.68–7.63 (m, 6H), 7.39 (d, J = 8 Hz, 1H), 7.30–7.26 (m, 

4H), 7.18–7.14 (m, 3H), 6.70 (d, J = 4 Hz, 1H), 5.19 (d, J = 12 Hz, 1H), 4.57 (d, J = 4 Hz, 1H), 4.15 

(d, J = 12 Hz, 1H), 3.42 (d, J = 12 Hz, 1H), 3.29–3.21 (m, 2H), 2.97–2.91 (m, 1H), 2.32–2.20 (m, 1H), 

2.06–2.02 (m, 1H), 1.95–1.91 (m, 1H), 1.85–1.83 (m, 1H), 1.56–1.50 (m, 1H). 13C-NMR (CDCl3)  

δ 180.2, 176.2, 173.5, 143.4, 133.9, 133.5, 133.2, 132.6, 131.4, 130.9, 130.6, 130.1, 129.9, 129.5, 

128.9, 128.9, 127.5, 127.0, 125.5, 123.3, 120.8, 111.5, 111.3, 70.5, 69.7, 63.9, 57.4, 48.8, 29.7, 24.7, 

23.1. ESI-MS (m/z): calcd. 652.2, found 652.2 ([M+H]+); HRMS (m/z): calcd. C37H32N5NiO3 for 

652.1859, found 652.1857 ([M+H]+). HPLC (Chiralpak IA, n-hexane/i-propanol = 50/50, flow rate  

1.0 mL/min, λ = 220 nm), tmajor = 32.3 min, tminor = 13.4 min, de = 97%. 

3.3.2. Ni(II)-(S)-BPB/(2S,3R)-2-Amino-4,4'-dicyano-3-(4-tert-butyl)-phenylbutyric Acid Schiff Base 

Complex (7b) 

Yield = 86%, m.p. 197–199 °C. [α]18 
D  = +1602 (ca. 0.2 g/100 mL, CHCl3). 

1H-NMR (CDCl3) δ 8.29 

(d, J = 8.7 Hz, 1H), 7.95 (d, J = 7.5 Hz, 2H), 7.68 (dt, J = 13.0, 6.8 Hz, 3H), 7.60 (d, J = 8.1 Hz, 2H), 

7.41 (d, J = 7.2 Hz, 1H), 7.29 (dd, J = 14.5, 7.1 Hz, 3H), 7.19 (d, J = 7.9 Hz, 3H), 7.16–7.09 (m, 2H), 

6.70 (d, J = 2.9 Hz, 2H), 5.16 (d, J = 12.0 Hz, 1H), 4.58 (d, J = 3.4 Hz, 1H), 4.16 (d, J = 12.7 Hz, 1H), 

3.79 (s, 1H), 3.49 (d, J = 12.7 Hz, 1H), 3.28–3.13 (m, 2H), 3.05–2.90 (m, 1H), 2.29–2.13 (m, 1H), 

2.12–2.00 (m, 1H), 1.92 (dt, J = 27.0, 8.6 Hz, 1H), 1.78 (dt, J = 18.9, 9.3 Hz, 1H), 1.54 (s, 1H),  
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1.46–1.31 (m, 9H). 13C-NMR (CDCl3) δ 180.2, 176.3, 173.3, 160.9, 143.2, 133.9, 133.4, 133.3, 133.2, 

131.4, 130.8, 130.5, 129.4, 128.9, 128.8, 127.4, 127.0, 125.6, 124.1, 123.2, 120.8, 115.2, 111.6, 111.3, 

70.6, 69.8, 64.0, 57.6, 55.4, 48.1, 30.5, 24.7, 22.9. ESI-MS (m/z): calcd. 708.2, found 708.3 ([M+H]+); 

HRMS (m/z): calcd. C41H40N5NiO3 for 708.2485, found 708.2482 ([M+H]+). HPLC (Chiralpak IA,  

n-hexane/i-propanol = 50/50, flow rate 1.0 mL/min, λ = 220 nm), tmajor = 30.9 min, tminor = 17.3 min,  

de > 99%. 

3.3.3. Ni(II)-(S)-BPB/(2S,3R)-2-Amino-4,4'-dicyano-3-(3-chlorophenyl) Butyric Acid Schiff Base 

Complex (7c) 

Yield = 52%, m.p. 211–213 °C. [α]18 
D  = +1622 (ca. 0.2 g/100 mL, CHCl3). 

1H-NMR (CDCl3) δ 8.27 

(d, J = 8.7 Hz, 1H), 8.00 (d, J = 7.5 Hz, 2H), 7.75–7.60 (m, 4H), 7.55 (d, J = 15.7 Hz, 1H), 7.42–7.34 

(m, 2H), 7.32 (dd, J = 14.6, 6.9 Hz, 3H), 7.22–7.09 (m, 4H), 6.70 (d, J = 3.7 Hz, 2H), 5.14 (d, J = 11.9 Hz, 

1H), 4.56 (d, J = 3.8 Hz, 1H), 4.15 (d, J = 12.7 Hz, 1H), 3.43 (d, J = 12.6 Hz, 1H), 3.25 (ddd, J = 16.2, 

10.7, 5.6 Hz, 2H), 3.02 (dd, J = 9.8, 5.5 Hz, 1H), 2.25 (dd, J = 18.6, 10.0 Hz, 1H), 2.10–1.98 (m, 3H), 

1.70–1.63 (m, 1H). 13C-NMR (CDCl3) δ 180.2, 175.9, 173.7, 143.4, 136.3, 134.6, 133.9, 133.4, 133.4, 

133.2, 131.3, 131.0, 131.0, 130.6, 130.4, 129.5, 129.0, 128.8, 127.4, 127.0, 125.4, 123.3, 120.8, 111.2, 

110.9, 70.5, 69.4, 64.0, 57.6, 48.4, 30.7, 29.6, 24.6, 23.0. ESI-MS (m/z): calcd. 686.1, found 686.2 

([M+H]+). HRMS (m/z): calcd. C37H31ClN5NiO3 for 686.1469, found 686.1475 ([M+H]+).  

HPLC (Chiralpak IA, n-hexane/i-propanol = 50/50, flow rate 1.0 mL/min, λ = 220 nm), tmajor = 31.0 min, 

tminor = 13.0 min, de = 90%. 

3.3.4. Ni(II)-(S)-BPB/(2S,3R)-2-Amino-4,4'-dicyano-3-(4-fluorophenyl)butyric Acid Schiff Base 

Complex (7d) 

Yield = 83%, m.p. 207–209 °C. [α]18 
D  = +1734 (ca. 0.2 g/100 mL, CHCl3). 

1H-NMR (CDCl3) δ 8.25 

(d, J = 8.6 Hz, 1H), 8.00 (d, J = 7.4 Hz, 2H), 7.73–7.62 (m, 3H), 7.34 (ddd, J = 14.8, 13.7, 7.2 Hz, 7H), 

7.21–7.09 (m, 3H), 6.73–6.66 (m, 2H), 5.16 (d, J = 12.0 Hz, 1H), 4.55 (d, J = 3.7 Hz, 1H), 4.15 (d,  

J = 13.1 Hz, 1H), 3.48–3.37 (m, 1H), 3.32–3.22 (m, 2H), 3.02–2.90 (m, 1H), 2.33–2.23 (m, 1H),  

2.13–2.05 (m, 1H), 1.97 (dd, J = 13.3, 7.4 Hz, 2H), 1.67–1.61 (m, 1H). 13C-NMR (CDCl3) δ 180.2, 

176.1, 173.6, 165.1, 162.6, 143.3, 133.9, 133.4, 133.3, 133.2, 131.3, 131.2, 130.9, 130.6, 129.5, 129.0, 

128.8, 128.4, 128.4, 127.3, 127.0, 125.4, 123.3, 120.8, 117.1, 116.9, 111.3, 111.0, 70.5, 69.6, 64.0, 

57.5, 48.1, 30.6, 24.7, 22.9. ESI-MS (m/z): calcd. 670.2, found 670.2 ([M+H]+). HRMS (m/z):  

calcd. C37H31FN5NiO3 for 670.1764, found 670.1801 ([M+H]+). HPLC (Chiralpak IA, n-hexane/ 

i-propanol = 50/50, flow rate 1.0 mL/min, λ = 220 nm), tmajor = 26.0 min, tminor = 10.1 min, de = 93%. 

