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Abstract: In the present work, the knowledge on target proteins of standard antibiotics was 

extended to antimicrobial mushroom compounds. Docking studies were performed for  

34 compounds in order to evaluate their affinity to bacterial proteins that are known targets 

for some antibiotics with different mechanism of action: inhibitors of cell wall synthesis, 

inhibitors of protein synthesis, inhibitors of nucleic acids synthesis and antimetabolites. 

After validation of the molecular docking approach, virtual screening of all the compounds 

was performed against penicillin binding protein 1a (PBP1a), alanine racemase (Alr),  
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D-alanyl-D-alanine synthetase (Ddl), isoleucyl-tRNA sinthetase (IARS), DNA gyrase 

subunit B, topoisomerase IV (TopoIV), dihydropteroate synthetase (DHPS) and dihydrofolate 

reductase (DHFR) using AutoDock4. Overall, it seems that for the selected mushroom 

compounds (namely, enokipodins, ganomycins and austrocortiluteins) the main mechanism 

of the action is the inhibition of cell wall synthesis, being Alr and Ddl probable protein targets. 

Keywords: mushrooms; antimicrobial compounds; antibiotics; target proteins; docking studies 

 

1. Introduction 

The classification of antibiotics is based on their mechanism of action, and the main groups include 

inhibitors of cell wall synthesis, inhibitors of protein synthesis, inhibitors of nucleic acids synthesis 

and antimetabolites [1]. In general antibiotics inhibit these routes by interacting with specific cell 

proteins, usually responsible for defined activity. 

Antimicrobials acting at the cell wall level are the most selective, being bactericidal and presenting 

a high therapeutic index, since inhibition of peptidoglycan synthesis leads to cell lysis [2]. There is a 

large diversity of antibiotics that can act in different phases of peptidoglycan biosynthesis, namely in 

the cytoplasmic, membrane and parietal phases [3]. β-Lactams act entirely outside the cell membrane, 

in the final (parietal) phase of peptidoglycan biosynthesis [3,4]. They act in penicillin binding proteins 

(PBPs), which are responsible for transpeptidation, transglucosylation and carboxypeptidation reactions. 

These antibiotics have β-lactam rings with spatial structures similar to that of the acyl-D-alanyl-D-alanine 

residues in peptidoglycan chains (natural ligand of PBPs) that link with and inhibit those proteins [3]. 

Fosfomycin acts in the membrane phase and prevents the transference of enolpyruvate to the 

intermediate uridine diphosphate-N-acetylglucosamine (UDP-NAG), compromising the formation of 

UDP-NAG-enolpyruvate that would be reduced for the synthesis of UDP-N-acetylmuramic acid 

(UDP-NAMA). D-Cycloserine acts in the cytoplasmic phase and it is a competitive inhibitor of alanine 

racemase (Alr) and D-alanyl-D-alanine synthetase (Ddl), inhibiting the incorporation of D-alanyl-D-alanine 

in UDP-NAMA tripeptide [3,4]. Nevertheless, other antibiotics such as glycopeptides (e.g., vancomycin) 

and bacitracin act in the membrane phase [3]. Bacitracin links to the lipid carrier, undecaprenyl-

pyrophosphate (lipid-P-P), preventing dephosphorylation by membrane phosphatase [3,4]. On the 

other hand, glycopeptides bind to the D-alanyl-D-alanine moiety in the precursor of the peptidoglycan 

(NAG-NAMA-pentapeptide-P-P-lipid), in the interface between cytoplasmic membrane and cell wall, 

thus preventing the transfer of newly synthesized drivers to the array parietal growth [2]. 

