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Abstract: Post-translational modifications of the heptad repeat sequences in the C-terminal 

domain (CTD) of RNA polymerase II (Pol II) are well recognized for their roles in 

coordinating transcription with other nuclear processes that impinge upon transcription by 

the Pol II machinery; and this is primarily achieved through CTD interactions with the 

various nuclear factors. The identification of novel modifications on new regulatory sites 

of the CTD suggests that, instead of an independent action for all modifications on CTD, a 

combinatorial effect is in operation. In this review we focus on two well-characterized 

modifications of the CTD, namely serine phosphorylation and prolyl isomerization, and 

discuss the complex interplay between the enzymes modifying their respective regulatory 

sites. We summarize the current understanding of how the prolyl isomerization state of the 

CTD dictates the specificity of writers (CTD kinases), erasers (CTD phosphatases) and 

readers (CTD binding proteins) and how that correlates to transcription status. Subtle 

changes in prolyl isomerization states cannot be detected at the primary sequence level, we 

describe the methods that have been utilized to investigate this mode of regulation. Finally, 

a general model of how prolyl isomerization regulates the phosphorylation state of CTD, 

and therefore transcription-coupled processes, is proposed. 
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1. Introduction 

The three RNA polymerases (Pol I, II, III) in eukaryotic systems have different transcriptional  

roles [1,2]. The workhorse Pol II transcribes all protein-coding mRNAs as well as some non-coding 

RNAs, whereas Pol I transcribes most of the ribosomal RNAs and the main function of Pol III is the 

synthesis of small RNAs such as tRNAs [1,2]. Though the three RNA polymerases share high 

similarity in their subunit compositions and catalytic domains, a unique C-terminal domain (CTD) 

comprised of multiple heptad repeat sequences [3] is only found in Pol II [3]. The CTD is important as 

it acts as a scaffold that coordinates the Pol II transcription process with other cellular events such as 

cell cycle regulation and DNA repair [4–9]. 

From fungi to humans, the CTD consists of tandem repeats of the heptad consensus sequence 

YSPTSPS with its overall length correlating roughly to complexity of the organism; CTDs range from 

17 repeats in Plasmodium falciparum [10] to 52 in vertebrates [7–9]. Conservation of the consensus 

sequence also varies dramatically among species: yeast has one of the most conserved CTDs with  

21 out of the 26 CTD repeats fitting the consensus motif, while the Drosophila CTD contains only two 

repeats out of 42 that faithfully replicate the conserved heptad. A minimal amount of repeats must be 

retained (usually around half of the normal number) by each species for cell viability, presumably by 

supporting transcription and its associated processes [11]. 

2. Covalent Modification of CTD 

The recruitment of various regulatory factors to the CTD choreographs the progression of 

transcriptional initiation, pausing, elongation, mRNA co-processing and termination [12]. How does 

such a seemingly simple heptad repeat sequence encodes such complicated functionality? Although 

this question still baffles researchers, an important component in transcriptional regulation are covalent 

post-translational modifications of the CTD with the best studied being phosphorylations. Indeed, the 

CTD is highly enriched in amino acids that can be phosphorylated and in vivo the CTD has been found 

in both hypo- and hyper-phosphorylated states [13–15]. Five out of the seven residues in the heptad 

repeat can be modified by phosphorylation with the phosphorylation states of Ser2 and Ser5 playing an 

essential roles during Pol II transcription termination and transcription associated processes [16].  

The CTD is unphosphorylated for the form of Pol II that enters into a promoter (with the assistance of 

Pol II general transcription factors). After the assembly of the pre-initiation complex (PIC), the 

phosphorylation of Ser5 residues of the CTD seems to coincide with the clearance of promoter and the 

start of elongation. As Pol II progresses towards the 3' end of a gene, Ser5 phosphorylation level drops 

while Ser2 phosphorylation picks up and becomes predominant. At Pol II completes the termination 

process, all CTD phosphorylations are eventually cleared by CTD phosphatases to regenerate 

unphosphorylated Pol II molecules that may enter the pool ready for another round of transcription [16,17]. 
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In addition to the major sites of Ser2 and Ser5, a variety of novel modifications along the CTD have 

been identified in recent years. These discoveries were made possible by the development of novel 

CTD specific antibodies and revealed new phosphorylation sites [18–20] such as Tyr1 phosphorylation, 

which has subsequently been linked to transcription termination [21]. Likewise, phosphorylation at 

Thr4 was observed and found to play a role in transcription termination of non-polyadenylated 

mRNAs such as histones [22], and in transcription elongation [18]. Ser7 phosphorylation plays an 

essential role in snRNA transcription [19,20]. Additionally Arg, which sometimes replaces Ser7 in 

mammalian CTD sequences, can be modified by methylation [23]. These recent discoveries suggest an 

even more sophisticated CTD code mediated by post-translational modifications, yet how these 

modifications affect CTD-regulatory enzymes and transcription requires further investigation. 

3. Non-Covalent Modification on CTD 

A non-covalent post-translational modification of the CTD that plays an important role in 

transcription is proline isomerization. The only residues in the CTD consensus sequence that are not 

subject to phosphorylation are Pro3 and Pro6, immediately following the essential Ser2 and Ser5 

residues, respectively. Therefore, during transcription the CTD becomes enriched with phosphorylated 

Ser(P)-Pro motifs that are the recognition site for an essential switch in signaling mediated by prolyl 

isomerase Pin1 [24,25]. For example, each molecule of the human Pol II CTD has more than 100 sites 

that can contain a phosphoryl-Ser-Pro motif [14,26] and are potentially subject to modification by Pin 1. 

The partial double bond character of peptide bonds results in two possible configuration: cis and 

trans (Figure 1), depending on their dihedral angle. The trans isomer is almost exclusively favored in 

19 out of the 20 natural amino acids due to lower steric conflict. However, unique to proline, a bond 

between the R-group delta carbon and adjacent N-terminal nitrogen results in an organic amide and a 

bulky circularized side chain, which has an increased propensity for the Xaa-Prolyl bond to be in the 

cis isomer form (10%–15%). This prolyl peptide bond can spontaneously rearrange, but the kinetic 

energy barrier for the cis/trans isomerization is greater than 88 kJ/mol [27], making it a slow process. 

The isomerization process can be influenced by the phosphorylation states of flanking residues [28–30]. 

We will use the term “conformation” in this review when referring to the two isomeric structures 

allowed for the N-terminal peptide bond of proline, as it is relatively easy (compared to other amino 

acids) to convert from the trans form to the cis arrangement without the need to completely break the 

partial double bond. 

Figure 1. The isomerization of proline residues. cis- and trans-conformations of proline 

residue when the residue in front is phosphorylated serine. 
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Pin1 and the yeast homologue Ess1 are proline isomerases that catalyze cis/trans prolyl peptide 

bond inter-conversions. Interestingly, Pin1 only recognizes targets when the serine/threonine preceding 

the proline is phosphorylated [31]. The target specificity of Pin1 situates it as a key mediator between 

post-translational modification and signal transduction since key transcriptional regulators, including 

CTD kinases and phosphatases, recognize the same sequence motif [32]. The active sites of 

downstream enzymes that bind to the Pol II CTD, such as phosphatases, transcription termination 

factors, or capping enzymes, can be specific for only one prolyl isomerization state. Thus the 

isomerization activity of Pin1 can overcome the rate limiting step of prolyl cis/trans conversion and 

quickly replenish substrate pools. Because of this, Pin1 functions as a kinetic switch that diverts 

signaling pathways and, as a result, affects the enzymatic activity, cellular location, protein degradation and 

gene expression of cells (Figure 2), with more details reviewed in recent articles [33–35]. 

Pin1 is a 163 amino acid polypeptide that can be divided into two domains based on topology: an 

N-terminal WW domain that provides substrate recognition and C-terminal peptidyl-prolyl cis/trans 

isomerase (PPIase) domain (Figure 3A) [36]. The active site of the PPIase domain is highly conserved 

throughout the entire parvulin family, the subfamily of proline isomerases to which Pin1 belongs [31]. 

The active site was identified in the structure of human Pin1 complexed with a low affinity dipeptide 

and is composed of a phosphate binding pocket, a prolyl binding pocket, and reaction center [36].  

At the entrance of the active site, three basic residues (Lys63, Arg68 and Arg69) form a cluster that 

mediates binding of phosphorylated physiological targets (Figure 3B). This positively charged triad is 

highly conserved throughout Pin1 homologues in a variety of species and provides a selective filter in 

substrate recognition, explaining the three magnitude higher preference of Pin1 for phosphorylated 

over unphosphorylated substrates [31]. Upon peptide binding, a 70° rotation in the loop connecting α1 

and β1 closes on the active site, provide a lid to isolate the prolyl peptide to undergo isomerization [37]. 

The residues spatially arranged around the prolyl-peptide (Cys113, His59, His157 and Ser154) are 

believed to facilitate the isomerization reaction. The proposed mechanism of Pin1, based on the dipeptide 

complex structure, includes the deprotonation of Cys113 by His59 which nucleophilically attacks the 

carbonyl carbon of the substrate peptide, resulting in tetrahedral intermediate formation between enzyme 

and substrate [36]. The spatial arrangement of the Pin1 active site has high homology with cysteine 

proteases and is observed to be the most efficient member of the prolyl isomerase family [38–40]. 

Pin1 activity helps regulate the transcription of mRNA precursors and Pol II-stimulated pre-mRNA 

processing in vivo [41–44], presumably through the replenishing of cis-prolines in the CTD. The 

structure of human Pin1 bound to a double phosphorylated CTD repeat gave the first glimpse of how 

CTD is recognized by Pin1 [45]. This structure is also the first report of the elusive CTD, which was 

the region not resolved in Pol II structures [46,47]. The structure showed that the binding of CTD by 

Pin1 was mediated through the WW domain of Pin1, a binding module at the N-terminal domain [48]. 

Even though both Ser2-Pro3 and Ser5-Pro6 could fit the bill as Pin1 substrates, it has been shown that 

only Ser5-Pro6 is recognized [45]. The biological and structural results of Pin1 on Pol II function 

supports a model that the WW domain acts to bind Pin1 to the CTD and confers one dimensional 

movements along the CTD during which the PPIase domain encounters proline sites and catalyzes 

their isomerization [49]. 
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Figure 2. Pin1 functions as a kinetic switch in signal transduction. (A) c-Jun is a 

component of the transcription activator protein 1 (AP-1) which requires phosphorylation 

by Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPKs) followed by the 

action of Pin1 to become fully active as a transcription regulator [35], (B) In Drosophila, 

Chorion factor 2 (CF2) is degraded as a result of epidermal growth factor receptor (EGFR) 

signaling which promotes the phosphorylation of CF2 at a single site. Drosophila Pin1 

homologue, Dodo, can then act on CF2, targeting it for proteasomal degradation [34].  

(C) Pin1 stabilizes Cyclin D1 in the nucleus, preventing its translocation to the cytosol, 

which would subsequently target it for degradation [35]. (D) c-Myc, a cell-cycle regulator, 

undergoes phosphorylation by ERKs. This initial phosphorylation stabilizes c-Myc. 

GSK3β activates and phosphorylates c-Myc at a secondary site. The initial site is then 

dephosphorylated by protein phosphatase 2A (PP2A), which destabilizes the protein and 

results in its degradation. PP2A requires the action of Pin1 to convert c-Myc into an ideal 

substrate [35]. 

 
  

A. B. 

C. D. 
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Figure 3. The structure of human prolyl isomerase Pin1. (A) The domain architecture of 

human prolyl isomerase Pin1 with WW domain colored green and PPIase domain colored 

cyan, (B) The active site of Pin1 PPIase domain in complex with substrate analogue  

(PDB ID: 3TCZ) [49], Lysine 63, Arginine 68, and Arginine 69 contribute to phosphoryl 

peptide substrate recognition, C) WW domain of Pin1 (green) recognizing phosphoryl-peptide 

substrate (PDB ID: 1F8A) [45]. 

 

4. Erasers, CTD Phosphatases 

Pin1 mediated prolyl isomerization plays a significant role in regulating Pol II CTD phosphatases [49]. 

Since Pin1 preferentially recognizes substrates with proline residues immediately following phosphorylated 

Ser5, its activity has the greatest impact on Ser5 phosphatases. Two well characterized examples of 

transcription regulation through prolyl isomerization are found in the Ser5 phosphatases, Ssu72 and 

Scp1 [50,51]. 

4.1. Ssu72 

The eukaryotic Ssu72 (Suppressor of sua7-1 clone 2) is a phylogenetically conserved Ser5 CTD 

phosphatase [52,53] that was first identified in yeast genetic experiments where it was shown to impact 

the formation of the transcriptional PIC [54]. Further investigation revealed that Ssu72 is also involved 

in transcription elongation [55], mRNA processing [52] and termination [56,57]. Mutation at the active 

site of Ssu72 causes the accumulation of phosphorylated Ser5 on CTD. This identified the enzyme’s 

role in CTD Ser5 dephosphorylation [53]. 