3.3.5. Ni(II)-(S)-BPB/(2S,3R)-2-amino-4,4'-dicyano-3-(4-bromophenyl) Butyric Acid Schiff Base 

Complex (7e) 

Yield = 44%, m.p. 197–199 °C. [α]18 
D  = +1972 (ca. 0.2 g/100 mL, CHCl3). 

1H-NMR (CDCl3) δ 8.23 

(d, J = 8.7 Hz, 1H), 8.01 (d, J = 7.4 Hz, 2H), 7.78–7.58 (m, 3H), 7.38 (d, J = 6.8 Hz, 1H), 7.29 (dd,  

J = 14.9, 7.4 Hz, 3H), 7.25–7.08 (m, 7H), 6.70 (d, J = 13.7 Hz, 2H), 5.14 (d, J = 12.0 Hz, 1H), 4.53 (d, 

J = 3.2 Hz, 1H), 4.15 (d, J = 12.7 Hz, 1H), 3.40 (d, J = 12.6 Hz, 1H), 3.31–3.18 (m, 2H), 2.99 (dd,  
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J = 10.5, 6.0 Hz, 1H), 2.23 (dt, J = 24.1, 12.1 Hz, 1H), 2.13–2.02 (m, 1H), 2.02–1.87 (m, 2H), 1.55 

(dd, J = 12.1, 6.5 Hz, 1H). 13C-NMR (CDCl3) δ 180.2, 176.3, 173.3, 160.9, 143.2, 133.9, 133.4, 133.3, 

133.2, 131.4, 130.8, 130.5, 129.4, 128.9, 128.8, 127.4, 127.0, 125.6, 124.1, 123.2, 120.8, 115.2, 111.6, 

111.3, 70.6, 69.8, 64.0, 57.6, 55.4, 48.1, 30.5, 24.7, 22.9. ESI-MS (m/z): calcd. 730.1, found 730.2 

([M+H]+). HRMS (m/z): calcd. C37H31BrN5NiO3 for 730.0966, found 730.0978 ([M+H]+). HPLC 

(Chiralpak IA, n-hexane/i-propanol = 50/50, flow rate 1.0 mL/min, λ = 220 nm), tmajor = 32.0 min,  

tminor = 15.3 min, de = 98%. 

3.3.6. Ni(II)-(S)-BPB/(2S,3R)-2-Amino-4,4'-dicyano-3-(3,4-dichlorophenyl) Butyric Acid Schiff Base 

Complex (7f) 

Yield = 84%, m.p. 213–215 °C. [α]18 
D  = +1660 (ca. 0.2 g/100 mL, CHCl3). 

1H-NMR (CDCl3) δ 8.27 

(d, J = 8.7 Hz, 1H), 8.01 (d, J = 7.4 Hz, 2H), 7.69 (dd, J = 17.4, 7.8 Hz, 4H), 7.44 (s, 1H), 7.38 (d,  

J = 6.3 Hz, 1H), 7.31 (t, J = 7.4 Hz, 2H), 7.18 (dd, J = 15.9, 8.3 Hz, 2H), 7.09 (t, J = 7.8 Hz, 2H), 6.71 

(d, J = 14.3 Hz, 2H), 5.15 (d, J = 11.9 Hz, 1H), 4.53 (s, 1H), 4.12 (dd, J = 17.0, 9.9 Hz, 1H), 3.42 (d,  

J = 12.6 Hz, 1H), 3.30 (t, J = 8.3 Hz, 1H), 3.22 (d, J = 11.9 Hz, 1H), 2.99 (d, J = 5.8 Hz, 1H), 2.33 (dd, 

J = 20.4, 8.8 Hz, 1H), 2.02 (qd, J = 13.8, 6.8 Hz, 3H), 1.77–1.66 (m, 1H). 13C-NMR (CDCl3) δ 180.2, 

175.8, 173.8, 143.4, 135.0, 134.6, 134.0, 133.5, 133.3, 132.7, 131.7, 131.3, 131.1, 130.7, 129.6, 129.0, 

128.9, 127.2, 126.9, 125.2, 123.3, 120.8, 111.1, 110.6, 70.5, 69.3, 64.1, 57.8, 48.0, 30.7, 24.4, 22.8. 

ESI-MS (m/z): calcd. 720.1, found 720.2 ([M+H]+); HRMS (m/z): calcd. C37H30Cl2N5NiO3 for 

720.1079, found 720.1090 ([M+H]+). HPLC (Chiralpak IA, n-hexane/i-propanol = 50/50, flow rate  

1.0 mL/min, λ = 220 nm), tmajor = 26.0 min, tminor = 12.5 min, de = 97%. 

3.3.7. Ni(II)-(S)-BPB/(2S,3R)-2-Amino-4,4'-dicyano-3-(3-bromophenyl) Butyric Acid Schiff Base 

Complex (7g) 

Yield = 38%, m.p. 208–210 °C. [α]18 
D  = +1882 (ca. 0.2 g/100 mL, CHCl3). 

1H-NMR (CDCl3) δ 8.28 

(d, J = 8.7 Hz, 1H), 8.00 (d, J = 7.4 Hz, 2H), 7.80 (d, J = 8.0 Hz, 1H), 7.75–7.60 (m, 3H), 7.49 (t,  

J = 7.8 Hz, 2H), 7.39 (d, J = 6.7 Hz, 1H), 7.31 (t, J = 7.6 Hz, 2H), 7.24–7.08 (m, 4H), 6.70 (d,  

J = 4.0 Hz, 2H), 5.14 (d, J = 11.9 Hz, 1H), 4.55 (d, J = 3.7 Hz, 1H), 4.20–4.09 (m, 1H), 3.42 (d,  

J = 12.6 Hz, 1H), 3.25 (ddd, J = 15.7, 10.7, 5.6 Hz, 2H), 3.03 (dd, J = 10.0, 5.6 Hz, 1H), 2.25 (dt,  

J = 16.4, 8.4 Hz, 1H), 2.15–1.91 (m, 4H). 13C-NMR (CDCl3) δ 180.2, 176.3, 173.3, 160.9, 143.2, 133.9, 

133.4, 133.3, 133.2, 131.4, 130.8, 130.5, 129.4, 128.9, 128.8, 127.4, 127.0, 125.6, 124.1, 123.2, 120.8, 

115.2, 111.6, 111.3, 70.6, 69.8, 64.0, 57.6, 55.4, 48.1, 30.5, 24.7, 22.9. ESI-MS (m/z): calcd. 730.1, 

found 730.2 ([M+H]+); HRMS (m/z): calcd. C37H31BrN5NiO3 for 730.0966, found 730.0966 ([M+H]+). 