Some antibiotics acting in protein synthesis affect bacteria ribosomes, namely 30S and/or 50S 

subunits, inhibiting the protein synthesis at the initial or elongation phases, or inducing the synthesis of 

abnormal proteins [5]. Macrolides, chloramphenicol, lincosamides, streptogramins and oxazolidones 

act at the 50S subunit, while aminoglycosides, spectinomycin and tetracyclines exert their antibacterial 

action in the 30S subunit [3]. Chloramphenicol exhibits a broad bacteriostatic spectrum [5]; it blocks 

the principal ribosome functions, including peptidyl transferase activity and aminoacyl-tRNA 

elongation, inhibiting peptidyl transferase by interfering in tRNA positioning [6,7]. Mupirocin is a 
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bacteriostatic antibiotic with higher activity upon Gram-positive bacteria by inhibiting isoleucyl-tRNA 

synthetase (IARS), preventing the incorporation of amino acid isoleucine in peptides [3]. 

Quinolones interfere in DNA replication by inhibiting the activity of bacteria type II topoisomerase 

(DNA gyrase) and type IV topoisomerase [8]. Rifampicin inhibits RNA polymerase activity by linking 

to β-subunit, preventing the synthesis of mRNA [2]. 

Folic acid is essential for the synthesis of nitrogen base purines and pyrimidines and, consequently, 

for the synthesis of DNA. Antimetabolites act synergistically in two different points of folic acid 

formation, exhibiting bacteriostatic activity. Sulfonamides, dapsone and p-aminosalicylic acid are 

some examples [2,9]. Sulfonamides inhibit the action of dihydropteroate synthetase (with p-aminobenzoic 

acid (PABA) as substrate), preventing the synthesis of dihydrofolic acid. Trimetoprim blocks enzymatic 

activity of dihydrofolate reductase (DHFR), which is responsible for the formation of tetrahydrofolic 

acid [9]. 

Considering bacterial evolution and the current increase of antibiotic resistance, the discovery of 

new natural compounds that can be used to treat infections with lower secondary effects than existing 

antibiotics is becoming crucial, in order to guarantee the health of future generations [10]. In this regard, 

mushrooms have proved to be particularly interesting sources of antimicrobial compounds [11,12] 

although their mechanisms of action are not yet fully described. Herein, we intended to extend the 

knowledge on target proteins of standard antibiotics to antimicrobial mushroom compounds, in order 

to predict possible interactions between the natural compounds and target proteins that would allow 

understanding and describing the mechanism of action. Therefore, docking studies were performed for 

34 antimicrobial compounds (Figure 1) in order to evaluate their affinity to bacterial proteins that are 

known targets for some antibiotics. 

2. Results and Discussion 

2.1. Protein Targets 

A docking study of target proteins involved in antibacterial mechanisms was performed to extend 

the knowledge on standard antibiotics to mushroom compounds with reported antibacterial activity. 

The proteins used were the following: PBP1a from Acinetobacter baumannii, Alr from Escherichia coli, 

IARS and Ddl from Thermus thermophilus, DNA gyrase subunit B and DHFR from Staphylococcus 

aureus, and TopoIV and DHPS from Streptococcus pneumonia. 

The protein structures used in this work for IARS and Ddl were from Thermus thermophilus, 

although the best targets would be from S. aureus or Mycobacterium tuberculosis (also available in 

PDB). However, it was not possible to validate the docking methodology for these protein structures, 

as the obtained docking pose for the ligand didn’t superimpose well with the co-crystallized ligand 

structure. In fact they present RMSD values well above the 2 Å value that is usually considered a good 

threshold value for validating a structure for use in molecular docking. M. tuberculosis is a significant 

cause of morbidity and mortality in undeveloped countries, but due to its easy dissemination among 

patients with HIV and immunosuppression, it is also starting to be considered a serious public health 

problem in developed countries [2]. Regarding S. aureus, despite the presence in the human flora of 

skin and especially nasal mucosa, it is an opportunistic pathogen frequently found in nosocomial 
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infections (but also in community infections, especially related with skin conditions) that may lead to 

severe infections, including septicemias [2]. Regarding DNA gyrase, the crystal structure used presented 

the co-crystallized ligand 07N bound to the ATP binding site, so for DNA gyrase we are analysing the 

potential of the studied compounds to bind to the ATP binding site. For TopoIV the co-crystallized 

ligand LFX was bound to DNA binding site and in this case we are analysing the potential of the 

studied compounds to bind to the DNA binding site. It should be highlighted that the docking 

simulation in this study was performed between a rigid receptor (protein) and a flexible ligand 

(compound). Thus, possible target proteins with high flexibility in their active sites were discarded. 