Ssu72 utilizes a cysteine-based phosphate transfer mechanism similar to the tyrosine  

phosphatases [58,59]. Surprisingly, when the complex structure of Ssu72 with a Pol II CTD peptide 



Molecules 2014, 19 1487 

 

 

fragment was determined [51,58,60], it was found that Pro6 of the bound peptide was in the  

cis-proline form, making Ssu72 the first cis-specific phosphatase reported (Figure 4A). The local 

geometry of the Ssu72 active site provides favorable interactions with the CTD peptide to maintain the 

tight β-turn for the Pro6 to adopt the cis-form [51]. In particular, an intra-molecular hydrogen bond 

between the hydroxyl group of Thr4 and the carbonyl of Pro6 further stabilized the conformation [51]. 

However, this intramolecular hydrogen bond is dispensable since its loss will not abolish Ssu72 

recognition. This finding emphasized the importance of induced-fit model that the active site 

configurations of CTD enzymes prompt the CTD conformation recognized [58]. 

The selectivity of Ssu72 towards cis-proline, which is a minor species in the proline conformation 

pool, makes the availability of cis-proline a major determinant of its phosphatase activity. This 

requirement explains the previously identified functional interaction of Ssu72 with proline isomerase 

Pin1/Ess1 [44]. Since the auto-conversion of trans- to cis-proline is slow, the cis/trans isomerization 

becomes the rate limiting step for the reaction catalyzed by Ssu72 (Figure 4C) [25,32]. Now, proline 

isomerases (e.g., Pin1 and Ess1) catalyze the cis/trans conversion and thus may contribute to 

rebalancing the substrate pool for Ssu72 [25]. This hypothesis is greatly supported by experimental 

data where the addition of Pin1 to Ssu72 kinetic assays produces a three-fold rate enhancement for the 

apparent enzymatic activity of Ssu72 (Figure 4C) [51,61]. 

Recently it has been shown that Ssu72 can also dephosphorylate phosphoryl-Ser7 of the CTD 

consensus sequence in vivo [62,63]. The in vitro phosphatase activity of Ssu72 towards Ser7 is about 

4,000 times weaker than its activity against Ser5 using synthetic peptides [64]. The crystal structure of 

Ssu72 recognizing the CTD peptide with only Ser7 phosphorylated revealed that the peptide is 

orientated 180° from the mode of recognition towards phosphoryl-Ser5 with the N- and C-termini 

reversed [64]. The peptide bonds connecting Pro6 to the proceeding serines in this crystal structure are 

in the trans form. The question of how prolyl isomerase activity modulates Ssu72’s action on Ser7 

dephosphorylation is still not fully answered. Western blotting assays suggest that the addition of Ess1, 

the yeast homologue of Pin1, produces an apparent enhancement of dephosphorylation by Ssu72 on a 

GST-CTD doubly phosphorylated at Ser5 and Ser7 by THIIH [64]. However, the phosphoryl-specific 

antibodies of CTD are very sensitive to the phosphorylation state of flanking residues and, making the 

quantification of phosphorylation at Ser7 impossible. Better identification and quantification of 

phosphoryl-Ser7 using methods such as mass spectrometry will be necessary to conclude definitively 

about the impact of prolyl isomerase activity on Ser7 phosphorylation state. This would be particularly 

interesting because, unlike any substrate of Pin1 or Ess1, the proline residue precedes the 

phosphorylated residue rather than following it. 

4.2. Scp1 

The effect of proline isomerase activity on other CTD Ser5 phosphatases is dramatically different 

from cis-specific Ssu72. Small CTD phosphatases (Scps) are a family of three homologues that display 

strong activity and selectivity towards CTD phosphorylated at Ser5 [65]. Scps are localized to the 

nucleus of non-neuronal cells and have been shown to play a vital role in silencing the expression of 

neuronal genes [66]. Scps prevent neuronal differentiation of stem cells primarily through association 

with the REST/NRSF protein complex at RE-1 elements in undifferentiated stem cells and non-neuronal 
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cell types [66]. Because of its activity in neuronal silencing, Scps have been proposed as a target for 

neural regeneration [67]. The crystal structure of Scp1 bound to a CTD peptide revealed a hydrophobic 

pocket interacting with Pro3 as a determinant for Ser5 selectivity (Figure 4B) and both Pro3 and Pro6 

exhibit trans conformations. Computational modeling of cis-proline into Scp1 suggested that the 

incorporation of cis-proline in CTD would require major remodeling of Scp1’s active site, making  

cis-proline an unlikely substrate [50]. All the structural data strongly suggest that Scps are trans-specific 

phosphatases. Since the substrate for Scps appears to be the trans-form, the major CTD conformation 

species, the transition from cis-to-trans substrate is unlikely to be the rate-limiting step for the 

dephosphorylation mediated by Scp1 (Figure 4A). Consistently, the prolyl isomerase activity of Pin1 

has little effect on the phosphatase activity of Scp (Figure 4C) [49]. In other words, trans-specific 

phosphatases can bypass Pin1 regulation (Figure 4C). 

Figure 4. Regulation of Ser5 CTD phosphatases by prolyl isomerase. (A) Ssu72 in 

complex with a CTD phosphoryl-peptide with cis-proline (PDB ID: 4IMJ) [58]. (B) Scp1 

in complex with a CTD phosphoryl-peptide with trans-proline (PDB ID: 2GHT) [50].  

cis- and trans-conformations are highlighted in red. (C) Model of the regulation of CTD 

Ser5 phosphatases by Pin1. The activity of cis-specific phosphatase Ssu72 is upregulated 

by Pin1 isomerase activity. Yet, trans-specific phosphatase Scp1 bypasses Pin1 regulation. 
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4.3. Fcp1 

Fcp1, also known as TFIIF-stimulated CTD phosphatase I, is the first CTD phosphatase ever 

reported [68]. Fcp1 is composed of three domains: a phosphatase domain (conserved with that of Scp [69]) 

and a BRCA1 C-terminus (BRCT) domain [70] which are required for biological activity [71,72],  

and an Fcp1 specific helical domain [73]. Fcp1 dephosphorylates both Ser2 and Ser5 of the CTD in vitro, 

with a preference for Ser2 in vivo [74]. Fcp1 was shown to play a vital role in Pol II recycling, and 

transcription elongation through its phosphatase activity [71,75]. The Fcp1 structure from 

Saccharomyces pombe was determined and showed a similar reaction center as Scp where the 

nucleophilic Asp residue forms a covalent bond for phosphoryl transfer [73]. The prolyl-isomerization 

requirement of Fcp1 remains undetermined despite attempts to include CTD peptides in crystallization 

conditions, which thus far have yielded no observable electron density at the active site [70]. 

Indirect evidence has been presented to probe the effect of prolyl isomerization on Fcp1. It was 

reported that Pin1 accelerates the rate at which Fcp1 dephosphorylates Ser5 in vitro with no change 

being observed in Ser2 dephosphorylation in vivo [76]. However, additional work argued that  

prolyl isomerase activity inhibits Fcp1 activity [77]. The seemingly contradictory nature of  

proline-isomerization’s effect on Fcp1 activity is a complicated and yet unexplored question. For the 

purposes of this review, we present the following factors which might explain the source of controversy: 

(1) the preferred binding site for Pin1 is phosphorylated Ser5 as opposed to Ser2; Fcp1 is known to 

favor phosphorylated Ser2 with weak secondary activity against Ser5. The star activities of both 

proteins make interpretation of data difficult, (2) the inhibitory effect of Pin1 on Fcp1 might be caused 

by the binding of the WW domain of Pin1 blocking the Ser5 of CTD and effectively sequestering 

substrate from Fcp1 independent of its isomerase activity, and (3) Currently, it is impossible to 

measure the cis- and trans-isomer state in vivo. Therefore, in vitro conditions may not properly mimic 

the dynamics in a biologically relevant environment. Due to these complicating factors and 

contradictory data, the existence or identity of prolyl specificity for Fcp1 has yet to be established. 

4.4. Rtr1 

Putatively Rtr1 is the most recently identified Pol II CTD phosphatase, however the nature of its 

surmised catalytic activity is in debate [78–80]. Rtr1 is encoded by the Saccharomyces cerevisiae 

YER139C gene, which was shown to be required for growth at 37 °C in the presence of heat shock 

mimetic formamide, and has the closest sequence homology with the human Pol II associated factor 

(RPAP2) [81,82]. Rtr1 was originally suspected of playing a role in transcription because yeast strains 

deficient in Rtr1 were shown to be defective in inducible transcription from a GAL1 promoter [78]. 

Subsequent in vivo analysis found evidence that Rtr1 acts as a bona fide Ser5 CTD phosphatase [79]: 

(i) during transcription Rtr1 is observed to localize at coding regions of genes and is maximally 

enriched when Ser5 phosphorylation is diminished and Ser2 phosphorylation begins to plateau,  

(ii) deletion of Rtr1 leads to an accumulation of Ser5 phosphorylation along the CTD, and (iii) rtr1 

mutations produce decreases in Pol II-mediated transcription and defects in Pol II termination [79]. 

Although the case for Rtr1 acting as a CTD phosphatase is compelling, the primary sequence of Rtr1 

exhibits no homology to any known phosphatase families [80] and more importantly, the first crystal 
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structure of Rtr1 (derived from yeast strain Kluyveromyces lactis) revealed no apparent active site for 

phosphatase activity. However, since the crystal was obtained from a truncated version of Rtr1 lacking 

the last 57 amino acids toward the C-terminus, it is possible that the active site was partially absent  

in the recombinant protein. Even though the in vitro assay using general phosphatase substrate  

para-nitrophenylphosphate (pNPP) or CTD synthetic peptide shows no observable phosphatase  

activity [80], the phosphatase activity might have been also weakened due to the lack of binding partners in 

the assay that would target substrates to Rtr1 [80]. Alternatively, Rtr1 may not have an intrinsic 

catalytic activity but instead might act as a modulator/regulator of another bona fide Ser5 phosphatase. 

5. Writers, CTD Kinases 

The Pol II CTD kinases act upstream of and generate substrate for Pin1/Ess1 and are therefore 

unaffected by Pin1 mediated isomerization. However, since Ser2 and Ser5 are followed by proline 

residues and most kinases are sensitive to the proline isomerization state by strongly favoring the 

trans-conformation, it is logical that a proline isomerase could regulate kinase activity by 

isomerization of the non-phosphorylated CTD. Indeed, a cyclophilin-like prolyl isomerase SRcyp (also 

known as CASP10 or CARScyp [83] or hCyp89 [84]) has been implicated in the regulation of Pol II 

CTD kinases [85]. SRcyp contains an N-terminal PPIase and a C-terminal serine/arginine-rich (SR) 

domain, a module frequently found in splicing factors and RNA binding proteins [85]. SRcyp binds to 

the CTD through its SR domain in vitro and in vivo, representing a novel type of CTD interacting 

domain (CID) [85,86]. 

Unlike Pin1, SRcyp regulation of the phosphorylation state of CTD hasn’t been well established. 

We hypothesize that the proline isomerase activity of SRcyp may facilitate cis to trans isomerization in 

order to promote kinase activity. So far, the well characterized CTD kinases are all cyclin-dependent 

kinases (CDKs), suggesting a mechanism that coordinates transcriptional events to cell cycle regulation. 

CDKs show strong preferences for Ser/Thr-Pro motifs, therefore, the isomerization state of the proline 

residue following Ser/Thr is a critical substrate specificity determinant [87–89]. In the crystal structure 

of CDK2 in complex with cyclin A and a substrate peptide, its specificity seems to be trans-proline 

only at the P+1 position (Figure 5A) [87]. In an activated CDK2, which is phosphorylated at Thr160, 

the Val164 residue in the activation loop establishes interactions with surrounding residues and adopts 

an unusual left-handed conformation in order to create a binding pocket to accommodate a  

trans-conformation proline. In non-activated CDK2, the position of Val163 pushes the activation loop 

towards the substrate obstructing the binding of proline in the P+1 position (Figure 5B) [90]. 

Comparison of both these structures strongly suggests a trans-specificity for CDK2 (Figure 5). 