HPLC (Chiralpak IA, n-hexane/i-propanol = 50/50, flow rate 1.0 mL/min, λ = 220 nm), tmajor = 32.0,  

tminor = 14.0 min, de = 95%. 

3.3.8. Ni(II)-(S)-BPB/(2S,3R)-2-Amino-4,4'-dicyano-3-(3-methoxyphenyl) Butyric Acid Schiff Base 

Complex (7h) 

Yield = 82%, m.p. 222–224 °C. [α]18 
D  = +1678 (ca. 0.2 g/100 mL, CHCl3). 

1H-NMR (CDCl3) δ 8.18 

(d, J = 8.7 Hz, 1H), 7.93 (d, J = 7.5 Hz, 2H), 7.59 (dd, J = 13.8, 7.2 Hz, 3H), 7.44 (t, J = 7.9 Hz, 1H), 
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7.32 (d, J = 6.9 Hz, 1H), 7.23 (t, J = 7.5 Hz, 2H), 7.07 (dd, J = 13.9, 6.8 Hz, 4H), 6.75 (d, J = 11.2 Hz, 

2H), 6.62 (d, J = 4.0 Hz, 2H), 5.09 (d, J = 12.0 Hz, 1H), 4.47 (d, J = 3.4 Hz, 1H), 4.04 (dd, J = 15.5, 

9.7 Hz, 1H), 3.71 (s, 3H), 3.34 (d, J = 12.6 Hz, 1H), 3.16 (dd, J = 16.1, 6.4 Hz, 2H), 2.89 (q, J = 10.2 Hz, 

1H), 2.26–2.06 (m, 1H), 2.01 (dd, J = 13.8, 7.1 Hz, 1H), 1.87 (dd, J = 18.6, 6.4 Hz, 2H), 1.49 (dd,  

J = 14.2, 9.1 Hz, 1H). 13C-NMR (CDCl3) δ 180.1, 176.2, 173.3, 160.6, 143.3, 133.9, 133.8, 133.4, 

133.3, 133.2, 131.4, 130.9, 130.9, 130.5, 129.4, 128.9, 128.8, 127.5, 127.0, 125.5, 123.2, 120.7, 115.7, 

111.5, 111.2, 70.5, 69.6, 63.9, 57.4, 55.3, 48.6, 30.6, 24.6, 23.0. ESI-MS (m/z): calcd. 682.2, found 

682.3 ([M+H]+); HRMS (m/z): calcd. C38H34N5NiO4 for 682.1964, found 682.1959 ([M+H]+).  

HPLC (Chiralpak IA, n-hexane/i-propanol = 50/50, flow rate 1.0 mL/min, λ = 220 nm), tmajor = 36.2, 

tminor = 16.5 min, de > 99%. 

3.3.9. Ni(II)-(S)-BPB/(2S,3R)-2-Amino-4,4'-dicyano-3-(2-naphthyl) Butyric Acid Schiff Base Complex (7i) 

Obtained as a red solid, yield = 80%, m.p. 187–189 °C. [α]18 
D  = +1582 (ca. 0.2 g/100 mL, CHCl3). 

1H-NMR (CDCl3) δ 8.19 (d, J = 8.7 Hz, 1H), 8.08 (d, J = 8.4 Hz, 1H), 7.97 (d, J = 7.5 Hz, 3H), 7.93 

(d, J = 7.7 Hz, 1H), 7.81 (s, 1H), 7.70 (d, J = 7.8 Hz, 3H), 7.60 (p, J = 6.7 Hz, 2H), 7.41 (d,  

J = 7.0 Hz, 1H), 7.32 (d, J = 7.0 Hz, 1H), 7.26 (t, J = 7.6 Hz, 3H), 7.20–7.09 (m, 2H), 6.70 (d,  

J = 14.1 Hz, 2H), 5.34 (d, J = 12.0 Hz, 1H), 4.62 (d, J = 3.1 Hz, 1H), 4.12 (d, J = 7.1 Hz, 1H), 4.02 (d, 

J = 12.5 Hz, 1H), 3.46 (dd, J = 12.0, 3.1 Hz, 1H), 3.23 (d, J = 12.5 Hz, 1H), 3.05 (t, J = 8.5 Hz, 1H), 

2.64–2.48 (m, 1H), 2.04 (s, 1H), 1.74 (d, J = 10.0 Hz, 2H), 1.24 (dd, J = 16.0, 8.8 Hz, 1H). 13C-NMR 

(CDCl3) δ 180.1, 176.2, 173.4, 143.3, 134.1, 133.9, 133.5, 133.3, 133.2, 131.3, 130.9, 130.5, 129.8, 

129.5, 128.9, 128.8, 128.5, 127.8, 127.5, 127.5, 127.3, 127.1, 125.5, 123.3, 120.7, 111.6, 111.3, 70.3, 

70.0, 64.0, 57.7, 48.9, 30.0, 24.6, 22.3. ESI-MS (m/z): calcd. 702.2, found 702.3 ([M+H]+); HRMS 

(m/z): calcd. C41H34N5NiO3 for 702.2015, found 702.2022 ([M+H]+). HPLC (Chiralpak IA, n-hexane/ 

i-propanol = 50/50, flow rate 1.0 mL/min, λ = 220 nm), tmajor = 31.5 min, tminor = 18.8 min, de = 98%. 

3.3.10. Ni(II)-(S)-BPB/(2S,3R)-2-Amino-4,4'-dicyano-3-(1-naphthyl) Butyric Acid Schiff Base 

Complex (7j) 

Yield = 26%, m.p. 178–180 °C. [α]18 
D  = +1614 (ca. 0.2 g/100 mL, CHCl3). 

1H-NMR (CDCl3) δ 8.25 

(d, J = 8.8 Hz, 1H), 8.14 (d, J = 8.2 Hz, 1H), 8.05 (d, J = 8.2 Hz, 1H), 7.89 (d, J = 7.5 Hz, 2H),  

7.80–7.65 (m, 4H), 7.57 (d, J = 7.3 Hz, 1H), 7.55–7.43 (m, 3H), 7.41 (d, J = 7.0 Hz, 1H), 7.29–7.21 

(m, 3H), 7.21–7.07 (m, 3H), 6.80–6.67 (m, 2H), 5.36 (d, J = 11.8 Hz, 1H), 4.74 (d, J = 2.6 Hz, 1H), 

4.20 (dd, J = 11.8, 2.2 Hz, 1H), 4.12 (q, J = 7.1 Hz, 1H), 3.97 (d, J = 12.6 Hz, 1H), 3.25 (d, J = 12.6 Hz, 

1H), 2.95 (t, J = 8.7 Hz, 1H), 2.50 (dt, J = 11.4, 5.8 Hz, 1H), 1.86 (dd, J = 12.9, 9.2 Hz, 1H), 1.75 (dt,  

J = 22.7, 9.6 Hz, 2H), 0.97 (dt, J = 14.6, 7.4 Hz, 1H). 13C-NMR (CDCl3) δ 179.5, 176.1, 173.6, 143.4, 

134.4, 134.0, 133.5, 133.4, 133.1, 133.0, 131.2, 130.6, 130.4, 130.1, 129.3, 129.2, 128.8, 128.7, 127.2, 

127.1, 126.9, 126.7, 126.1, 126.0, 125.1, 123.0, 122.5, 120.5, 111.6, 111.1, 71.4, 70.3, 63.7, 57.2, 43.5, 

30.2, 25.7, 22.9. ESI-MS (m/z): calcd. 702.2, found 702.3 ([M+H]+); HRMS (m/z):  

calcd. C41H34N5NiO3 for 702.2015, found 702.2019 ([M+H]+). HPLC (Chiralpak IA, n-hexane/ 

i-propanol = 50/50, flow rate 1.0 mL/min, λ = 220 nm), tmajor = 55.7 min, tminor = 20.4 min, de = 98%. 
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3.3.11. Ni(II)-(S)-BPB/(2S,3R)-2-Amino-4,4'-dicyano-3-(3-hydroxyphenyl) Butyric Acid Schiff Base 
Complex (7k) 

Yield = 46%, m.p. 222–224 °C. [α]18 
D  = +1775 (ca. 0.2 g/100 mL, CHCl3). 