Figure 1. Chemical structures of the mushroom compounds pointed out as antimicrobial agents. 
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2.2. Docking and Scoring Validation 

In order to validate the docking approach for the protein structures used, the respective co-

crystallized ligands were docked to the active site of each protein using AutoDock4. Some protein 

structures presented natural substrates as a co-crystallized ligand whereas in others the co-crystallized 

ligand was a known inhibitor (Table 1), in both cases the same docking and scoring validation process 

was used. Each co-crystalized ligand, was previously removed from the respective protein binding site. 

The predicted docking pose was compared with the experimental co-crystallized binding pose. This 

docking validation was not performed for the Alr structure where the co-crystallized ligand is a 

covalently linked prosthetic group (pyridoxal-5′-phosphate), as AutoDock4 is not able to handle 

covalent bonds. 

Table 1. Values of Ki predicted by AutoDock4, Xscores and experimental values of Ki. 

Protein Class Ligand 
PDB 

(ID) 

RMSD 

(Å) 

Predicted 

AutoDock4 

Ki (µM) 

Predicted 

Xscore 

Ki (µM) 

Experimental 

Ki (µM) 

PBP1a A PNM b 3UDI 1.33 5.49 1.862 - 

Ddl A ATP a 2ZDQ 1.49 0.006 0.478 - 

IARS B ILA b 1JZQ 1.13 0.203 0.707 0.006 

DNA 

Gyrase 
C 07N b 3TTZ 0.23 0.419 0.457 0.004 

TopoIV C LFX b 3RAE 1.66 0.139 0.245 -  

DHPS D PMM a 2VEG 0.57 4.382 7.413 33 

DHFR D Q2 b 3SRW 1.85 0.050 0.089 0.00003 

 r 0.90 0.99 

 ρ 0.80 1 

A—Inhibitors of cell wall synthesis; B—Inhibitors of protein synthesis; C—Inhibitors of nucleic acid 

synthesis; D—Antimetabolites. a—Natural Substrate; b—Inhibitor. 

All the predicted docking poses presented a root mean square deviation (RMSD) lower than 2 Å, 

when compared to the experimental co-crystallized binding pose (Table 1). This is a strong evidence 

that AutoDock4 can predict docking poses accurately, as 2 Å is usually considered a good threshold 

value for RMSD. 

In order to validate scoring predictability, Ki values estimated by AutoDock4 or Xscore were 

compared with experimental Ki values, when available, by calculating ρ and r (Table 1); r measures 

the correlation between predicted pKi by AutoDock4 or Xscore and experimental pKi; ρ measures the 

rank correlation between predicted Ki by AutoDock4 or Xscore and experimental Ki. 

Xscore allowed slightly better results (ρ = 1 and r = 0.99) than AutoDock4 (ρ = 0.80 and r = 0.90). 

Xscore correctly ranked all the 4 compounds tested (ρ = 1), with a higher linear correlation between 

the predicted and experimental results (r = 0.99). Therefore, Xscore may be a better scoring function 

for the protein structures studied when compared to AutoDock4. 
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2.3. Virtual Screening of Antimicrobial Mushroom Compounds 

After validation of the molecular docking approach and scoring predictability with ligands (positive 

controls), virtual screening of the 34 compounds dataset was performed against PBP1a, Alr, Ddl, 

IARS, DNA gyrase subunit B, TopoIV, DHPS and DHFR using AutoDock4. The 34 compounds 

(Figure 1) used as dataset were previously identified in mushrooms and were previously pointed out by 

our research group as being antimicrobial agents [11,12]. 