However, since CDK kinases are trans-specific, isomerization effects might be less dramatic in 

CDK kinases than cis-specific phosphatases. Since trans-proline is the dominant form in the cell, the 

chance of it being depleted and its availability becoming the rate-limiting step of CTD phosphorylation 

is low. In addition, the auto-conversion of proline isomerization in phosphorylated CTD is slower than 

non-phosphorylated form [32,91], therefore prolyl isomerase activity is playing a more important role 

in kinetic regulation when CTD is phosphorylated. Below, we will discuss a few CTD kinases with a 

focus on their phosphorylation specificity and proline selectivity. More detailed biological 

characterization can be found in a recent review [92]. 
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Figure 5. Structural specificity CDKs towards trans-peptide. (A) Phosphorylated CDK2 

(green) at its activation loop on T160 shown with its substrate HHASPRK (yellow) where 

P+1 position is occupied by proline (PDB ID: 1QMZ) [87]. Due to an unusual left handed 

conformation of V164 and stabilizing effect from a hydrogen bond between V164 and 

R169, V164 moved away from substrate to accommodate the proline. (B) A magnified 

view of comparison of activation loops of unphosphorylated (cyan) (PDB ID: 1FIN) [90] 

and phosphorylated CDK2 where V163 from inactivated loop moves toward the substrate, 

blocking the proline at P+1. So, phosphorylated CDKs have their activation loop 

positioned optimally to accommodate P+1 proline in a specific trans-conformation. 

 

5.1. CDK7 

The phosphorylation of the Pol II CTD Ser5 is carried out at the beginning of transcription by 

CDK7, a subunit of the general transcription factor II H (TFIIH) [93–95]. CDKs require the binding of 

a cyclin and T-loop phosphorylation by CDK-activating kinase (CAK) for their activation [96,97].  

In metazoans, CDK7 comprises a heterodimer along with Cyclin H which is then stabilized by MAT1 

(ménage-à-trois 1) to form a submodule: the CDK-activating complex (CAK) of TFIIH [98–101]. As a 

free heterodimer, the CAK submodule is essential for activating other CDKs but upon interaction with 
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the core TFIIH it can also phosphorylate the CTD through its CAK activity [102]. The yeast 

homologue of CDK7 is Kin28, which complexes with regulatory partner Ccl1 to phosphorylate the 

Ser5 of CTD [103,104]. Interestingly, Kin28 doesn’t possess CAK activity. The surprising absence of 

CAK activity in Kin28 later led to the discovery of Cak1, a CAK of yeast [105,106]. 

The phosphorylation of CTD mediated by CDK7 is important for the proceeding of transcription. 

Transcription, in general, starts with the formation of a PIC where unphosphorylated CTD interacts 

with the multi-protein complex Mediator as co-activator and other general transcription factors [107,108]. 

After the formation of PIC, the ATP-dependent activity of TFIIH unwinds the promoter at the 

transcriptional start site via its helicase/translocase subunits [109,110]. Phosphorylation of Ser5 by 

CDK7 occurs before the first phosphodiester bond [94,111,112]. Phosphorylation of Ser5 disturbs the 

association of Mediator complex with CTD [113–115] permitting promoter escape and entry into the 

elongation phase [12]. However, in vitro reconstruction of transcription can proceed in the absence of 

CTD or Mediator. This indicates that they are not required for the early steps of transcription [116].  

In terms of its functionality in the cell, Ser5 phosphorylation seems mainly to facilitate the recruitment 

of pre-mRNA capping enzymes to Pol II by creating a part of the required binding epitopes on the 

polymerase [117–121]. 

5.2. CDK9 

CDK9 is a component of the multi-protein complex named positive transcription elongation factor b 

(P-TEFb), and becomes active by binding to its regulatory subunit cyclin T [122]. Bur1/Bur2 and 

spCDK9/Pch1 are identified as homologues of human CDK9/cyclin T in budding and fission yeast, 

respectively [123,124]. A vital function of P-TFEb is to promote transcriptional elongation through its 

kinase activity [125–127]. Ser2 appears to be the preferred substrate of CDK9 as its inhibition by 

pharmaceutical inhibitor flavopiridol reduced Ser2 phosphorylation and impaired elongation [128].  

Yet Ser2 phosphorylation by CDK9 is not necessarily the trigger of elongation. Importantly, 

phosphorylation of other substrates of CDK9, DRB-sensitivity-inducing factor (DSIF) and Negative 

Elongation Factor-E (NELF), release them from proximal pausing at the promoter to allow productive 

transcription elongation [125,129,130]. In budding yeast, although promoter pausing has not been 

observed [131], the Bur1 kinase promotes elongation through phosphorylating Spt5 and recruiting 

histone-modifying enzymes [132]. 

In addition to its Ser2 phosphorylating activity, CDK9 was also identified as Thr4 kinase [22]. CTD 

phosphorylation at Thr4 is newly discovered and has been implicated in transcription elongation and 

non-polyadenylated histone mRNA processing [18,22]. When DT40 chicken cells were treated with 

CDK9 inhibitors DRB and flavopirido, it was found that the levels of phosphorylated Thr4 were 

reduced concomitantly with Ser2 phosphorylation [22]. Currently, the question of whether or not 

CDK9 phosphorylates Thr4 of CTD in vivo is a topic of intense debate [18,22]. Since CDK9 is 

sensitive to inhibition by flavopiridol, it is possible that the inhibitory effect on Thr4 phosphorylation 

is indirectly caused by inhibition of CDK9 directed Ser2 phosphorylation. As Ser2 phosphorylation is 

prerequisite for Thr4 phosphorylation, blocking Ser2 phosphorylation can prevent Thr4 

phosphorylation by other kinases such as PLK3 [18,133]. 
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5.3. CDK12 

Saccharomyces cerevisiae CTDK1 was the first Pol II CTD kinase identified [134]. CTDK1 is a 

three-subunit complex consisting of Ctk1 (kinase subunit), Ctk2 (cyclin subunit) and Ctk3 (a subunit 

with unknown function). For a long time, no Ctk1 homologues were identified in higher eukaryotes, 

therefore, it was widely believed that the function of both Bur1/Bur2 and Ctk1 have merged into  

P-TEFb during evolution as they recapitulate most of the kinase function of P-TEFb [135]. This was 

supported by the shared genetic interactions, as well as 43% sequence identity between CDK9 and 

Bur1 or Ctk1 at the kinase subunit region [126]. However, recent molecular evolution analysis showed 

that CDK9 is closely related to Bur1 while Ctk1 was related to human proteins CrkRS and  

CHED [123,136] which were later named CDK12 and CDK13, respectively [137,138]. CDK12 was 

characterized only recently as human homologue of yeast Ctk1 [139,140]. 

Ctk1 binds to Pol II and phosphorylates Ser2 [141,142]. Similarly, in higher eukaryotes, CDK12 

phosphorylates the CTD in vitro and in vivo using Cyclin K as its bona fide cyclin partner [139,140]. 

Surprisingly, inhibition of CDK9 in vivo prevented all CTD Ser2 phosphorylation suggesting that 

CDK9 is the major Ser2 kinase while CDK12 only plays a limited role in CTD Ser2 phosphorylation 

in metazoans [143,144]. A reasonable explanation is that the inhibition of CDK9 traps Pol II in the 

proximal pausing stage so that downstream elongation kinases, such as CDK12, are unable to  

function [131,145]. Ctk1 removes the basal transcription factors from the polymerase and facilitates 

the transition from transcription initiation to elongation: however, such functions are not associated 

with its kinase activity towards Ser2 [146]. 

5.4. CDK8 

CDK8/Cyclin C is the human homologue of yeast Srb10/Srb11, the yeast kinase complex that 

phosphorylates yeast Pol II holoenzyme in vitro and regulates transcription in vivo and has mostly been 

studied as a Mediator-associated kinase [147–150]. In vitro analysis showed that Srb10/Srb11can 

phosphorylate full length and synthetic CTDs at Ser5 with a similar efficiency to Kin28/Ccl1 [151]. 

Interestingly, CDK8 phosphorylates both Ser2 and Ser5 in vitro with a preference for Ser5 [152] but 

this has not been established in vivo. A kinase-deficient variant of Srb10 enhances the viability of yeast 

cells carrying lethal CTD truncations suggesting that Srb10 kinase negatively regulates transcription [151]. 

Thus it was proposed that Srb10 phosphorylates the CTD prior to the PIC, inhibiting subsequent 

transcription [151]. This model has gained strong support from structural studies including a stable 

complex of Srb8/Srb9/Srb10/Srb11 purified from yeast, namely the CDK8 kinase module (CKM) [153]. 

Electron microscopy studies of yeast CKM confirmed that interaction of the CKM with Mediator’s 

middle module obstructs the interaction of CTD-Mediator [154]. Additionally, human CKM (CDK8, 

cyclin C, Med12, and Med13) negatively regulate transcription by phosphorylating the CTD prior to 

PIC leading to disruption of Mediator-CTD interaction [151,155]. Furthermore, recombinant CDK8 

was shown to inactivate CDK7/Cyclin H by phosphorylating cyclin H subunit [156], overall suggesting 

that CDK8 is a negative regulator of transcription. 

However recent work on CDK8 suggests that it also possesses the function as a positive regulator of 

transcription both in yeast and humans [157]. A plethora of signaling pathways are known to utilize 
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CDK8 as a co-activator, including p53 pathway [157], β-catenin pathway [158], the serum response 

network [159] and TGFβ pathway [160] implicating CDK8 in promoting transcription activity at 

multiple stages of transcription. The recent discovery that Mediator, which forms a complex with 

CDK8, can also function at elongation phase in a gene-specific fashion is a good example of its 

possible function in positive regulation [161]. In yeast, CDK8 is known to have a positive role in 

GAL4- and SIP4-mediated transcription. During GAL4-dependent transcription, CDK8 is critical for 

phosphorylation of Ser699 [162,163] and Sip4 phosphorylation was reduced with a mutated CDK8 [164]. 

The case for a positive effect on transcription mediated by CDK8 was further strengthened by the fact 

that recruitment of super elongation complex containing P-TEFb to hypoxia induced genes had 

positive effects on Pol II elongation in a CDK8-dependent manner [165]. 

Overall, even though both positive and negative effects on transcription have been reported for 

CDK8, it is still not well understood if any such effects are caused by its kinase activity towards CTD 

or, alternatively, other substrates during transcription. It is highly likely that both effects can be 

achieved in different protein contexts. 

6. Readers, CTD Binding Proteins that Regulate Transcription 

The Pol II CTD binds to more than a hundred protein factors involved in transcription  

regulation [166,167], linking transcription to various aspects of nuclear processes. A recent survey of 

the literature suggests these factors are mostly involved in transcription, mRNA processing and 

transport, or chromatin modification [168,169]. Only a small fraction of CTD binding proteins have 

their prolyl specificity defined, but of those characterized most bind to CTD with proline in the trans 

conformation [168] with the notable exception of Ssu72 [58,60] and Nrd1 [170]. The CTD proline 

isomerization state can determine if a protein is recruited to active transcription machinery and, 

therefore, plays an important role in the assembly of transcriptional complexes. In this way the prolyl 

specificity alters the constitution of transcriptional machinery and eventually the outcome of transcription. 

6.1. Nrd1 

Nrd1 is a RNA binding protein that plays a central role in the transcription termination of noncoding 

transcripts including small nuclear RNAs (snRNAs) [171], nucleolar RNAs (snoRNAs) [172],  

non-polyA snoRNA transcripts [173], cryptic unstable transcripts (CUTs) [174], upstream regulatory 

RNAs [43], and stable unannotated transcripts (SUTs) [43,175–177]. Nrd1 binds to the CTD in a 

phosphoryl-Ser5-dependent manner [174,176] and is recruited to CTD after transcription initiation and 

early elongation when phosphorylated Ser5 is predominant. 

A recent solution structure of Nrd1 with a CTD peptide reveals that Nrd1 recognizes the CTD with 

Pro6 in the cis conformation, making it the first cis-specific CTD reader [170]. The Nrd1 CID-CTD 

structure shows the presence of two heptads, where the first one has its proline in cis- and the second 

one in trans-conformation (Figure 6A). This proline selectivity makes cis-proline a pre-requisite for 

the assembly of the termination complex for noncoding RNA. Indeed, this termination pathway utilizes 

a distinct tripartite complex of Nrd1, Nab3, and Sen1 [178] where Nrd1-Nab3-Sen1 complex is 

recruited to the CTD via interaction between Nrd1 and phosphoryl Ser5 [169]. Recently it was shown 

that Candida albicans Ess1 is necessary for efficient termination of snoRNAs [179] and it was also 
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shown that the prolyl isomerase activity of Ess1 is required for Nrd1-dependent transcription 

termination of small ncRNAs [43]. Ess1 also promotes the release of Nrd1 from CTD in terminator 

regions [43]. These data are consistent with the notion that the conversion of cis- to trans-proline in 

CTD by prolyl isomerase provides a better binding site for downstream CIDs. 