1H-NMR (DMSO) δ 9.89 

(s, 1H), 8.42 (d, J = 7.5 Hz, 2H), 8.11 (d, J = 8.7 Hz, 1H), 7.78 (d, J = 5.3 Hz, 1H), 7.69 (s, 3H), 7.54 

(d, J = 4.9 Hz, 1H), 7.46 (t, J = 7.8 Hz, 1H), 7.37 (t, J = 7.5 Hz, 2H), 7.13 (dd, J = 16.4, 6.8 Hz, 3H), 

6.93–6.80 (m, 2H), 6.73 (t, J = 7.6 Hz, 1H), 6.63 (d, J = 8.3 Hz, 1H), 5.40 (d, J = 12.4 Hz, 1H), 4.40 

(d, J = 3.6 Hz, 1H), 4.09 (q, J = 7.1 Hz, 1H), 3.91 (d, J = 12.2 Hz, 1H), 3.15 (dd, J = 12.3, 3.5 Hz, 1H), 

2.96–2.84 (m, 1H), 2.56 (s, 2H), 2.23 (dd, J = 15.2, 8.6 Hz, 1H), 2.17–2.07 (m, 1H), 1.99 (dd, J = 25.2, 

14.2 Hz, 2H), 1.70 (d, J = 6.5 Hz, 1H). 13C-NMR (DMSO) δ 180.0, 174.8, 171.9, 158.2, 143.2, 134.5, 

134.1, 133.5, 133.1, 131.8, 131.5, 130.2, 130.1, 129.7, 128.9, 128.4, 128.1, 127.8, 127.4, 125.1, 122.8, 

119.8, 116.4, 113.1, 112.1, 69.7, 69.6, 63.2, 57.7, 47.5, 30.4, 25.2, 22.6. ESI-MS (m/z): calcd. 668.2, 

found 668.2 ([M+H]+); HRMS (m/z): calcd. C37H32N5NiO4 for 668.1808, found 668.1819 ([M+H]+). 

HPLC (Chiralpak IA, n-hexane/i-propanol = 50/50, flow rate 1.0 mL/min, λ = 220 nm), tmajor = 14.7 min, 

tminor = 7.1 min, de = 98%. 

3.3.12. Ni(II)-(S)-BPB/(2S,3R)-2-Amino-4,4'-dicyano-3-(2-fluoro-4-bromophenyl) Butyric Acid Schiff 

Base Complex (7l) 

Yield = 90%, m.p. 222–224 °C. [α]18 
D  = +1624 (ca. 0.2 g/100 mL, CHCl3). 

1H-NMR (CDCl3) δ 8.32 

(d, J = 8.7 Hz, 1H), 8.01 (d, J = 7.5 Hz, 2H), 7.66 (d, J = 6.2 Hz, 3H), 7.60 (d, J = 8.6 Hz, 2H), 7.35 (d, 

J = 5.2 Hz, 1H), 7.29 (dd, J = 13.5, 6.0 Hz, 3H), 7.24–7.11 (m, 3H), 6.68 (s, 2H), 5.23 (d, J = 12.0 Hz, 

1H), 4.53 (d, J = 3.3 Hz, 1H), 4.20–4.05 (m, 1H), 3.80 (d, J = 9.4 Hz, 1H), 3.45 (d, J = 12.6 Hz, 1H), 

3.30 (t, J = 8.5 Hz, 1H), 2.96 (q, J = 10.3 Hz, 1H), 2.44–2.25 (m, 1H), 2.25–2.08 (m, 1H), 2.02–1.89 

(m, 2H), 1.79–1.64 (m, 1H). 13C-NMR (CDCl3) δ 180.2, 176.3, 173.3, 160.9, 143.2, 133.9, 133.4, 

133.3, 133.2, 131.4, 130.8, 130.5, 129.4, 128.9, 128.8, 127.4, 127.0, 125.6, 124.1, 123.2, 120.8, 115.2, 

111.6, 111.3, 70.6, 69.8, 64.0, 57.6, 55.4, 48.1, 30.5, 24.7, 22.9. ESI-MS (m/z): calcd. 748.1, found 

748.1 ([M+H]+); HRMS (m/z): calcd. C37H30BrFN5NiO3 for 748.0869, found 748.0881 ([M+H]+). 

HPLC (Chiralpak IA, n-hexane/i-propanol = 50/50, flow rate 1.0 mL/min, λ = 220 nm), tmajor = 36.2 min, 

tminor = 15.3 min, de > 99%. 

3.3.13. Ni(II)-(S)-BPB/(2S,3R,4S)-2-Amino-4-cyano-5-ethoxy-5-oxo-3-phenylpentanoic Acid Schiff 

Base Complex (7m) 

Yield = 78%, m.p. 192.2–193.5 °C. [α]20 
D  = +2323 (ca. 0.03 g/100 mL, CH2Cl2). 

1H-NMR (CDCl3)  

δ 8.24 (d, J = 8.6 Hz, 1H), 7.99 (d, J = 7.1 Hz, 2H), 7.74–7.58 (m, 3H), 7.53 (s, 3H), 7.40 (d, J = 7.3 Hz, 

1H), 7.35–7.26 (m, 4H), 7.22–7.08 (m, 3H), 6.70 (q, J = 7.7 Hz, 2H), 4.63 (s, 1H), 4.57 (d, J = 12.0 Hz, 

1H), 4.18 (d, J = 12.6 Hz, 1H), 3.85 (q, J = 6.9 Hz, 2H), 3.39 (t, J = 12.9 Hz, 2H), 3.22 (t, J = 8.4 Hz, 

1H), 2.93 (dt, J = 9.3, 4.6 Hz, 1H), 2.17 (dt, J = 16.0, 8.1 Hz, 1H), 2.02 (dd, J = 12.6, 6.5 Hz, 1H),  

1.94 (dd, J = 18.3, 8.6 Hz, 1H), 1.82 (dt, J = 19.5, 6.8 Hz, 1H), 1.47 (ddd, J = 19.2, 12.4, 6.7 Hz, 1H), 

0.90 (t, J = 6.9 Hz, 3H). 13C-NMR (CDCl3) δ 180.28, 176.58, 173.02, 164.34, 143.18, 134.17, 133.89, 

133.71, 133.30, 132.85, 131.46, 130.59, 130.36, 129.32, 129.19, 129.12, 128.88, 128.80, 127.70, 

127.12, 125.83, 123.20, 120.67, 114.69, 71.09, 70.50, 63.81, 62.42, 57.36, 48.45, 38.92, 30.62, 23.06, 
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13.48. HRMS (m/z): calcd. C39H36N4NaNiO5
+ for 721.1931, found 721.1931 ([M+Na]+). HPLC 

(Chiralpak IA, n-hexane/i-propanol = 50/50, flow rate 1.0 mL/min, λ = 220 nm), tmajor = 31.7 min,  

tminor = 8.0 min, de = 98%. 