All top docking structures predicted by AutoDock4 were rescored using Xscore, and further 

manually analyzed. The compounds out of the active site were presented in Table 2 in bold. Xscore 

scoring was also normalized for an easier interpretation, being divided in three parts: low predicted 

activity comprises compounds that scored above 10 μM (Table 2 red); medium predicted activity 

includes compounds that scored between 10 and 1 μM (Table 2 yellow); high predicted activity 

encloses compounds that scored below 1 μM (Table 2 green). Five proteins (PBP1a, Alr, Ddl, TopoIV 

and DHFR) had compounds with high predicted activity (Table 2). 

Table 2. Predicted Xscore Ki (µM) of mushroom compounds with antimicrobial activity 

against proteins involved in antimicrobial mechanisms of action. 

Compound Code PBP1a Alr Ddl IARS 
DNA 

Gyrase
TopoIV DHPS DHFR

Confluentin 1a 10.72 0.17 1.45 162.18 8.56 0.26 6.46 0.44 

Grifolin  1b 1.91 1.35 0.1 251.19 28.18 0.83 4.47 1.75 

Neogrifolin 1c 0.91 1.12 0.09 45.71 37.15 1.07 1.51 2.33 

3,11-Dioxolanosta-8,24(Z)-diene-

26-oic acid 2 0.07 14.45 0.01 3.16 6.31 0.23 4.27 0.15 

Oxalic acid 3 112.2 134.9 87.1 354.81 89.13 77.62 158.49 124.9 

Enokipodins A 4a 1.23 0.36 0.15 50.12 9.55 2.75 63.1 3.55 

Enokipodins B 4b 1.62 0.51 4.57 23.44 21.38 7.76 131.8 5.62 

Enokipodins C 4c 1.02 0.25 0.19 60.26 10.23 6.03 70.79 4.04 

Enokipodins D 4d 1.17 0.52 0.34 218.78 32.36 7.59 2.4 4.68 

Ganomycin A 5a 1.78 0.49 0.33 457.09 69.18 1.62 14.45 0.86 

Ganomycin B 5b 1.66 0.15 0.3 40.74 48.98 0.66 5.37 0.46 

2-Aminoquinoline 6 12.59 5.37 2.4 4.47 54.95 25.12 25.12 5.71 

6-Methylxanthopurpurin-3-O-

methyl 7 2.95 0.66 0.38 28.84 30.9 0.93 3.09 1.25 

Austrocortilutein A 8a 3.24 0.3 0.4 12.88 14.13 11.75 2.14 5.37 

Austrocortilutein B 8b 2.51 0.3 0.35 13.18 19.5 0.54 2.14 5.5 

Austrocortirubin 8c 2.88 0.4 0.32 41.69 36.31 22.39 21.38 25.51 

Torosachrysone 8d 2.04 0.26 0.32 58.88 16.98 10.23 2.95 4.33 

Physcion 9a 1.91 0.6 0.3 30.2 7.08 0.72 3.39 1.62 

Erythroglaucin 9b 2.69 0.55 0.19 26.3 28.84 0.62 2.63 2.15 

Emodin 9c 2.57 0.41 0.32 40.74 11.75 0.72 2.57 1.12 

Coloratin A 10 1.12 2 0.25 61.66 16.98 0.54 1.58 0.91 
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Table 2. Cont. 