6.2. Pcf11 

Protein 1 of Cleavage and polyadenylation Factor (Pcf11) is a conserved component of the yeast 

mRNA cleavage factor IA (CFIA), which is essential for transcription termination and 3'-RNA 

processing [180]. Pcf11 preferentially binds to CTD with phosphorylated Ser2, although it also binds 

to unphosphorylated CTD [181]. The mechanism of recognition of phosphorylated CTDs by Pcf11 

was revealed by a crystal structure of Pcf11-CID in complex with a Ser2 phosphorylated CTD peptide 

(Figure 6B) [182]. Interestingly, the phosphate group of Ser2 was extended away from the surface 

without direct contact to Pcf11, partially explaining why Pcf11 can also bind to non-phosphorylated 

CTD (Figure 6B) [182,183]. In the crystal structure, both Pro3 and Pro6 were bound in the trans- 

conformation [182] (Figure 6B). 

Figure 6. Structural comparison of Nrd1 and Pcf11. (A) Solution structure of Nrd1-CTD 

complex (PDB ID: 2LO6) showing phosphoryl-Ser5 of two consecutive CTD repeats 

(blue-first heptad, yellow-second heptad) bound to Nrd1 (green) [170]. The prolyl peptide 

between Ser5-Pro6 in first CTD repeat is in the cis- and second in the trans-conformation. 

The green arrow indicates an inter-conversion between the two Pro-isomers in solution.  

(B) Crystal structure of Pcf11-CTD complex (PDB ID: 1SZA) showing with Ser2 

phosphorylated CTD (green) bound to Pcf11 (blue) in a trans-conformation [182].  

(C) Comparison of trans-CTD peptides bound to Rtt103 (pink) [184] and Pcf11 (green) 

suggesting a conserved trans conformational similarity. 
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A solution study of the phosphoryl-CTD peptide revealed that the unbound peptide existed in a 

mixed cis and trans population of prolines with the trans-conformation as dominant form [183] but 

upon binding with Pcf11, only the trans-proline structure was observed [182,183]. This selectivity against 

one of the two conformers strongly underscores the importance of proline isomerization [183]. More 

recently, it has been proposed that Pcf11 competes with Nrd1 in binding to the CTD, and the 

competition is regulated by the Ess1 activity [43]; Ess1 promotes the release of Nrd1 at termination 

sites by converting cis-proline sites to trans-proline, which also promotes the dephosphorylation of Ser5 

sites by Ssu72, and thus favors the Pcf11 binding to phosphoryl-Ser2 sites [43]. 

6.3. Capping Enzymes 

The addition of a 7-methyl-Gppp cap to 5`-end of mRNA, referred to as capping, is an essential step 

during transcription for both the stability and translation of mRNAs [185,186]. Capping is the first 

modification that occurs co-transcriptionally on nascent transcripts, overlapping with CTD phosphorylation 

during transcription [185–187]. In vivo studies show that capping enzymes are associated with 5` end 

of the gene, which is facilitated by their interaction with phosphoryl-Ser5 of the CTD [119,188,189] as 

well as the globular body of Pol II [121]. Biochemical studies have revealed that recruitment and 

binding of the GTPases to CTD requires phosphorylated Ser5 [188,190]. The molecular mechanism behind 

this recognition was provided by crystal structures of murine, human, and fungal GTPases [191–194]. 

Co-crystallization of murine GTPase with an 18-amino acid CTD phosphoryl-peptide revealed that 

each N-terminal domain interacted with a 6-amino-acid CTD segment (phos.S5P6S7Y1phos.S2P3) 

where phosphoryl-Ser5 and Tyr1 provided the majority of interactions and both Pro3 and Pro6 adopted 

a trans-conformation [193]. Interestingly, in the Candida albicans capping enzyme Cgt1-CTD  

(4 heptads) structure, the CTD binds to the surface using two nonadjacent heptads [192]. Although 

mammalian and fungal GTPases utilize slightly different mechanisms for recognition of Ser5-CTD, 

proline residues consistently exist in the trans-configuration in crystal structures [193]. 

6.4. Rtt103 

Rtt103 was identified as a 60 kDa protein binding to phosphorylated Ser2 CTD during an attempt to 

isolate novel CTD-binding proteins from yeast whole-cell extracts [195]. In addition to CTD, Rtt103 

associates with Rat1, a nuclear 5' → 3' exonuclease, and its cofactor Rai1. The binding of Rtt103 CID 

domain to hyperphosphorylated CTD recruits Rat1 to the transcription complex [195]. Knockdown of 

Rtt103 or Xrn2, a human homologue of Rat1, impaired transcription termination and strongly 

supported the role of Rat1/Xrn2 in termination [195–197]. Association of Rtt103 with Rat1 restored 

the activity of exonuclease-deficient Rat1 emphasizing the importance of Rat1-Rtt103-Rai1 complex 

formation [198]. The solution structure of Rtt103 CID bound to a CTD peptide with phosphorylated Ser2 

revealed that the CTD adopted a β-like conformation similar to other CTD-CID structures [182,184,199]. 

Comparison of CTD bound to Rtt103 with that of Pcf11 suggests that these prolyl residues also exist 

as the trans-isomer (Figure 6C) [182]. 
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6.5. SCAF8 

SCAF8 (SR-related CTD-associated factor 8) was initially identified through a yeast two-hybrid 

screen for CTD binding [86]. It was later confirmed that the C-terminal domain of SCAF8 exhibits 

strong binding towards doubly phosphorylated Ser2/Ser5 CTD, suggesting a function during the 

elongation stage [200]. Biophysical characterization showed that SCAF8 also binds to singly 

phosphorylated Ser2 or Ser5 and unphosphorylated CTD with weaker affinity [199]. Crystal structure 

of SCAF8 CID with Ser2P/Ser5P-CTD peptide revealed that CTD bound to CID in a β-turn 

conformation with proline residues in the trans form [199]. 

7. Methods to Study the Prolyl Isomeric Specificity 

Since prolyl-isomerization results in conformational changes with no changes at the sequence or 

molecular weight levels, detection of such subtle changes can be challenging. The most direct method 

is the visualization of ligand conformation using X-ray crystallography. Although reliable, several 

aspects of this approach limit the implications regarding proline specificity. First, since X-ray 

crystallography reports an averaged effect of the models, the observation of trans-proline (the 

dominant species) modeled into the electron density for CTD ligand doesn’t exclude the possibility 

that cis-proline can also bind at the active site but the signal is obscured due to its small population. 

Second, we cannot exclude the possibility that an alternative conformation of proline can bind to the 

target protein but not captured in crystallization. Therefore, it is premature to conclude that a CTD 

protein is trans-proline specific simply because a trans-proline is modeled into the electron density for 

the ligand. We can only conclude that the protein is either trans-specific or promiscuous for both cis- 

and trans-proline. On the other hand, if the ligand shows a cis-proline conformation, it will be safer to 

conclude based on an X-ray structure that this protein is cis-specific since a minor species is captured. 

The incorporation of CTDs into crystals of CTD binding proteins is usually a significant bottleneck 

for this approach. Since the CTD domain is an extended and disordered polypeptide, which is typically 

detrimental to crystal formation, researchers have to use shorter pieces of CTD repeats in the 

crystallographic setup (usually one to four heptad repeats). These shorter synthetic peptides usually exhibit 

much weaker affinity towards CTD binding proteins, making it difficult to obtain the complex structures. 

NMR, which does not require crystallization, is a powerful tool to establish the binding mode of 

CTD peptides. NMR is highly sensitive to the local environment so differentiation of the cis- and 

trans-proline isomerization states is possible. Solution study of free CTD peptides revealed that both 

cis- and trans-conformations exist in solution and their chemical shift peaks can be differentiated [183]. 

When the Pcf11-CTD interaction was probed by this method, Pcf11 was clearly bound to the  

trans-conformer [183]. Compared to X-ray crystallography, NMR resolves the problem of averaging 

effects and allows studies in a larger time scale and in a site-specific manner [183]. The role of proline 

isomerization is vital in making a peptide template suitable for the specific CID to bind to the CTD 

through cis/trans conversion [183,201,202]. NMR also overcomes the problems of low occupancy and 

shorter lifetime of the cis form [203,204]. 

A third method has recently been developed that takes advantage of chemical probes that were 

generated to mimic the double bond property of prolyl peptide [49,205]. In this series of compounds, a 
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carbon-carbon double bond replaces the prolyl peptide and locks the isomerization state of the peptide 

bond to mimic either the cis or trans state and completely negates the equilibrium between these 

forms. For example, a locked isostere has been used successfully to mimic the substrates of prolyl 

isomerase Pin1. By using a cis and trans locked isostere, the ground states of Pin1’s substrate 

recognitions have been captured (Figure 7A,B) [49]. Therefore using peptide mimetics with locked 

proline isosteres, it is possible to determine specificity for the proline isomerization state of CTD 

binding proteins. By testing the kinetic activities or binding affinities of CTD enzymes on these CTD 

mimetics, we can conclude if a CTD enzyme is cis-specific, trans-specific or non-discriminative with 

regard to proline isomerization state. 

Figure 7. cis- and trans-locked proline analogues. (A) Synthetic cis-peptide incorporating 

a carbon-carbon double bond in place of the Serine 5/Proline 6 peptide bond and 

effectively locking the proline in the cis-conformation, (B) Crystal structure of Pin1 (cyan) 

complexed with a cis-locked phospho-peptide (yellow with cis-conformation highlighted in 

red); PDB file 3TCZ [49]. 

 

8. Hypothetical Model for the Effect of Prolyl Isomerization on Transcription 

A combinatory regulation mechanism based on the variable phosphorylation and other 

modifications—the CTD code—emerges from our current knowledge. As discussed above,  

post-translational modifications on different sites of the CTD do not seem to function in any singlistic 

mode. Instead, modifications appear to affect each other (Figure 8). Prolyl isomerization of the heptad 

repeats can directly affect the phosphorylation state of the CTD by making specific Ser5-Pro6 and 

possibly Ser2-Pro3 registers a better or worse substrate for CTD kinases or phosphatases.  

Prolyl isomerases can rapidly shape the balance of the substrate pool. For instance Pin1 can help 

replenish the minority cis-proline pool, and thus regulate cis-specific kinases or phosphatases via 

substrate availability. On the other hand, trans-specific or non-selective kinases and phosphatases can 

bypass the regulation by prolyl isomerases since they are exposed to an ample substrate population 

(Figure 8). Combined with phosphorylation, prolyl isomerization of the CTD seems to orchestrate the 

recruitment of regulatory proteins to the Pol II transcription machinery and thus influences the overall 

outcome of transcription. 
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Figure 8. A general model of the cross-talk between phosphorylation and proline 

isomerization. Phosphorylation and proline isomerization can act together to dynamically 

regulate CTD function. 

 

Acknowledgments 

The related research carried out in the authors’ laboratory is supported by a Welch Foundation 

Grant (F-1778 to Y.Z.), NIH (R01GM104896 and R03DA030556 to Y.Z.) and the Alzheimer’s Drug 

Discovery Foundation (20120802 to Y.Z.). 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Kornberg, R.D. Eukaryotic transcriptional control. Trends Cell Biol. 1999, 9, M46–M49. 

2. Sims, R.J.; Mandal, S.S.; Reinberg, D. Recent highlights of RNA-polymerase-II-mediated 

transcription. Curr. Opin. Cell Biol. 2004, 16, 263–271. 

3. Buratowski, S. The CTD code. Nat. Struct. Biol. 2003, 10, 679–680. 

4. Maniatis, T.; Reed, R. An extensive network of coupling among gene expression machines. 

Nature 2002, 416, 499–506. 

5. Bentley, D. Coupling RNA polymerase II transcription with pre-mRNA processing. Curr. Opin. 

Cell Biol. 1999, 11, 347–351. 

6. Hirose, Y.; Manley, J.L. RNA polymerase II and the integration of nuclear events. Genes Dev. 

2000, 14, 1415–1429. 

7. Corden, J.L. Tails of RNA polymerase II. Trends Biochem. Sci. 1990, 15, 383–387. 

…Y   S   P   T   S   P   S … …Y   S   P   T   S   P   S … 
TT

…Y   S   P   T   S   P   S … 
P TTP

…Y   S   P   T   S   P   S … 
P CTP

…Y   S   P   T   S   P   S … 
CT

Readers 
Prolyl 

Isomerases 

Writers 
(Kinases) 

Prolyl 
Isomerases Erasers 

(Phosphatases) 

Readers 

Readers 

Readers 

Readers 

…Y   S   P   T   S   P   S … 
TT



Molecules 2014, 19 1500 

 

 

8. Corden, J.L.; Cadena, D.L.; Ahearn, J.M., Jr.; Dahmus, M.E. A unique structure at the carboxyl 

terminus of the largest subunit of eukaryotic RNA polymerase II. Proc. Natl. Acad. Sci. USA 

1985, 82, 7934–7938. 