3.3.14. Ni(II)-(S)-BPB/(2S,3R,4S)-2-Amino-3-(2-bromophenyl)-4-cyano-5-ethoxy-5-oxopentanoic 

Acid Schiff Base Complex (7n) 

Yield = 88%, m.p. 191.3–192.1 °C. [α]20 
D  = +2120 (ca. 0.03 g/100 mL, CH2Cl2). 

1H-NMR (CDCl3)  

δ 8.44 (d, J = 8.7 Hz, 1H), 7.96 (d, J = 7.3 Hz, 2H), 7.88 (d, J = 7.8 Hz, 1H), 7.69–7.61 (m, 3H),  

7.58–7.53 (m, 1H), 7.53–7.44 (m, 2H), 7.43–7.36 (m, 1H), 7.29 (dd, J = 10.5, 4.9 Hz, 3H), 7.16 (dt,  

J = 13.7, 5.3 Hz, 2H), 6.73–6.63 (m, 2H), 4.62 (d, J = 3.0 Hz, 1H), 4.49 (d, J = 12.2 Hz, 1H), 4.17 (d,  

J = 12.6 Hz, 1H), 4.06 (dd, J = 12.2, 3.0 Hz, 1H), 3.89 (qd, J = 7.1, 2.3 Hz, 2H), 3.43 (d, J = 12.6 Hz, 

1H), 3.25 (t, J = 8.6 Hz, 1H), 2.85–2.75 (m, 1H), 2.19 (ddd, J = 19.3, 13.1, 7.3 Hz, 2H), 1.92 (dt,  

J = 11.2, 8.1 Hz, 1H), 1.70 (dt, J = 13.6, 7.5 Hz, 1H), 1.46 (dt, J = 18.8, 6.4 Hz, 1H), 0.95 (t, J = 7.1 Hz, 

3H). 13C-NMR (CDCl3) δ 180.14, 176.38, 174.21, 163.71, 143.31, 134.68, 134.06, 133.87, 133.70, 

133.24, 133.05, 131.42, 130.80, 130.31, 130.03, 129.76, 128.87, 128.79, 128.55, 128.06, 127.12, 

127.05, 125.84, 122.92, 120.52, 113.84, 71.89, 70.74, 63.75, 62.67, 57.14, 46.61, 39.74, 30.89, 23.02, 

13.50, 0.01. HRMS (m/z): calcd. C39H35BrN4NaNiO5
+ for 799.1037, found 799.1034 ([M+Na]+). 

HPLC (Chiralpak IA, n-hexane/i-propanol = 50/50, flow rate 1.0 mL/min, λ = 220 nm), tmajor =42.8 min, 

tminor =10.6 min, de > 99%. 

3.3.15. Ni(II)-(S)-BPB/(2S,3R,4S)-2-Amino-(3-chlorophenyl)-4-cyano-5-ethoxy-3-5-oxopentanoic 

Acid Schiff Base Complex (7o) 

Yield = 89%, m.p. 191.2–193.4 °C. [α]20 
D  = +2376 (ca. 0.03 g/100 mL, CH2Cl2). 

1H-NMR (CDCl3)  

δ 8.27 (d, J = 8.7 Hz, 1H), 8.00 (d, J = 7.4 Hz, 2H), 7.70 (dd, J = 11.3, 4.9 Hz, 1H), 7.67–7.59 (m, 2H), 

7.53 (d, J = 8.2 Hz, 1H), 7.46 (t, J = 7.8 Hz, 1H), 7.42–7.34 (m, 2H), 7.31 (t, J = 7.6 Hz, 2H), 7.21–7.13 

(m, 3H), 7.11 (d, J = 7.2 Hz, 1H), 6.76–6.64 (m, 2H), 4.62 (d, J = 3.7 Hz, 1H), 4.53 (d, J = 12.2 Hz, 

1H), 4.19 (d, J = 12.6 Hz, 1H), 3.89 (q, J = 7.1 Hz, 2H), 3.42 (d, J = 12.6 Hz, 1H), 3.33 (dd, J = 12.2, 

3.7 Hz, 1H), 3.26 (dd, J = 9.3, 7.7 Hz, 1H), 3.02 (dd, J = 10.6, 5.8 Hz, 1H), 2.23 (td, J = 17.0, 7.6 Hz, 

1H), 2.09 (dd, J = 13.4, 7.4 Hz, 1H), 1.99 (dd, J = 10.8, 6.3 Hz, 1H), 1.93 (dd, J = 14.0, 7.2 Hz, 1H), 

1.62 (d, J = 12.7 Hz, 1H), 0.96 (t, J = 7.1 Hz, 3H). 13C-NMR () δ 180.29, 176.27, 173.26, 164.17, 

143.30, 136.44, 135.58, 133.91, 133.62, 133.34, 133.04, 131.45, 130.68, 130.43, 129.42, 129.26, 

128.92, 128.83, 127.58, 127.06, 125.66, 123.25, 120.68, 114.35, 70.79, 70.54, 63.88, 62.61, 57.57, 

48.07, 38.81, 30.76, 23.03, 13.51. HRMS (m/z): calcd. C39H35ClN4NaNiO5
+ for 755.1542, found 

755.1541 ([M+Na]+). HPLC (Chiralpak IA, n-hexane/i-propanol = 50/50, flow rate 1.0 mL/min,  

λ = 220 nm), tmajor = 26.6 min, tminor = 8.1 min, de = 97%. 

3.3.16. Ni(II)-(S)-BPB/(2S,3R,4S)-2-Amino-4-cyano-5-ethoxy-3-(4-fluorophenyl)-5-oxopentanoic 

Acid Schiff Base Complex (7p) 

Yield = 75%, m.p. 192.3–193.5 °C. [α]20 
D  = +2250 (ca. 0.03 g/100 mL, CH2Cl2). 

1H-NMR (CDCl3)  

δ 8.25 (d, J = 8.7 Hz, 1H), 8.00 (d, J = 7.5 Hz, 2H), 7.69 (t, J = 7.0 Hz, 1H), 7.67–7.59 (m, 2H),  
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7.39 (d, J = 7.3 Hz, 1H), 7.30 (dd, J =14.3, 6.6 Hz, 4H), 7.22(d, J = 8.5, 2H), 7.16 (t, J = 7.3 Hz, 3H), 

6.70 (q, J = 8.2 Hz, 2H), 4.62 (d, J = 3.4 Hz, 1H), 4.52 (d, J = 12.2 Hz, 1H), 4.19 (d, J = 12.6 Hz, 1H), 

3.88 (q, J = 7.1 Hz, 2H), 3.41 (d, J = 12.6 Hz, 1H), 3.36 (dd, J = 12.2, 3.5 Hz, 1H), 3.29–3.22 (m, 1H), 

2.99 (dd, J = 10.1, 5.7 Hz, 1H), 2.25 (td, J = 16.7, 7.6 Hz, 1H), 2.09 (dt, J = 16.1, 8.6 Hz, 1H), 1.96  

(dt, J = 14.1, 9.6 Hz, 2H), 1.66–1.55 (m, 1H), 0.95 (t, J = 7.1 Hz, 3H). 13C-NMR (CDCl3) δ 180.32, 

176.43, 173.22, 164.62, 164.23, 162.15, 143.22, 133.90, 133.68, 133.33, 132.97, 131.43, 130.65, 

130.44, 130.04, 130.00, 129.23, 128.93, 128.83, 127.58, 127.09, 125.70, 123.22, 120.70, 116.40, 

116.19, 114.44, 99.99, 70.99, 70.48, 63.91, 62.55, 57.48, 47.82, 38.99, 30.68, 22.94, 13.55. HRMS 

(m/z): calcd. C39H35FN4NaNiO5
+ for 739.1837, found 739.1837 ([M+Na]+). HPLC (Chiralpak IA,  

n-hexane/i-propanol = 50/50, flow rate 1.0 mL/min, λ = 220 nm), tmajor = 53.2 min, tminor = 6.9 min,  

de = 96%. 