Compound Code PBP1a Alr Ddl IARS 
DNA 

Gyrase
TopoIV DHPS DHFR

2,4-Dihydroxybenzoic acid 11a 16.22 7.94 9.55 7.76 2.34 9.55 16.98 15.37 

Gallic acid 11b 19.05 8.32 17.38 6.76 35.48 8.91 87.1 19.65 

Protocatechuic acid 11c 18.2 6.17 15.85 8.13 33.88 10.96 17.78 17.65 

Syringic acid 11d 18.2 10 14.13 316.23 74.13 9.55 15.14 25.31 

Vanillic acid 11e 19.05 9.77 13.8 7.94 34.67 10.47 18.62 22.91 

Caffeic acid 12a 7.94 3.8 5.37 114.82 46.77 5.89 195 33.11 

Cinammic 12b 10.23 4.27 5.01 3.63 46.77 8.71 12.02 18.48 

Ferulic acid 12c 12.88 4.37 5.89 269.15 20.89 6.03 9.55 36.59 

o-Coumaric acid 12d 12.3 4.17 4.07 204.17 22.91 6.46 30.2 11.66 

p-Coumaric acid 12e 10.72 4.9 6.03 154.88 16.98 6.46 40.74 19.8 

Chlorogenic acid 12f 1.55 38.02 0.21 316.23 23.99 7.59 42.66 3.6 

Quercetin 13 1.74 0.52 0.35 97.72 19.5 0.52 13.8 2.53 

Ellagic acid 14 4.27 0.56 0.58 58.88 46.77 4.68 2.63 8.45 

Scores below 1 µM were presented at green, scores between 10 and 1 µM were presented at yellow and 

scores above 10 µM were p resented at red. Compounds with the best score for each protein was highlighted 

in bold. Compounds docked out of the active site were presented in italics.  

Still, it is important to point out that, apart from DHFR, the protein used for the validation step 

(IARS, DHPS and DNAg) presented lower predicted scores. Although this circumstance is probably 

just a coincidence, it highlights that fact that interpreting docking predicted scores should always the 

taken with caution. 

The target proteins, which are involved in the cell wall synthesis (PBP1a, Alr and Ddl), had 

compounds scored lower than 1 μM. Regarding PBP1a, the best results were obtained with 

neogrifoline and 3,11-dioxolanosta-8,24(Z)-diene-26-oic acid; the latter also presented the highest 

score for Ddl. Otherwise, the score of the mentioned compound for Alr was low, being the highest 

score obtained with ganomycin B. 

Considering the lowest predicted Ki of some compounds for Alr and Ddl, namely the enokipodins, 

ganomycins and austrocortiluteins, these proteins may be involved as possible targets of such 

antimicrobial compounds. On the other hand, IARS revealed the highest scores for most of the  

34 compounds tested, suggesting that IARS is not a good target for the tested compounds, specially 

taking into account that ILA, the co-crystallyzed ligand inhibitor, presents an experimental Ki value of 

0.006 µM. Otherwise, other mechanism of protein synthesis inhibition cannot be excluded. The protein 

targets involved in nucleic acid synthesis (DNA gyrase and TopoIV) have two active sites. Herein, 

ATP binding site was tested in DNA gyrase, while DNA binding site was tested in TopoIV. The 

results revealed a higher affinity of the compounds towards the DNA binding site, which is also a 

target for antibiotic quinolones that share some features with the best scored compounds  

(e.g., confluentin, grifolin and ganomycin B). It is important to point out that the best scores for DNA 

gyrase were all above 1 µM, a value that fares weakly with the co-crystallyzed ligand inhibitor 07N 

that presents a very potent experimental Ki of 0.004 µM. 
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In regard to the protein targets of antimetabolites (DHPS and DHFR), in general DHFR presented 

better scores than DHPS. However it is important to note that, for DHFR, the co-crystallized ligand 

was the inhibitor Q7 with an experimental Ki of 0.00003 µM, a far more potent Ki than the best 

predicted Ki of 0,15 µM for 3,11-dioxolanosta-8,24(Z)-diene-26-oic acid. On the other hand, altough 

the best predicted Ki for DHPS was a less potent 1.51 µM value for neogrifolin, it is still more potent 

than the co-crystallyzed natural substrate PMM that presents a higher experimental Ki value of 33 µM. 

Phenolic acids, compounds 11 and 12, gave high predicted Ki values in all the tested proteins, 

suggesting that these targets are not related to their mechanism of action. However, it is important to 

highlight the affinity of chlorogenic acid for Ddl. 