9. Allison, L.A.; Moyle, M.; Shales, M.; Ingles, C.J. Extensive homology among the largest 

subunits of eukaryotic and prokaryotic RNA polymerases. Cell 1985, 42, 599–610. 

10. Li, W.B.; Bzik, D.J.; Gu, H.M.; Tanaka, M.; Fox, B.A.; Inselburg, J. An enlarged largest subunit 

of Plasmodium falciparum RNA polymerase II defines conserved and variable RNA polymerase 

domains. Nucleic Acids Res. 1989, 17, 9621–9636. 

11. Chapman, R.D.; Conrad, M.; Eick, D. Role of the mammalian RNA polymerase II C-terminal 

domain (CTD) nonconsensus repeats in CTD stability and cell proliferation. Mol. Cell Biol. 

2005, 25, 7665–7674. 

12. Corden, J.L. RNA polymerase II C-terminal domain: Tethering transcription to transcript and 

template. Chem. Rev. 2013, 113, 8423–8455. 

13. Dahmus, M.E. The role of multisite phosphorylation in the regulation of RNA polymerase II 

activity. Prog. Nucleic Acid Res. Mol. Biol. 1994, 48, 143–179. 

14. Dahmus, M.E. Reversible phosphorylation of the C-terminal domain of RNA polymerase II.  

J. Biol. Chem. 1996, 271, 19009–19012. 

15. Cadena, D.L.; Dahmus, M.E. Messenger RNA synthesis in mammalian cells is catalyzed by the 

phosphorylated form of RNA polymerase II. J. Biol. Chem. 1987, 262, 12468–12474. 

16. Fuda, N.J.; Ardehali, M.B.; Lis, J.T. Defining mechanisms that regulate RNA polymerase II 

transcription in vivo. Nature 2009, 461, 186–192. 

17. Heidemann, M.; Hintermair, C.; Voss, K.; Eick, D. Dynamic phosphorylation patterns of RNA 

polymerase II CTD during transcription. Biochim. Biophys. Acta 2013, 1829, 55–62. 

18. Hintermair, C.; Heidemann, M.; Koch, F.; Descostes, N.; Gut, M.; Gut, I.; Fenouil, R.; Ferrier, P.; 

Flatley, A.; Kremmer, E.; et al. Threonine-4 of mammalian RNA polymerase II CTD is targeted 

by Polo-like kinase 3 and required for transcriptional elongation. EMBO J. 2012, 31, 2784–2797. 

19. Egloff, S.; O’Reilly, D.; Chapman, R.D.; Taylor, A.; Tanzhaus, K.; Pitts, L.; Eick, D.; Murphy, S. 

Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression. 

Science 2007, 318, 1777–1779. 

20. Chapman, R.D.; Heidemann, M.; Albert, T.K.; Mailhammer, R.; Flatley, A.; Meisterernst, M.; 

Kremmer, E.; Eick, D. Transcribing RNA polymerase II is phosphorylated at CTD residue 

serine-7. Science 2007, 318, 1780–1782. 

21. Mayer, A.; Heidemann, M.; Lidschreiber, M.; Schreieck, A.; Sun, M.; Hintermair, C.; Kremmer, E.; 

Eick, D.; Cramer, P. CTD tyrosine phosphorylation impairs termination factor recruitment to 

RNA polymerase II. Science 2012, 336, 1723–1725. 

22. Hsin, J.P.; Sheth, A.; Manley, J.L. RNAP II CTD phosphorylated on threonine-4 is required for 

histone mRNA 3' end processing. Science 2011, 334, 683–686. 

23. Sims, R.J., III; Rojas, L.A.; Beck, D.; Bonasio, R.; Schuller, R.; Drury, W.J., III; Eick, D.; 

Reinberg, D. The C-terminal domain of RNA polymerase II is modified by site-specific 

methylation. Science 2011, 332, 99–103. 

24. Liou, Y.C.; Zhou, X.Z.; Lu, K.P. Prolyl isomerase Pin1 as a molecular switch to determine the 

fate of phosphoproteins. Trends Biochem. Sci. 2011, 36, 501–514. 



Molecules 2014, 19 1501 

 

 

25. Lu, K.P.; Finn, G.; Lee, T.H.; Nicholson, L.K. Prolyl cis-trans isomerization as a molecular 

timer. Nat. Chem. Biol. 2007, 3, 619–629. 

26. Payne, J.M.; Dahmus, M.E. Partial purification and characterization of two distinct protein 

kinases that differentially phosphorylate the carboxyl-terminal domain of RNA polymerase 

subunit IIa. J. Biol. Chem. 1993, 268, 80–87. 

27. Eberhardt, E.S.; Panisik, N., Jr.; Raines, R.T. Inductive Effects on the Energetics of Prolyl 

Peptide Bond Isomerization: Implications for Collagen Folding and Stability. J. Am. Chem. Soc. 

1996, 118, 12261–12266. 

28. Brandts, J.F.; Halvorson, H.R.; Brennan, M. Consideration of the Possibility that the slow step in 

protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry 

1975, 14, 4953–4963. 

29. Brandts, J.F.; Lin, L.N. Proline isomerization studied with proteolytic enzymes. Meth. Enzymol. 

1986, 131, 107–126. 

30. Cook, K.H.; Schmid, F.X.; Baldwin, R.L. Role of proline isomerization in folding of 

ribonuclease A at low temperatures. Proc. Natl. Acad. Sci. USA 1979, 76, 6157–6161. 

31. Lu, K.P.; Hanes, S.D.; Hunter, T. A human peptidyl-prolyl isomerase essential for regulation of 

mitosis. Nature 1996, 380, 544–547. 

32. Zhou, X.Z.; Lu, P.J.; Wulf, G.; Lu, K.P. Phosphorylation-dependent prolyl isomerization:  

A novel signaling regulatory mechanism. Cell. Mol. Life Sci. 1999, 56, 788–806. 

33. Lu, K.P. Prolyl isomerase Pin1 as a molecular target for cancer diagnostics and therapeutics. 

Cancer Cell 2003, 4, 175–180. 

34. Shaw, P.E. Peptidyl-prolyl isomerases: A new twist to transcription. EMBO Rep. 2002, 3, 521–526. 

35. Shaw, P.E. Peptidyl-prolyl cis/trans isomerases and transcription: Is there a twist in the tail? 

EMBO Rep. 2007, 8, 40–45. 

36. Ranganathan, R.; Lu, K.P.; Hunter, T.; Noel, J.P. Structural and functional analysis of the mitotic 

rotamase Pin1 suggests substrate recognition is phosphorylation dependent. Cell 1997, 89, 875–886. 

37. Zhang, Y.; Daum, S.; Wildemann, D.; Zhou, X.Z.; Verdecia, M.A.; Bowman, M.E.; Lucke, C.; 

Hunter, T.; Lu, K.P.; Fischer, G.; et al. Structural basis for high-affinity peptide inhibition of 

human Pin1. ACS Chem. Biol. 2007, 2, 320–328. 

38. Etzkorn, F.A. Pin1 flips Alzheimer’s switch. ACS Chem. Biol. 2006, 1, 214–216. 

39. Wang, X.J.; Etzkorn, F.A. Peptidyl-prolyl isomerase inhibitors. Biopolymers 2006, 84, 125–146. 

40. Xu, G.G.; Etzkorn, F.A. Pin1 as an anticancer drug target. Drug News Perspect. 2009, 22, 399–407. 

41. Xu, Y.X.; Hirose, Y.; Zhou, X.Z.; Lu, K.P.; Manley, J.L. Pin1 modulates the structure and 

function of human RNA polymerase II. Genes Dev. 2003, 17, 2765–2776. 

42. Wu, X.; Wilcox, C.B.; Devasahayam, G.; Hackett, R.L.; Arevalo-Rodriguez, M.; Cardenas, M.E.; 

Heitman, J.; Hanes, S.D. The Ess1 prolyl isomerase is linked to chromatin remodeling complexes 

and the general transcription machinery. EMBO J. 2000, 19, 3727–3738. 

43. Singh, N.; Ma, Z.; Gemmill, T.; Wu, X.; Defiglio, H.; Rossettini, A.; Rabeler, C.; Beane, O.; 

Morse, R.H.; Palumbo, M.J.; et al. The Ess1 prolyl isomerase is required for transcription 

termination of small noncoding RNAs via the Nrd1 pathway. Mol. Cell 2009, 36, 255–266. 



Molecules 2014, 19 1502 

 

 

44. Krishnamurthy, S.; Ghazy, M.A.; Moore, C.; Hampsey, M. Functional interaction of the Ess1 

prolyl isomerase with components of the RNA polymerase II initiation and termination 

machineries. Mol. Cell Biol. 2009, 29, 2925–2934. 

45. Verdecia, M.A.; Bowman, M.E.; Lu, K.P.; Hunter, T.; Noel, J.P. Structural basis for 

phosphoserine-proline recognition by group IV WW domains. Nat. Struct. Biol. 2000, 7, 639–643. 

46. Armache, K.J.; Mitterweger, S.; Meinhart, A.; Cramer, P. Structures of complete RNA 

polymerase II and its subcomplex, Rpb4/7. J. Biol. Chem. 2005, 280, 7131–7134. 

47. Cramer, P.; Bushnell, D.A.; Kornberg, R.D. Structural basis of transcription: RNA polymerase II 

at 2.8 angstrom resolution. Science 2001, 292, 1863–1876. 

48. Myers, J.K.; Morris, D.P.; Greenleaf, A.L.; Oas, T.G. Phosphorylation of RNA polymerase II 

CTD fragments results in tight binding to the WW domain from the yeast prolyl isomerase Ess1. 

Biochemistry 2001, 40, 8479–8486. 

49. Zhang, M.; Wang, X.J.; Chen, X.; Bowman, M.E.; Luo, Y.; Noel, J.P.; Ellington, A.D.;  

Etzkorn, F.A.; Zhang, Y. Structural and kinetic analysis of prolyl-isomerization/phosphorylation 

cross-talk in the CTD code. ACS Chem. Biol. 2012, 7, 1462–1470. 

50. Zhang, Y.; Kim, Y.; Genoud, N.; Gao, J.; Kelly, J.W.; Pfaff, S.L.; Gill, G.N.; Dixon, J.E.;  

Noel, J.P. Determinants for dephosphorylation of the RNA polymerase II C-terminal domain by 

Scp1. Mol. Cell 2006, 24, 759–770. 

51. Xiang, K.; Nagaike, T.; Xiang, S.; Kilic, T.; Beh, M.M.; Manley, J.L.; Tong, L. Crystal structure 

of the human symplekin-Ssu72-CTD phosphopeptide complex. Nature 2010, 467, 729–733. 

52. He, X.; Khan, A.U.; Cheng, H.; Pappas, D.L., Jr.; Hampsey, M.; Moore, C.L. Functional 

interactions between the transcription and mRNA 3' end processing machineries mediated by 

Ssu72 and Sub1. Genes Dev. 2003, 17, 1030–1042. 

53. Krishnamurthy, S.; He, X.; Reyes-Reyes, M.; Moore, C.; Hampsey, M. Ssu72 Is an RNA 

polymerase II CTD phosphatase. Mol. Cell 2004, 14, 387–394. 

54. Sun, Z.W.; Hampsey, M. Synthetic enhancement of a TFIIB defect by a mutation in SSU72, an 

essential yeast gene encoding a novel protein that affects transcription start site selection in vivo. 

Mol. Cell Biol. 1996, 16, 1557–1566. 

55. Reyes-Reyes, M.; Hampsey, M. Role for the Ssu72 C-terminal domain phosphatase in RNA 

polymerase II transcription elongation. Mol. Cell Biol. 2007, 27, 926–936. 

56. Dichtl, B.; Blank, D.; Ohnacker, M.; Friedlein, A.; Roeder, D.; Langen, H.; Keller, W. A role for 

SSU72 in balancing RNA polymerase II transcription elongation and termination. Mol. Cell 

2002, 10, 1139–1150. 

57. Ganem, C.; Devaux, F.; Torchet, C.; Jacq, C.; Quevillon-Cheruel, S.; Labesse, G.; Facca, C.; 

Faye, G. Ssu72 is a phosphatase essential for transcription termination of snoRNAs and specific 

mRNAs in yeast. EMBO J. 2003, 22, 1588–1598. 

58. Luo, Y.; Yogesha, S.D.; Cannon, J.R.; Yan, W.; Ellington, A.D.; Brodbelt, J.S.; Zhang, Y.  

Novel modifications on C-terminal domain of RNA polymerase II can fine-tune the phosphatase 

activity of Ssu72. ACS Chem. Biol. 2013, 8, 2042–2052. 