3.3.17. Ni(II)-(S)-BPB/(2S,3R,4S)-2-Amino-4-cyano-3-(3,4-dichlorophenyl)-5-ethoxy-5-oxopentanoic 

Acid Schiff Base Complex (7q) 

Yield = 82%, m.p. 192.7–194.7 °C. [α]20 
D  = +2353 (ca. 0.03 g/100 mL, CH2Cl2). 

1H-NMR (CDCl3) δ 

8.27 (d, J = 8.7 Hz, 1H), 8.02 (d, J = 7.6 Hz, 2H), 7.70 (t, J = 7.1 Hz, 1H), 7.63 (dd, J = 13.5, 8.8 Hz, 

3H), 7.44 (s, 1H), 7.38 (d, J = 7.4 Hz, 1H), 7.31 (t, J = 7.6 Hz, 2H), 7.20–7.11 (m, 3H), 7.08 (d, J = 7.6 Hz, 

1H), 6.78–6.64 (m, 2H), 4.60 (d, J = 3.6 Hz, 1H), 4.51 (d, J = 12.1 Hz, 1H), 4.19 (d, J = 12.5 Hz, 1H), 

3.94 (q, J = 7.1 Hz, 2H), 3.41 (d, J = 12.6 Hz, 1H), 3.35–3.25 (m, 2H), 3.00 (dt, J = 10.2, 5.2 Hz, 1H), 

2.30 (dt, J = 16.8, 7.7 Hz, 1H), 2.09 (dd, J = 13.3, 6.0 Hz, 1H), 2.02 (dd, J = 11.8, 7.4 Hz, 1H),  

1.95 (dd, J = 13.4, 6.3 Hz, 1H), 1.67 (dt, J = 13.0, 6.4 Hz, 1H), 1.02 (t, J = 7.1 Hz, 3H). 13C-NMR 

(CDCl3) δ 180.36, 176.15, 173.45, 164.02, 143.31, 134.66, 133.94, 133.80, 133.56, 133.37, 133.17, 

131.42, 131.08, 130.75, 130.50, 129.30, 128.96, 128.86, 127.48, 127.04, 125.53, 123.27, 120.75, 

114.12, 70.67, 70.54, 64.03, 62.82, 57.78, 47.57, 38.59, 30.75, 22.83, 13.59. HRMS (m/z): calcd. 

C39H34Cl2N4NaNiO5
+ for 789.1152, found 789.1151 ([M+Na]+). HPLC (Chiralpak IA, n-hexane/ 

i-propanol = 50/50, flow rate 1.0 mL/min, λ = 220 nm), tmajor = 44.5 min, tminor = 7.6 min, de = 98%. 

3.3.18. Ni(II)-(S)-BPB/(2S,3R,4S)-2-Amino-4-cyano-3-(2,4-dichlorophenyl)-5-ethoxy-5-oxopentanoic 

Acid Schiff Base Complex (7r) 

Yield = 96%, m.p. 192.6–194.5 °C. [α]20 
D  = +1960 (ca. 0.03 g/100 mL, CH2Cl2). 

1H-NMR (CDCl3) δ 

8.42 (d, J = 8.8 Hz, 1H), 7.99 (d, J = 7.6 Hz, 2H), 7.71 (s, 1H), 7.69–7.59 (m, 3H), 7.44 (s, 2H), 7.41 

(d, J = 3.5 Hz, 1H), 7.30 (dd, J = 13.9, 6.7 Hz, 3H), 7.19–7.11 (m, 2H), 6.72–6.63 (m, 2H), 4.60 (d,  

J = 3.1 Hz, 1H), 4.48 (d, J = 12.2 Hz, 1H), 4.18 (d, J = 12.6 Hz, 1H), 4.05 (dd, J = 12.2, 3.1 Hz, 1H), 

3.99–3.88 (m, 2H), 3.43 (d, J = 12.6 Hz, 1H), 3.34–3.22 (m, 1H), 2.90 (dt, J = 11.0, 5.6 Hz, 1H), 2.33 

(dt, J = 16.8, 7.7 Hz, 1H), 2.16 (td, J = 13.6, 7.7 Hz, 1H), 2.00 (dt, J = 10.9, 7.6 Hz, 1H), 1.88 (dt,  

J = 14.2, 7.4 Hz, 1H), 1.69–1.53 (m, 1H), 1.01 (t, J = 7.1 Hz, 3H). 13C-NMR (CDCl3) δ 180.23, 

176.30, 174.38, 163.63, 143.32, 137.69, 135.70, 134.05, 133.59, 133.31, 133.17, 131.56, 131.39, 

130.83, 130.43, 130.19, 130.14, 129.65, 128.91, 128.83, 128.28, 127.08, 125.58, 122.92, 120.58, 

113.73, 71.39, 70.71, 63.95, 62.85, 57.45, 43.63, 39.21, 30.98, 22.89, 13.56. HRMS (m/z): calcd. 

C39H34Cl2N4NaNiO5
+ for 789.1152, found 789.1151 ([M+Na]+). HPLC (Chiralpak IA, n-hexane/ 

i-propanol = 50/50, flow rate 1.0 mL/min, λ = 220 nm), tmajor = 77.3, tminor = 8.8 min, de = 98%. 
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3.3.19. Ni(II)-(S)-BPB/(2S,3R,4S)-2-Amino-4-cyano-5-ethoxy-5-oxo-3-(p-tolyl)pentanoic Acid Schiff 

Base Complex (7s) 

Yield = 76%, m.p. 182.3–183.7 °C. [α]20 
D  = +2570 (ca. 0.03 g/100 mL, CH2Cl2). 

1H-NMR (CDCl3)  

δ 8.24 (d, J = 8.7 Hz, 1H), 8.00 (d, J = 7.3 Hz, 2H), 7.68 (dt, J = 9.7, 4.3 Hz, 1H), 7.61 (dd, J = 9.1,  

5.4 Hz, 2H), 7.39 (d, J = 7.4 Hz, 1H), 7.31 (dd, J = 16.1, 8.0 Hz, 4H), 7.21–7.10 (m, 5H), 6.75–6.65 

(m, 2H), 4.60 (d, J = 3.7 Hz, 1H), 4.54 (d, J = 12.2 Hz, 1H), 4.19 (d, J = 12.6 Hz, 1H), 3.86 (q, J = 7.1 Hz, 

2H), 3.41 (d, J = 12.6 Hz, 1H), 3.33 (dd, J = 12.2, 3.7 Hz, 1H), 3.26–3.19 (m, 1H), 3.01–2.93 (m, 1H), 

2.43 (s, 3H), 2.20 (dt, J = 16.7, 7.9 Hz, 1H), 2.04 (dt, J = 13.1, 6.8 Hz, 1H), 1.95 (dd, J = 11.1, 7.2 Hz, 

1H), 1.83 (tt, J = 15.3, 7.6 Hz, 1H), 1.49 (tt, J = 12.8, 6.4 Hz, 1H), 0.94 (t, J = 7.1 Hz, 3H). 13C-NMR 

(CDCl3) δ 180.19, 176.62, 172.87, 164.36, 143.12, 138.95, 133.86, 133.71, 133.31, 132.80, 131.45, 

130.97, 130.55, 130.30, 129.97, 129.17, 128.87, 128.79, 127.70, 127.11, 125.83, 123.17, 120.65, 

114.76, 71.12, 70.55, 63.87, 62.37, 57.40, 48.10, 38.85, 30.47, 22.78, 21.27, 13.51. HRMS (m/z): 

calcd. C40H38N4NaNiO5
+ for 735.2088, found 735.2089 ([M+Na]+). HPLC (Chiralpak IA, n-hexane/ 

i-propanol = 50/50, flow rate 1.0 mL/min, λ = 220 nm), tmajor = 46.3 min, tminor = 7.5 min, de > 99%. 