3,11-Dioxolanosta-8,24(Z)-diene-26-oic acid (2) was the best scored compound for PBP1a, with a 

predicted Ki of 0.07 μM (Table 2). This compound interacts with PBP1a by forming hydrogen bonds 

with GLY-709 and THR-673 (Figure 2A) explaining the high affinity for this protein, and suggesting a 

possible mechanism of the action. Compound 2 also showed the best score for Ddl, DNA gyrase and 

IARS (Table 2), all of which are ATP dependent proteins. As it can be observed in Figure 2B–D, 

AutoDock4 predicted a pose of compound 2 that occupies the same area of ATP in each of the three 

proteins. Figure 2C presents the binding pose of compound 2 against Ddl, indicating that the 

compound interacts with Ddl by forming hydrogen bonds with TYR-218 and TYR-229. Compound 2 

interacts with DNA gyrase by forming three hydrogen bonds with ASN-54, ARG-84 and ARG 144 

(Figure 2E). IARS interacts with compound 2 by forming one hydrogen bond with ARG-61  

(Figure 2D). Nevertheless, the best score of compound 2 was against Ddl (0.01 μM), corresponding 

also to the best score among all the results. Scores of compound 2 against DNA gyrase and IARS 

indicate that this compound has a much lower affinity for those proteins, excluding these proteins as 

main target for this compound. 

The best scored compound for Alr was ganomycin B (5b) with a predicted score of 0.15 μM.  

Figure 2E shows the binding pose predicted by AutoDock4 for ganomycin B against Alr. This 

compound interacts by forming hydrogen bonds with residues ARG-280, TYR-274 and the prosthetic 

group pyridoxal-5′-phosphate presented in the active site. Furthermore this protein has a very narrow 

access to the active site, which becomes the main difficulty for predicting if the tested compounds act 

as inhibitors; in order to inhibit Alr, the compounds had to enter into the narrow well. 

Confluentin (1a) was the best scored compound against TopoIV with a predicted Ki of 0.26 μM 

(Table 2). This compound interacts with TopoIV by forming hydrogen bonds with ARG-117 and TYR-180 

(Figure 2F). The same compound also had the best score for DHFR protein with a predicted score of  

0.44 μM (Table 2). This compound occupies the same area of Q27, a co-crystallized ligand. Furthermore, 

both compounds shared some hydrogen bonds with residues LEU-6 and PHE-93 (Figure 2G). 

For DHPS protein, neogrifolin (1c) was the best compound scored (Table 2). DHPS catalyzes the 

condensation of PABA with 6-hydroxymethyl-7,8-dihydropterin-pyrophosphate (DHPP) to form  

7,8-dihydropteroate [13]. Neogrifolin does not occupy the same area of the co-crystallized ligand 

PMM, an analog of DHPP. However, the compound occupied the region of p-hydroxybenzoic acid, 

which is an analog of PABA co-crystallized with DHPS from Bacillus anthracis (3TYB). 
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Figure 2. Docking pose: PBP1a (A), Ddl (B), DNA Gyrase (C) and IARS (D) with  

3,11-dioxolanosta-8,24(Z)-diene-26-oic acid; Alr (E) with ganomycin B; TopoIV (F) and 

DHFR (G) with confluentin; DHPS with neogrifolin (H). All the proteins are presented in 

cartoons, the predicted poses are presented in purple sticks and co-crystallized ligands 

presented in green lines. In 2H, p-hydroxybenzoic acid (orange line), which is a ligand  

co-crystallized with the other DHPS structure (3TYB), is superimposed. 
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Neogrifolin and p-hydroxybenzoic acid were superimposed to the protein structure used in the 

present study (2VEG). The place where neogrifolin, PABA and p-hydroxybenzoic acid interact with 

DHPS is assumed to be the same places for sulphonamides or sulpha drugs interact, which are PABA 

analogues and act as alternate substrates for DHPS [14]. 

3. Experimental  

3.1. Proteins and Natural Compounds Structure Preparation 

The protein crystal structures were obtained from the Protein Data Bank (PDB): PBP1a with PDB 

entry 3UDI [15], Alr with PDB entry 2RJG [16], Ddl with PDB entry 2ZDQ (not published), IARS 

with PDB entry 1JZQ [17], DNA gyrase with PDB entry 3TTZ [18], TopoIV with PDB entry 3RAE 

(not published), DHPS with PDB entry 2VEG [19] and DHFR with PDB entry 3SRW [20]. 