59. Zhang, Y.; Zhang, M.; Zhang, Y. Crystal structure of Ssu72, an essential eukaryotic phosphatase 

specific for the C-terminal domain of RNA polymerase II, in complex with a transition state 

analogue. Biochem. J. 2011, 434, 435–444. 



Molecules 2014, 19 1503 

 

 

60. Werner-Allen, J.W.; Lee, C.J.; Liu, P.; Nicely, N.I.; Wang, S.; Greenleaf, A.L.; Zhou, P.  

cis-Proline-mediated Ser(P)5 dephosphorylation by the RNA polymerase II C-terminal domain 

phosphatase Ssu72. J. Biol. Chem. 2011, 286, 5717–5726. 

61. Zhang, M.; Yogesha, S.D.; Mayfield, J.E.; Gill, G.N.; Zhang, Y. Viewing serine/threonine 
protein phosphatases through the eyes of drug designers. FEBS J. 2013, 280, 4739–4760. 

62. Bataille, A.R.; Jeronimo, C.; Jacques, P.E.; Laramee, L.; Fortin, M.E.; Forest, A.; Bergeron, M.; 

Hanes, S.D.; Robert, F. A universal RNA polymerase II CTD cycle is orchestrated by complex 

interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol. Cell 2012, 45, 

158–170. 

63. Zhang, D.W.; Mosley, A.L.; Ramisetty, S.R.; Rodriguez-Molina, J.B.; Washburn, M.P.; Ansari, A.Z. 

Ssu72 phosphatase-dependent erasure of phospho-Ser7 marks on the RNA polymerase II  

C-terminal domain is essential for viability and transcription termination. J. Biol. Chem. 2012, 

287, 8541–8551. 

64. Xiang, K.; Manley, J.L.; Tong, L. An unexpected binding mode for a Pol II CTD peptide 

phosphorylated at Ser7 in the active site of the CTD phosphatase Ssu72. Genes Dev. 2012, 26, 

2265–2270. 

65. Yeo, M.; Lin, P.S.; Dahmus, M.E.; Gill, G.N. A novel RNA polymerase II C-terminal domain 

phosphatase that preferentially dephosphorylates serine 5. J Biol Chem 2003, 278, 26078–26085. 

66. Yeo, M.; Lee, S.K.; Lee, B.; Ruiz, E.C.; Pfaff, S.L.; Gill, G.N. Small CTD phosphatases function 

in silencing neuronal gene expression. Science 2005, 307, 596–600. 

67. Zhang, M.; Cho, E.J.; Burstein, G.; Siegel, D.; Zhang, Y. Selective inactivation of a human 

neuronal silencing phosphatase by a small molecule inhibitor. ACS Chem. Biol. 2011, 6, 511–519. 

68. Chambers, R.S.; Dahmus, M.E. Purification and characterization of a phosphatase from HeLa 

cells which dephosphorylates the C-terminal domain of RNA polymerase II. J. Biol. Chem. 1994, 

269, 26243–26248. 

69. Zhang, M.; Liu, J.; Kim, Y.; Dixon, J.E.; Pfaff, S.L.; Gill, G.N.; Noel, J.P.; Zhang, Y. Structural 

and functional analysis of the phosphoryl transfer reaction mediated by the human small  

C-terminal domain phosphatase, Scp1. Protein Sci. 2010, 19, 974–986. 

70. Zhang, X.; Morera, S.; Bates, P.A.; Whitehead, P.C.; Coffer, A.I.; Hainbucher, K.; Nash, R.A.; 

Sternberg, M.J.; Lindahl, T.; Freemont, P.S. Structure of an XRCC1 BRCT domain: A new 

protein-protein interaction module. EMBO J. 1998, 17, 6404–6411. 

71. Kobor, M.S.; Archambault, J.; Lester, W.; Holstege, F.C.; Gileadi, O.; Jansma, D.B.; Jennings, E.G.; 

Kouyoumdjian, F.; Davidson, A.R.; Young, R.A.; et al. An unusual eukaryotic protein phosphatase 

required for transcription by RNA polymerase II and CTD dephosphorylation in S. cerevisiae. 

Mol. Cell 1999, 4, 55–62. 

72. Kobor, M.S.; Simon, L.D.; Omichinski, J.; Zhong, G.; Archambault, J.; Greenblatt, J.  

A motif shared by TFIIF and TFIIB mediates their interaction with the RNA polymerase II 

carboxy-terminal domain phosphatase Fcp1p in Saccharomyces cerevisiae. Mol. Cell Biol. 2000, 

20, 7438–7449. 

73. Ghosh, A.; Shuman, S.; Lima, C.D. The structure of Fcp1, an essential RNA polymerase II CTD 

phosphatase. Mol. Cell 2008, 32, 478–490. 



Molecules 2014, 19 1504 

 

 

74. Hausmann, S.; Shuman, S. Characterization of the CTD phosphatase Fcp1 from fission yeast. 

Preferential dephosphorylation of serine 2 versus serine 5. J. Biol. Chem. 2002, 277, 21213–21220. 

75. Cho, H.; Kim, T.K.; Mancebo, H.; Lane, W.S.; Flores, O.; Reinberg, D. A protein phosphatase 

functions to recycle RNA polymerase II. Genes Dev. 1999, 13, 1540–1552. 

76. Kops, O.; Zhou, X.Z.; Lu, K.P. Pin1 modulates the dephosphorylation of the RNA polymerase II 

C-terminal domain by yeast Fcp1. FEBS Lett. 2002, 513, 305–311. 

77. Palancade, B.; Marshall, N.F.; Tremeau-Bravard, A.; Bensaude, O.; Dahmus, M.E.; Dubois, M.-F. 

Dephosphorylation of RNA polymerase II by CTD-phosphatase FCP1 is inhibited by  

phospho-CTD associating proteins. J. Mol. Biol. 2004, 335, 415–424. 

78. Gibney, P.A.; Fries, T.; Bailer, S.M.; Morano, K.A. Rtr1 is the Saccharomyces cerevisiae 

homolog of a novel family of RNA polymerase II-binding proteins. Eukaryotic Cell 2008, 7, 

938–948. 

79. Mosley, A.L.; Pattenden, S.G.; Carey, M.; Venkatesh, S.; Gilmore, J.M.; Florens, L.; Workman, J.L.; 

Washburn, M.P. Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the 

transition from serine 5 to serine 2 phosphorylation. Mol. Cell 2009, 34, 168–178. 

80. Xiang, K.; Manley, J.L.; Tong, L. The yeast regulator of transcription protein Rtr1 lacks an 

active site and phosphatase activity. Nat. Commun. 2012, 3, 946. 

81. Egloff, S.; Zaborowska, J.; Laitem, C.; Kiss, T.; Murphy, S. Ser7 phosphorylation of the CTD 

recruits the RPAP2 Ser5 phosphatase to snRNA genes. Mol. Cell 2012, 45, 111–122. 

82. Jeronimo, C.; Forget, D.; Bouchard, A.; Li, Q.; Chua, G.; Poitras, C.; Therien, C.; Bergeron, D.; 

Bourassa, S.; Greenblatt, J.; et al. Systematic analysis of the protein interaction network for the 

human transcription machinery reveals the identity of the 7SK capping enzyme. Mol. Cell 2007, 

27, 262–274. 

83. Nestel, F.P.; Colwill, K.; Harper, S.; Pawson, T.; Anderson, S.K. RS cyclophilins: Identification 

of an NK-TR1-related cyclophilin. Gene 1996, 180, 151–155. 

84. Fichtinger, G.; Deguet, A.; Masamune, K.; Balogh, E.; Fischer, G.S.; Mathieu, H.; Taylor, R.H.; 

Zinreich, S.J.; Fayad, L.M. Image overlay guidance for needle insertion in CT scanner.  

IEEE Trans. Biomed. Eng. 2005, 52, 1415–1424. 

85. Bourquin, J.P.; Stagljar, I.; Meier, P.; Moosmann, P.; Silke, J.; Baechi, T.; Georgiev, O.; 

Schaffner, W. A serine/arginine-rich nuclear matrix cyclophilin interacts with the C-terminal 

domain of RNA polymerase II. Nucleic Acids Res. 1997, 25, 2055–2061. 

86. Yuryev, A.; Patturajan, M.; Litingtung, Y.; Joshi, R.V.; Gentile, C.; Gebara, M.; Corden, J.L. 

The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of 

serine/arginine-rich proteins. Proc. Natl. Acad. Sci. USA 1996, 93, 6975–6980. 

87. Brown, N.R.; Noble, M.E.; Endicott, J.A.; Johnson, L.N. The structural basis for specificity of 

substrate and recruitment peptides for cyclin-dependent kinases. Nat. Cell Biol. 1999, 1, 438–443. 

88. Weiwad, M.; Kullertz, G.; Schutkowski, M.; Fischer, G. Evidence that the substrate backbone 

conformation is critical to phosphorylation by p42 MAP kinase. FEBS Lett. 2000, 478, 39–42. 

89. Zhou, X.Z.; Kops, O.; Werner, A.; Lu, P.J.; Shen, M.; Stoller, G.; Kullertz, G.; Stark, M.; 

Fischer, G.; Lu, K.P. Pin1-dependent prolyl isomerization regulates dephosphorylation of 

Cdc25C and tau proteins. Mol. Cell 2000, 6, 873–883. 



Molecules 2014, 19 1505 

 

 

90. Jeffrey, P.D.; Russo, A.A.; Polyak, K.; Gibbs, E.; Hurwitz, J.; Massague, J.; Pavletich, N.P. 

Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 

1995, 376, 313–320. 

91. Schutkowski, M.; Bernhardt, A.; Zhou, X.Z.; Shen, M.; Reimer, U.; Rahfeld, J.U.; Lu, K.P.; 

Fischer, G. Role of phosphorylation in determining the backbone dynamics of the serine/threonine-

proline motif and Pin1 substrate recognition. Biochemistry 1998, 37, 5566–5575. 

92. Hsin, J.P.; Manley, J.L. The RNA polymerase II CTD coordinates transcription and RNA processing. 

Genes Dev. 2012, 26, 2119–2137. 

93. Compe, E.; Egly, J.M. TFIIH: When transcription met DNA repair. Nat. Rev. Mol. Cell Biol. 2012, 

13, 343–354. 

94. Lu, H.; Zawel, L.; Fisher, L.; Egly, J.M.; Reinberg, D. Human general transcription factor IIH 

phosphorylates the C-terminal domain of RNA polymerase II. Nature 1992, 358, 641–645. 

95. Yankulov, K.Y.; Bentley, D.L. Regulation of CDK7 substrate specificity by MAT1 and TFIIH. 

EMBO J. 1997, 16, 1638–1646. 

96. Ganuza, M.; Santamaria, D. Cdk7: Open questions beyond the prevailing model. Cell Cycle 

2012, 11, 3519–3520. 

97. Morgan, D.O. Principles of CDK regulation. Nature 1995, 374, 131–134. 

98. Roy, R.; Adamczewski, J.P.; Seroz, T.; Vermeulen, W.; Tassan, J.P.; Schaeffer, L.; Nigg, E.A.; 

Hoeijmakers, J.H.; Egly, J.M. The MO15 cell cycle kinase is associated with the TFIIH 

transcription-DNA repair factor. Cell 1994, 79, 1093–1101. 

99. Serizawa, H.; Makela, T.P.; Conaway, J.W.; Conaway, R.C.; Weinberg, R.A.; Young, R.A. 

Association of Cdk-activating kinase subunits with transcription factor TFIIH. Nature 1995, 374, 

280–282. 

100. Shiekhattar, R.; Mermelstein, F.; Fisher, R.P.; Drapkin, R.; Dynlacht, B.; Wessling, H.C.; 

Morgan, D.O.; Reinberg, D. Cdk-activating kinase complex is a component of human 

transcription factor TFIIH. Nature 1995, 374, 283–287. 

101. Adamczewski, J.P.; Rossignol, M.; Tassan, J.P.; Nigg, E.A.; Moncollin, V.; Egly, J.M. MAT1, 

cdk7 and cyclin H form a kinase complex which is UV light-sensitive upon association with 

TFIIH. EMBO J. 1996, 15, 1877–1884. 

102. Zhovmer, A.; Oksenych, V.; Coin, F. Two sides of the same coin: TFIIH complexes in 

transcription and DNA repair. TheScientificWorldJOURNAL 2010, 10, 633–643. 

103. Svejstrup, J.Q.; Feaver, W.J.; Kornberg, R.D. Subunits of yeast RNA polymerase II transcription 

factor TFIIH encoded by the CCL1 gene. J. Biol. Chem. 1996, 271, 643–645. 