3.3.20. Ni(II)-(S)-BPB/(2S,3R,4S)-2-Amino-4-cyano-5-ethoxy-3-(4-methoxylphenyl)-5-oxopentanoic 

Acid Schiff Base Complex (7t) 

Yield = 77%, m.p. 188.5–189.4 °C. [α]20 
D  = +2376 (ca. 0.03 g/100 mL, CH2Cl2). 

1H-NMR (CDCl3) δ 

8.23 (d, J = 8.7 Hz, 1H), 8.01 (d, J = 7.5 Hz, 2H), 7.68 (t, J = 6.9 Hz, 1H), 7.65–7.58 (m, 2H), 7.38 (d, 

J = 7.4 Hz, 1H), 7.30 (t, J = 7.6 Hz, 2H), 7.21 (d, J = 8.1 Hz, 2H), 7.15 (dd, J = 13.2, 6.6 Hz, 3H), 7.04 

(d, J = 8.5 Hz, 2H), 6.74–6.65 (m, 2H), 4.60 (d, J = 3.5 Hz, 1H), 4.52 (d, J = 12.2 Hz, 1H), 4.19 (d,  

J = 12.6 Hz, 1H), 3.91–3.86 (m, 2H), 3.85 (s, 3H), 3.40 (d, J = 12.6 Hz, 1H), 3.32 (dd, J = 12.2, 3.5 

Hz, 1H), 3.24 (t, J = 8.5 Hz, 1H), 3.04–2.96 (m, 1H), 2.21 (dt, J = 16.3, 7.6 Hz, 1H), 2.08 (dd,  

J = 13.3, 6.2 Hz, 1H), 1.98 (dd, J = 11.0, 6.9 Hz, 1H), 1.90 (dd, J = 13.5, 6.8 Hz, 1H), 1.56–1.47 (m, 

1H), 0.95 (t, J = 7.1 Hz, 3H). 13C-NMR (CDCl3) δ 180.28, 176.63, 172.88, 164.42, 160.34, 143.15, 

133.85, 133.73, 133.37, 132.79, 131.46, 130.56, 130.32, 129.17, 128.88, 128.79, 127.67, 127.13, 

125.85, 125.78, 123.18, 120.65, 114.73, 114.59, 71.20, 70.59, 63.92, 62.37, 57.55, 55.34, 47.89, 38.97, 

30.62, 22.94, 13.56. HRMS (m/z): calcd. C40H38N4NaNiO6
+ for 751.2037, found 751.2037 ([M+Na]+). 

HPLC (Chiralpak IA, n-hexane/i-propanol = 50/50, flow rate 1.0 mL/min, λ = 220 nm), tmajor = 71.2 min, 

tminor = 8.5 min, de = 97%. 

3.3.21. Ni(II)-(S)-BPB/(2S,3R,4S)-2-Amino-4-cyano-5-ethoxy-3-(4-nitrophenyl)-5-oxopentanoic Acid 

Schiff Base Complex (7u) 

Yield = 69%, m.p. 206.5–208.6 °C. [α]20 
D  = +2163 (ca. 0.03 g/100 mL, CH2Cl2). 

1H-NMR (CDCl3)  

δ 8.40 (d, J = 8.5 Hz, 2H), 8.28 (d, J = 8.7 Hz, 1H), 7.98 (d, J = 7.5 Hz, 2H), 7.72 (t, J = 7.1 Hz, 1H), 

7.69–7.60 (m, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 7.4 Hz, 1H), 7.30 (t, J = 7.6 Hz, 2H),  

7.21–7.11 (m, 3H), 6.75–6.67 (m, 2H), 4.67 (d, J = 3.5 Hz, 1H), 4.62 (d, J = 12.1 Hz, 1H), 4.17 (d,  

J = 12.6 Hz, 1H), 3.96–3.86 (m, 2H), 3.48 (dd, J = 12.1, 3.5 Hz, 1H), 3.40 (d, J = 12.6 Hz, 1H), 3.23 

(dd, J = 9.7, 7.1 Hz, 1H), 2.95–2.87 (m, 1H), 2.17 (dt, J = 17.7, 8.9 Hz, 1H), 1.97–1.86 (m, 2H), 1.68 

(dd, J = 17.8, 10.7 Hz, 1H), 1.55–1.46 (m, 1H), 1.00 (t, J = 7.1 Hz, 3H). 13C-NMR (CDCl3) δ 180.25, 
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176.03, 173.78, 163.86, 148.69, 143.31, 142.00, 134.01, 133.59, 133.32, 133.25, 131.36, 130.83, 

130.64, 129.33, 129.00, 128.89, 127.47, 127.03, 125.46, 124.23, 123.26, 120.85, 113.96, 70.71, 70.32, 

63.95, 62.93, 57.36, 47.97, 38.63, 30.64, 22.83, 13.61. HRMS (m/z): calcd. C39H35N5NaNiO7
+ for 

766.1782, found 766.1782 ([M+Na]+). HPLC (Chiralpak IA, n-hexane/i-propanol = 50/50, flow rate 

1.0 mL/min, λ = 220 nm), tmajor = 69.0 min, tminor = 8.6 min, de = 97%. 

3.3.22. Ni(II)-(S)-BPB/(2S,3R,4S)-2-Amino-3-(4-(tert-butyl)phenyl)-4-cyano-5-ethoxy-5-oxopentanoic 

Acid Schiff Base Complex (7v) 

Yield = 51%, m.p. 200.8–201.7 °C. [α]20 
D  = +2260 (ca. 0.03 g/100 mL, CH2Cl2). 