104. Keogh, M.C.; Cho, E.J.; Podolny, V.; Buratowski, S. Kin28 is found within TFIIH and a  

Kin28-Ccl1-Tfb3 trimer complex with differential sensitivities to T-loop phosphorylation.  

Mol. Cell Biol. 2002, 22, 1288–1297. 

105. Espinoza, F.H.; Farrell, A.; Erdjument-Bromage, H.; Tempst, P.; Morgan, D.O. A cyclin-dependent 

kinase-activating kinase (CAK) in budding yeast unrelated to vertebrate CAK. Science 1996, 

273, 1714–1717. 

106. Fisher, R.P. Secrets of a double agent: CDK7 in cell-cycle control and transcription. J. Cell Sci. 

2005, 118, 5171–5180. 



Molecules 2014, 19 1506 

 

 

107. Woychik, N.A.; Hampsey, M. The RNA polymerase II machinery: Structure illuminates 

function. Cell 2002, 108, 453–463. 

108. Yudkovsky, N.; Ranish, J.A.; Hahn, S. A transcription reinitiation intermediate that is stabilized 

by activator. Nature 2000, 408, 225–229. 

109. Holstege, F.C.; van der Vliet, P.C.; Timmers, H.T. Opening of an RNA polymerase II promoter 

occurs in two distinct steps and requires the basal transcription factors IIE and IIH. EMBO J. 

1996, 15, 1666–1677. 

110. Dvir, A.; Conaway, J.W.; Conaway, R.C. Mechanism of transcription initiation and promoter 

escape by RNA polymerase II. Curr. Opin. Genet. Dev. 2001, 11, 209–214. 

111. Feaver, W.J.; Svejstrup, J.Q.; Henry, N.L.; Kornberg, R.D. Relationship of CDK-activating 

kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 1994, 79, 1103–1109. 

112. Buratowski, S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 2009, 36,  

541–546. 

113. Akoulitchev, S.; Makela, T.P.; Weinberg, R.A.; Reinberg, D. Requirement for TFIIH kinase 

activity in transcription by RNA polymerase II. Nature 1995, 377, 557–560. 

114. Liu, Y.; Kung, C.; Fishburn, J.; Ansari, A.Z.; Shokat, K.M.; Hahn, S. Two cyclin-dependent 

kinases promote RNA polymerase II transcription and formation of the scaffold complex.  

Mol. Cell Biol. 2004, 24, 1721–1735. 

115. Sogaard, T.M.; Svejstrup, J.Q. Hyperphosphorylation of the C-terminal repeat domain of RNA 

polymerase II facilitates dissociation of its complex with mediator. J. Biol. Chem. 2007, 282, 

14113–14120. 

116. Lu, H.; Flores, O.; Weinmann, R.; Reinberg, D. The nonphosphorylated form of RNA 

polymerase II preferentially associates with the preinitiation complex. Proc. Natl. Acad. Sci. USA 

1991, 88, 10004–10008. 

117. Rodriguez, C.R.; Cho, E.J.; Keogh, M.C.; Moore, C.L.; Greenleaf, A.L.; Buratowski, S. Kin28, 

the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment of mRNA 

processing machinery to RNA polymerase II. Mol. Cell Biol. 2000, 20, 104–112. 

118. Cho, E.J.; Takagi, T.; Moore, C.R.; Buratowski, S. mRNA capping enzyme is recruited to the 

transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. 

Genes Dev. 1997, 11, 3319–3326. 

119. Komarnitsky, P.; Cho, E.J.; Buratowski, S. Different phosphorylated forms of RNA polymerase 

II and associated mRNA processing factors during transcription. Genes Dev. 2000, 14, 2452–2460. 

120. Schwer, B.; Shuman, S. Deciphering the RNA polymerase II CTD code in fission yeast.  

Mol. Cell 2011, 43, 311–318. 

121. Suh, M.H.; Meyer, P.A.; Gu, M.; Ye, P.; Zhang, M.; Kaplan, C.D.; Lima, C.D.; Fu, J.  

A dual interface determines the recognition of RNA polymerase II by RNA capping enzyme.  

J. Biol. Chem. 2010, 285, 34027–34038. 

122. Baumli, S.; Hole, A.J.; Wang, L.Z.; Noble, M.E.; Endicott, J.A. The CDK9 tail determines the 

reaction pathway of positive transcription elongation factor b. Structure 2012, 20, 1788–1795. 

123. Guo, Z.; Stiller, J.W. Comparative genomics of cyclin-dependent kinases suggest co-evolution of 

the RNAP II C-terminal domain and CTD-directed CDKs. BMC Genomics 2004, 5, 69. 



Molecules 2014, 19 1507 

 

 

124. Pei, Y.; Shuman, S. Characterization of the Schizosaccharomyces pombe Cdk9/Pch1 protein 

kinase: Spt5 phosphorylation, autophosphorylation, and mutational analysis. J. Biol. Chem. 2003, 

278, 43346–43356. 

125. Bartkowiak, B.; Mackellar, A.L.; Greenleaf, A.L. Updating the CTD Story: From Tail to Epic. 

Genet. Res. Int. 2011, 2011, 623–718. 

126. Bartkowiak, B.; Greenleaf, A.L. Phosphorylation of RNAPII: To P-TEFb or not to P-TEFb? 

Transcription 2011, 2, 115–119. 

127. Qiu, H.; Hu, C.; Hinnebusch, A.G. Phosphorylation of the Pol II CTD by KIN28 enhances 

BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters. Mol. Cell 2009, 33, 

752–762. 

128. Burger, K.; Muhl, B.; Rohrmoser, M.; Coordes, B.; Heidemann, M.; Kellner, M.; Gruber-Eber, A.; 

Heissmeyer, V.; Strasser, K.; Eick, D. Cyclin-dependent kinase 9 Links RNA polymerase II 

transcription to processing of ribosomal RNA. J. Biol. Chem. 2013, 288, 21173–21183. 

129. Bres, V.; Yoh, S.M.; Jones, K.A. The multi-tasking P-TEFb complex. Curr. Opin. Cell Biol. 

2008, 20, 334–340. 

130. Peterlin, B.M.; Price, D.H. Controlling the elongation phase of transcription with P-TEFb.  

Mol. Cell 2006, 23, 297–305. 

131. Mayer, A.; Lidschreiber, M.; Siebert, M.; Leike, K.; Soding, J.; Cramer, P. Uniform transitions of 

the general RNA polymerase II transcription complex. Nat. Struct. Mol. Biol. 2010, 17, 1272–1278. 

132. Zhou, K.; Kuo, W.H.; Fillingham, J.; Greenblatt, J.F. Control of transcriptional elongation and 

cotranscriptional histone modification by the yeast BUR kinase substrate Spt5. Proc. Natl. Acad. 

Sci. USA 2009, 106, 6956–6961. 

133. Svejstrup, J.Q. Transcription: Another mark in the tail. EMBO J. 2012, 31, 2753–2754. 

134. Lee, J.M.; Greenleaf, A.L. A protein kinase that phosphorylates the C-terminal repeat domain of 

the largest subunit of RNA polymerase II. Proc. Natl. Acad. Sci. USA 1989, 86, 3624–3628. 

135. Wood, A.; Shilatifard, A. Bur1/Bur2 and the Ctk complex in yeast: The split personality of 

mammalian P-TEFb. Cell Cycle 2006, 5, 1066–1068. 

136. Liu, J.; Kipreos, E.T. Evolution of cyclin-dependent kinases (CDKs) and CDK-activating kinases 

(CAKs): Differential conservation of CAKs in yeast and metazoa. Mol. Biol. Evol. 2000, 17, 

1061–1074. 

137. Chen, H.H.; Wang, Y.C.; Fann, M.J. Identification and characterization of the CDK12/cyclin L1 

complex involved in alternative splicing regulation. Mol. Cell Biol. 2006, 26, 2736–2745. 

138. Chen, H.H.; Wong, Y.H.; Geneviere, A.M.; Fann, M.J. CDK13/CDC2L5 interacts with L-type 

cyclins and regulates alternative splicing. Biochem. Biophys. Res. Commun. 2007, 354, 735–740. 

139. Blazek, D.; Kohoutek, J.; Bartholomeeusen, K.; Johansen, E.; Hulinkova, P.; Luo, Z.; 

Cimermancic, P.; Ule, J.; Peterlin, B.M. The Cyclin K/Cdk12 complex maintains genomic 

stability via regulation of expression of DNA damage response genes. Genes Dev. 2011, 25, 

2158–2172. 

140. Bartkowiak, B.; Liu, P.; Phatnani, H.P.; Fuda, N.J.; Cooper, J.J.; Price, D.H.; Adelman, K.; Lis, J.T.; 

Greenleaf, A.L. CDK12 is a transcription elongation-associated CTD kinase, the metazoan 

ortholog of yeast Ctk1. Genes Dev. 2010, 24, 2303–2316. 



Molecules 2014, 19 1508 

 

 

141. Ahn, S.H.; Kim, M.; Buratowski, S. Phosphorylation of serine 2 within the RNA polymerase II 

C-terminal domain couples transcription and 3' end processing. Mol. Cell 2004, 13, 67–76. 

142. Cho, E.J.; Kobor, M.S.; Kim, M.; Greenblatt, J.; Buratowski, S. Opposing effects of Ctk1 kinase 

and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev. 2001, 

15, 3319–3329. 

143. Ni, Z.; Schwartz, B.E.; Werner, J.; Suarez, J.R.; Lis, J.T. Coordination of transcription, RNA 

processing, and surveillance by P-TEFb kinase on heat shock genes. Mol. Cell 2004, 13, 55–65. 

144. Rahl, P.B.; Lin, C.Y.; Seila, A.C.; Flynn, R.A.; McCuine, S.; Burge, C.B.; Sharp, P.A.; Young, R.A. 

c-Myc regulates transcriptional pause release. Cell 2010, 141, 432–445. 

145. Nechaev, S.; Adelman, K. Pol II waiting in the starting gates: Regulating the transition from 

transcription initiation into productive elongation. Biochim. Biophys. Acta 2011, 1809, 34–45. 

146. Ahn, S.H.; Keogh, M.C.; Buratowski, S. Ctk1 promotes dissociation of basal transcription factors 

from elongating RNA polymerase II. EMBO J. 2009, 28, 205–212. 

147. Tassan, J.P.; Jaquenoud, M.; Leopold, P.; Schultz, S.J.; Nigg, E.A. Identification of human 

cyclin-dependent kinase 8, a putative protein kinase partner for cyclin C. Proc. Natl. Acad. Sci. 

USA 1995, 92, 8871–8875. 

148. Maldonado, E.; Shiekhattar, R.; Sheldon, M.; Cho, H.; Drapkin, R.; Rickert, P.; Lees, E.; 

Anderson, C.W.; Linn, S.; Reinberg, D. A human RNA polymerase II complex associated with 

SRB and DNA-repair proteins. Nature 1996, 381, 86–89. 

149. Pan, G.; Aso, T.; Greenblatt, J. Interaction of elongation factors TFIIS and elongin A with a 

human RNA polymerase II holoenzyme capable of promoter-specific initiation and responsive to 

transcriptional activators. J. Biol. Chem. 1997, 272, 24563–24571. 

150. Liao, S.M.; Zhang, J.; Jeffery, D.A.; Koleske, A.J.; Thompson, C.M.; Chao, D.M.; Viljoen, M.; 

van Vuuren, H.J.; Young, R.A. A kinase-cyclin pair in the RNA polymerase II holoenzyme. 

Nature 1995, 374, 193–196. 

151. Hengartner, C.J.; Myer, V.E.; Liao, S.M.; Wilson, C.J.; Koh, S.S.; Young, R.A. Temporal 

regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases. Mol. Cell 1998, 

2, 43–53. 

152. Rickert, P.; Corden, J.L.; Lees, E. Cyclin C/CDK8 and cyclin H/CDK7/p36 are biochemically 

distinct CTD kinases. Oncogene 1999, 18, 1093–1102. 

153. Borggrefe, T.; Davis, R.; Erdjument-Bromage, H.; Tempst, P.; Kornberg, R.D. A complex of the 

Srb8, -9, -10, and -11 transcriptional regulatory proteins from yeast. J. Biol. Chem. 2002, 277, 

44202–44207. 

154. Tsai, K.L.; Sato, S.; Tomomori-Sato, C.; Conaway, R.C.; Conaway, J.W.; Asturias, F.J.  

A conserved Mediator-CDK8 kinase module association regulates Mediator-RNA polymerase II 

interaction. Nat. Struct. Mol. Biol. 2013, 20, 611–619. 

155. Knuesel, M.T.; Meyer, K.D.; Bernecky, C.; Taatjes, D.J. The human CDK8 subcomplex is a 

molecular switch that controls Mediator coactivator function. Genes Dev. 2009, 23, 439–451. 