1H-NMR (CDCl3)  

δ 8.29 (d, J = 8.7 Hz, 1H), 7.95 (d, J = 7.4 Hz, 2H), 7.72–7.66 (m, 1H), 7.66–7.59 (m, 2H), 7.50 (d,  

J = 8.3 Hz, 2H), 7.40 (d, J = 7.4 Hz, 1H), 7.30 (t, J = 7.6 Hz, 2H), 7.17 (dt, J = 15.7, 7.6 Hz, 5H), 

6.75–6.66 (m, 2H), 4.63 (d, J = 3.7 Hz, 1H), 4.53 (d, J = 12.2 Hz, 1H), 4.20 (d, J = 12.7 Hz, 1H),  

3.86–3.76 (m, 2H), 3.49 (d, J = 12.7 Hz, 1H), 3.32 (dd, J = 12.2, 3.7 Hz, 1H), 3.17 (dd, J = 9.8, 7.4 Hz, 

1H), 3.00 (dd, J = 10.3, 6.8 Hz, 1H), 2.18 (dt, J = 18.1, 8.3 Hz, 1H), 2.06 (dd, J = 11.2, 6.6 Hz, 1H), 

1.89 (dd, J = 19.4, 8.6 Hz, 1H), 1.80 (dd, J = 10.3, 6.2 Hz, 1H), 1.48 (d, J = 8.3 Hz, 1H), 1.34 (s, 9H), 

0.79 (t, J = 7.1 Hz, 3H). 13C-NMR (CDCl3) δ 180.08, 176.69, 173.06, 164.52, 151.93, 143.13, 133.93, 

133.77, 133.17, 132.84, 131.41, 130.88, 130.56, 130.34, 129.16, 128.85, 128.80, 127.82, 127.07, 

126.29, 126.25, 125.92, 123.10, 120.69, 114.80, 70.98, 70.48, 63.49, 62.22, 56.56, 48.08, 39.24, 34.76, 

31.35, 30.72, 22.77, 13.35. HRMS (m/z): calcd. C43H44N4NaNiO5
+ for 777.2557, found 777.2557 

([M+Na]+). HPLC (Chiralpak IA, n-hexane/i-propanol = 50/50, flow rate 1.0 mL/min, λ = 220 nm), 

tmajor = 58.6 min, tminor = 8.7 min, de = 97%. 

3.3.23. Ni(II)-(S)-BPB/(2S,3R,4S)-2-Amino-4-cyano-5-ethoxy-3-(naphthalen-1-y)-5-oxopentanoic 

Acid Schiff Base Complex (7w) 

Yield = 67%, m.p. 188.4–190.3 °C. [α]20 
D  = +1793 (ca. 0.03 g/100 mL, CH2Cl2). 

1H-NMR (CDCl3)  

δ 8.25 (d, J = 8.7 Hz, 1H), 8.00 (dd, J = 16.3, 8.0 Hz, 2H), 7.90 (d, J = 7.5 Hz, 2H), 7.71 (dd, J = 16.1, 

8.1 Hz, 3H), 7.66–7.56 (m, 3H), 7.54–7.44 (m, 2H), 7.41 (d, J = 7.7 Hz, 1H), 7.23 (d, J = 7.4Hz, 2H), 

7.18–7.07 (m, 3H), 6.77 (d, J = 8.2 Hz, 1H), 6.71 (t, J = 7.5 Hz, 1H), 4.80 (s, 1H), 4.76 (d, J = 12.1 Hz, 

1H), 4.30 (d, J = 10.7 Hz, 1H), 4.02 (d, J = 12.6 Hz, 1H), 3.80–3.65 (m, 2H), 3.25 (d, J = 12.5 Hz, 1H), 

2.94 (t, J = 8.7 Hz, 1H), 2.51 (dt, J = 11.5, 5.9 Hz, 1H), 1.89–1.72 (m, 2H), 1.24 (dt, J = 13.6, 6.8 Hz, 

2H), 0.94 (dt, J = 21.1, 7.7 Hz, 1H), 0.67 (t, J = 7.1 Hz, 3H). 13C-NMR (CDCl3) δ 179.70, 176.53, 

173.06, 164.07, 143.34, 134.19, 133.94, 133.72, 133.47, 133.23, 133.08, 131.36, 131.22, 130.96, 

130.45, 129.86, 129.42, 128.98, 128.76, 128.69, 127.37, 126.94, 126.86, 126.59, 126.02, 125.80, 

125.42, 122.98, 122.94, 120.40, 114.48, 72.69, 70.32, 63.60, 62.39, 57.23, 43.09, 39.99, 30.34, 22.94, 

13.28. HRMS (m/z): calcd. C43H38N4NaNiO5
+ for 771.2088, found 771.2088 ([M+Na]+). HPLC 

(Chiralpak IA, n-hexane/i-propanol = 50/50, flow rate 1.0 mL/min, λ = 220 nm), tmajor = 31.7 min,  

tminor = 12.3 min, de > 99%. 
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3.4. Procedure for the Synthesis of (2S,3R)-8a 

In a typical procedure, 3 mol/L HCl (3.33 mL, 5.0 mmol) was added to a solution of the (S,2S,3R)-7a 

(1.0 mmol) dissolved in THF (13 mL). The reaction was stirred for 12 h or until the red color of the 

solution disappeared and was then concentrated under vacuum to half of the original volume. In the 

case of (S,2S,3R)-7a, the (S)-BPB was recovered from the aqueous portion by extracting with ethyl 

acetate (EA) and was washed with water. The organic layer was removed, and the aqueous portion was 

diluted with water (2 mL). The aqueous portion was transferred to a clean flask, and solid NaHCO3 

(336 mg, 4.0 mmol) was carefully added with stirring to neutralize the solution, followed by Na2EDTA 

(372 mg, 1.0 mmol), and was stirred for 5 min. Additional solid NaHCO3 (336 mg, 4.0 mmol) was 

added, followed by a solution of Fmoc-OSu (337 mg,1.0 mmol) in acetonitrile (5 mL). The reaction 

was stirred for 24 h under nitrogen, concentrated in vacuum to half of the original volume, adjusted to 

pH = 3 with 10% citric acid, and extracted with EtOAc twice. Combined organic layers were washed 

with brine, dried with anhydrous MgSO4, concentrated, and purified on silica gel using a flash 

chromatography (petroleum ether/ethyl acetate = 1/2) to give (2S,3R)-8a as a white solid. 

3.5. 2-(((9H-Fluoren-9-yl)methoxy)carbonyl)-4,4-dicyano-3-phenylbutanoic Acid (8a) 

1H-NMR (CDCl3) δ 8.02 (s, 1H), 7.68–7.54 (m, 3H), 7.54–7.41 (m, 2H), 7.21–6.97 (m, 6H),  

6.58 (s, 1H), 4.42 (s, 1H), 4.35–4.17 (m, 2H), 4.11 (s, 1H), 4.06 (s, 1H), 3.82 (s, 1H). 13C-NMR 

(DMSO) δ 172.8, 162.3, 150.4, 143.2, 140.6, 140.6, 128.9, 128.8, 127.8, 127.7, 127.2, 127.2, 127.1, 

126.4, 121.3, 120.1, 120.0, 109.7, 67.8, 59.7, 46.1, 25.1, 20.7. ESI-MS (m/z): calcd. 450.2, found  

450.4 ([M−H]−). 

4. Conclusions 

We have reported the first asymmetric three-component reaction of chiral nickel(II) glycinate,  

aromatic aldehydes, and an α-carbanion of two electron-withdrawing groups (malononitrile or ethyl 

cyanoacetate) to give a series of novel α-amino-β-substituted γ,γ-disubstituted butyric acid derivatives. 

We have screened a series of reaction conditions and developed a practical system to promote the 

asymmetric three component reaction of chiral nicke(II) glycinate. This reaction, which constructed 

two carbon-carbon bonds and formed two or three chiral centers, provides a convenient synthesis of 

functionalized chiral Fmoc-α-amino-β-substituted γ,γ-disubstituted butyric acid derivatives. The 

transformation performed well with electron-deficient, electron-rich, condensed ring and sterically 

hindered aromatic aldehydes and addorded functionalized products. To our excitement, some of them 

had amazingly high diastereoselectivities, but the heteroaryl substitutes were not well tolerated. The 

absolute configurations of the typical products were determined. Further studies will focus on 

mechanistic aspects, expansion of substrate ranges, and further applications of other chiral nickel(II) 

complexes in important carbon-carbon bond-forming reactions. 
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