156. Akoulitchev, S.; Chuikov, S.; Reinberg, D. TFIIH is negatively regulated by cdk8-containing 

mediator complexes. Nature 2000, 407, 102–106. 

157. Galbraith, M.D.; Donner, A.J.; Espinosa, J.M. CDK8: A positive regulator of transcription. 

Transcription 2010, 1, 4–12. 



Molecules 2014, 19 1509 

 

 

158. Firestein, R.; Bass, A.J.; Kim, S.Y.; Dunn, I.F.; Silver, S.J.; Guney, I.; Freed, E.; Ligon, A.H.; 

Vena, N.; Ogino, S.; et al. CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. 

Nature 2008, 455, 547–551. 

159. Donner, A.J.; Ebmeier, C.C.; Taatjes, D.J.; Espinosa, J.M. CDK8 is a positive regulator of 

transcriptional elongation within the serum response network. Nat. Struct. Mol. Biol. 2010, 17, 

194–201. 

160. Alarcon, C.; Zaromytidou, A.I.; Xi, Q.; Gao, S.; Yu, J.; Fujisawa, S.; Barlas, A.; Miller, A.N.; 

Manova-Todorova, K.; Macias, M.J.; et al. Nuclear CDKs drive Smad transcriptional activation 

and turnover in BMP and TGF-beta pathways. Cell 2009, 139, 757–769. 

161. Galbraith, M.D.; Allen, M.A.; Bensard, C.L.; Wang, X.; Schwinn, M.K.; Qin, B.; Long, H.W.; 

Daniels, D.L.; Hahn, W.C.; Dowell, R.D.; et al. HIF1A employs CDK8-mediator to stimulate 

RNAPII elongation in response to hypoxia. Cell 2013, 153, 1327–1339. 

162. Hirst, M.; Kobor, M.S.; Kuriakose, N.; Greenblatt, J.; Sadowski, I. GAL4 is regulated by the 

RNA polymerase II holoenzyme-associated cyclin-dependent protein kinase SRB10/CDK8.  

Mol. Cell 1999, 3, 673–678. 

163. Rohde, J.R.; Trinh, J.; Sadowski, I. Multiple signals regulate GAL transcription in yeast.  

Mol. Cell Biol. 2000, 20, 3880–3886. 

164. Vincent, O.; Kuchin, S.; Hong, S.P.; Townley, R.; Vyas, V.K.; Carlson, M. Interaction of the Srb10 

kinase with Sip4, a transcriptional activator of gluconeogenic genes in Saccharomyces cerevisiae. 

Mol. Cell Biol. 2001, 21, 5790–5796. 

165. Mo, X.; Kowenz-Leutz, E.; Xu, H.; Leutz, A. Ras induces mediator complex exchange on C/EBP 

beta. Mol. Cell 2004, 13, 241–250. 

166. Phatnani, H.P.; Greenleaf, A.L. Identifying phosphoCTD-associating proteins. Meth. Mol. Biol. 

2004, 257, 17–28. 

167. Phatnani, H.P.; Jones, J.C.; Greenleaf, A.L. Expanding the functional repertoire of CTD kinase I 

and RNA polymerase II: Novel phosphoCTD-associating proteins in the yeast proteome. 

Biochemistry 2004, 43, 15702–15719. 

168. Jeronimo, C.; Bataille, A.R.; Robert, F. The writers, readers, and functions of the RNA 

polymerase II C-terminal domain code. Chem. Rev. 2013, 113, 8491–8522. 

169. Zhang, D.W.; Rodriguez-Molina, J.B.; Tietjen, J.R.; Nemec, C.M.; Ansari, A.Z. Emerging views 

on the CTD code. Genet. Res. Int. 2012, 2012, 347214. 

170. Kubicek, K.; Cerna, H.; Holub, P.; Pasulka, J.; Hrossova, D.; Loehr, F.; Hofr, C.; Vanacova, S.; 

Stefl, R. Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment 

of Nrd1. Genes Dev. 2012, 26, 1891–1896. 

171. Arigo, J.T.; Eyler, D.E.; Carroll, K.L.; Corden, J.L. Termination of cryptic unstable transcripts is 

directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol. Cell 2006, 23, 841–851. 

172. Kim, M.; Vasiljeva, L.; Rando, O.J.; Zhelkovsky, A.; Moore, C.; Buratowski, S. Distinct 

pathways for snoRNA and mRNA termination. Mol. Cell 2006, 24, 723–734. 

173. Carroll, K.L.; Pradhan, D.A.; Granek, J.A.; Clarke, N.D.; Corden, J.L. Identification of cis 

elements directing termination of yeast nonpolyadenylated snoRNA transcripts. Mol. Cell Biol. 

2004, 24, 6241–6252. 



Molecules 2014, 19 1510 

 

 

174. Gudipati, R.K.; Villa, T.; Boulay, J.; Libri, D. Phosphorylation of the RNA polymerase II  

C-terminal domain dictates transcription termination choice. Nat. Struct. Mol. Biol. 2008, 15, 

786–794. 

175. Steinmetz, E.J.; Conrad, N.K.; Brow, D.A.; Corden, J.L. RNA-binding protein Nrd1 directs 

poly(A)-independent 3'-end formation of RNA polymerase II transcripts. Nature 2001, 413,  

327–331. 

176. Vasiljeva, L.; Kim, M.; Mutschler, H.; Buratowski, S.; Meinhart, A. The Nrd1-Nab3-Sen1 

termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal 

domain. Nat. Struct. Mol. Biol. 2008, 15, 795–804. 

177. Steinmetz, E.J.; Ng, S.B.; Cloute, J.P.; Brow, D.A. cis- and trans-Acting determinants of 

transcription termination by yeast RNA polymerase II. Mol. Cell Biol. 2006, 26, 2688–2696. 

178. Lykke-Andersen, S.; Jensen, T.H. Overlapping pathways dictate termination of RNA polymerase 

II transcription. Biochimie 2007, 89, 1177–1182. 

179. Samaranayake, D.; Atencio, D.; Morse, R.; Wade, J.T.; Chaturvedi, V.; Hanes, S.D. Role of Ess1 

in growth, morphogenetic switching, and RNA polymerase II transcription in Candida albicans. 

PloS One 2013, 8, e59094. 

180. Barilla, D.; Lee, B.A.; Proudfoot, N.J. Cleavage/polyadenylation factor IA associates with the 

carboxyl-terminal domain of RNA polymerase II in Saccharomyces cerevisiae. Proc. Natl. Acad. 

Sci. USA 2001, 98, 445–450. 

181. Licatalosi, D.D.; Geiger, G.; Minet, M.; Schroeder, S.; Cilli, K.; McNeil, J.B.; Bentley, D.L. 

Functional interaction of yeast pre-mRNA 3'-end processing factors with RNA polymerase II. 

Mol. Cell 2002, 9, 1101–1111. 

182. Meinhart, A.; Cramer, P. Recognition of RNA polymerase II carboxy-terminal domain by  

3'-RNA-processing factors. Nature 2004, 430, 223–226. 

183. Noble, C.G.; Hollingworth, D.; Martin, S.R.; Ennis-Adeniran, V.; Smerdon, S.J.; Kelly, G.; 

Taylor, I.A.; Ramos, A. Key features of the interaction between Pcf11 CID and RNA polymerase 

II CTD. Nat. Struct. Mol. Biol. 2005, 12, 144–151. 

184. Lunde, B.M.; Reichow, S.L.; Kim, M.; Suh, H.; Leeper, T.C.; Yang, F.; Mutschler, H.; 

Buratowski, S.; Meinhart, A.; Varani, G. Cooperative interaction of transcription termination 

factors with the RNA polymerase II C-terminal domain. Nat. Struct. Mol. Biol. 2010, 17, 1195–1201. 

185. Furuichi, Y.; Shatkin, A.J. Viral and cellular mRNA capping: Past and prospects. Adv. Virus Res. 

2000, 55, 135–184. 

186. Issur, M.; Picard-Jean, F.; Bisaillon, M. The RNA capping machinery as an anti-infective target. 

Wiley Interdiscip. Rev. RNA 2011, 2, 184–192. 

187. Burley, S.K.; Sonenberg, N. Gimme phospho-serine five! Capping enzyme guanylyltransferase 

recognition of the RNA polymerase II CTD. Mol. Cell 2011, 43, 163–165. 

188. Ho, C.K.; Shuman, S. Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment 

and allosteric activation of mammalian mRNA capping enzyme. Mol. Cell 1999, 3, 405–411. 

189. Schroeder, S.C.; Schwer, B.; Shuman, S.; Bentley, D. Dynamic association of capping enzymes 

with transcribing RNA polymerase II. Genes Dev. 2000, 14, 2435–2440. 

190. West, M.L.; Corden, J.L. Construction and analysis of yeast RNA polymerase II CTD deletion 

and substitution mutations. Genetics 1995, 140, 1223–1233. 



Molecules 2014, 19 1511 

 

 

191. Chu, C.; Das, K.; Tyminski, J.R.; Bauman, J.D.; Guan, R.; Qiu, W.; Montelione, G.T.; Arnold, E.; 

Shatkin, A.J. Structure of the guanylyltransferase domain of human mRNA capping enzyme. 

Proc. Natl. Acad. Sci. USA 2011, 108, 10104–10108. 

192. Fabrega, C.; Shen, V.; Shuman, S.; Lima, C.D. Structure of an mRNA capping enzyme bound to 

the phosphorylated carboxy-terminal domain of RNA polymerase II. Mol. Cell 2003, 11, 1549–1561. 

193. Ghosh, A.; Shuman, S.; Lima, C.D. Structural insights to how mammalian capping enzyme reads 

the CTD code. Mol. Cell 2011, 43, 299–310. 

194. Gu, M.; Rajashankar, K.R.; Lima, C.D. Structure of the Saccharomyces cerevisiae Cet1-Ceg1 

mRNA capping apparatus. Structure 2010, 18, 216–227. 

195. Kim, M.; Krogan, N.J.; Vasiljeva, L.; Rando, O.J.; Nedea, E.; Greenblatt, J.F.; Buratowski, S. 

The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 

2004, 432, 517–522. 

196. West, S.; Gromak, N.; Proudfoot, N.J. Human 5' → 3' exonuclease Xrn2 promotes transcription 

termination at co-transcriptional cleavage sites. Nature 2004, 432, 522–525. 

197. Tollervey, D. Molecular biology: Termination by torpedo. Nature 2004, 432, 456–457. 

198. Pearson, E.L.; Moore, C.L. Dismantling promoter-driven RNA polymerase II transcription 

complexes in vitro by the termination factor Rat1. J. Biol. Chem. 2013, 288, 19750–19759. 

199. Becker, R.; Loll, B.; Meinhart, A. Snapshots of the RNA processing factor SCAF8 bound to 

different phosphorylated forms of the carboxyl-terminal domain of RNA polymerase II.  

J. Biol. Chem. 2008, 283, 22659–22669. 

200. Patturajan, M.; Wei, X.; Berezney, R.; Corden, J.L. A nuclear matrix protein interacts with the 

phosphorylated C-terminal domain of RNA polymerase II. Mol. Cell Biol. 1998, 18, 2406–2415. 

201. Yaffe, M.B.; Schutkowski, M.; Shen, M.; Zhou, X.Z.; Stukenberg, P.T.; Rahfeld, J.U.; Xu, J.; 

Kuang, J.; Kirschner, M.W.; Fischer, G.; et al. Sequence-specific and phosphorylation-dependent 

proline isomerization: A potential mitotic regulatory mechanism. Science 1997, 278, 1957–1960. 

202. Shen, M.; Stukenberg, P.T.; Kirschner, M.W.; Lu, K.P. The essential mitotic peptidyl-prolyl 

isomerase Pin1 binds and regulates mitosis-specific phosphoproteins. Genes Dev. 1998, 12, 706–720. 

203. Korzhnev, D.M.; Religa, T.L.; Banachewicz, W.; Fersht, A.R.; Kay, L.E. A transient and  

low-populated protein-folding intermediate at atomic resolution. Science 2010, 329, 1312–1316. 

204. Evans, P.A.; Dobson, C.M.; Kautz, R.A.; Hatfull, G.; Fox, R.O. Proline isomerism in 

staphylococcal nuclease characterized by NMR and site-directed mutagenesis. Nature 1987, 329, 

266–268. 

205. Wang, X.J.; Xu, B.; Mullins, A.B.; Neiler, F.K.; Etzkorn, F.A. Conformationally locked isostere 

of phosphoSer-cis-Pro inhibits Pin1 23-fold better than phosphoSer-trans-Pro isostere. J. Am. 

Chem. Soc. 2004, 126, 15533–15542. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