The co-crystallized ligands: penicillin G (PNM) for PBP1a, ATP for Ddl, N-[isoleucinyl]-N'-

[adenosyl]-diaminosufone (ILA) for IARS, 2-[(3S,4R)-4-{[(3,4-dichloro-5-methyl-1H-pyrrol-2-

yl)carbonyl]amino}-3-fluoropiperidin-1-yl]-1,3-thiazole-5-carboxylic acid (07N) for DNA gyrase, 

(3S)-9-fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]-quinoline-

6-carboxylic acid (LFX) for TopoIV, pterin-6-yl-methyl-monophosphate (PMM) for DHPS and  

7-(2-ethoxynaphthalen-1-yl)-6-methylquinazoline-2,4-diamine (Q27) for DHFR, were separated from 

the corresponding protein and used to perform the docking validation. All crystallized water molecules 

were removed from all the structures except in three cases: 128 from 3SRW; A-2049 from 2VEG and 

A-2 from 3TTZ. These water molecules were found to be essential for a correct docking pose, since 

they improved docking pose for the tested compounds in the positive validation, decreasing RMSD. 

AutoDockTools1.5.2 (ADT) [21] was then used to assign polar hydrogens, add Gasteiger charges and 

save all protein structures in PDB file format. AutoGrid4 [22] was subsequently used to create all atom 

affinity grid maps, centred for each structure in the co-crystallized ligands, and with the necessary 

dimensions to encompass the ligand binding site. 

The compound dataset used included 34 molecules reported in wild mushrooms that have been 

related to their antimicrobial activity [11,12]. ACD/ChemSketch Freeware 12.0 software was used to 

design 2D structure for all compounds and OpenBabel [23] was then used to perform 2D to 3D 

structure conversion. ADT was used to merge nonpolar hydrogens, add Gasteiger charges and set up 

rotatable bonds through AutoTors. 

3.2. Molecular Docking 

AutoDock4 (version 4.2) [22] with the Lamarckian genetic algorithm was used to perform the 

docking studies. Docking parameters selected for AutoDock4 runs were as follows: 50 docking runs, 

population size of 200, random starting position and conformation, translation step ranges of 2.0 Å, 

mutation rate of 0.02, crossover rate of 0.8, local search rate of 0.06, and 10 million energy 

evaluations. Docked conformations were clustered using a tolerance of 2.0 Å RMSD. The molecular 

docking experiments were performed on a dedicated cluster of 64 Core AMD 2.0 GHz, running on 

CentOS and using MOLA, a custom designed software for virtual screening using AutoDock [24]. All 

figures with structure representations were produced using PyMOL [25]. 
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3.3. Docking and Score Validation 

For docking validation, the molecular docking methodology described above was used to dock co-

crystallized ligands PNM, ATP, ILA, 07N, LFX, PMM and Q27 against the respective structures. The 

result of the top conformation predicted by AutoDock4 was then compared to experimental co-

crystallized binding pose and RMSD values were calculated. 

For score validation, docking pose with the best score of ILA, 07N, PMM and Q27 were subject to 

a rescoring step using Xscore [26]. AutoDock4 and Xscore scores were then compared to experimental 

inhibition values, and ρ (Spearman rank correlation) and r (Pearson correlation coefficient) were 

calculated. Since the score values belong to different scales, both predicted and experimental Ki values 

were converted to pKi values before r calculation.  

3.4. Virtual Screening  

The docking methodology described above was applied to dock the 34 compounds used as dataset 

against structures of 3UDI, 2RJG, 2ZDQ, 1JZQ, 3TTZ, 3RAE, 2VEG and 3SRW. For each compound, 

the docking pose with the best score was subject to a rescoring step using Xscore. Also, PyMOL was 

used to manually analyse the docking poses, in order to verify the pose occupied in the active site of 

each protein. 

4. Conclusions 

The data presented herein highlighted some conclusions regarding the affinity of different 

mushroom compounds to protein targets related to antibacterial action. Some compounds did not 

exhibit affinity for the target proteins considered, so possibly they use other target structures to exert 

their activity. However, several compounds (namely, the enokipodins, ganomycins and austrocortiluteins) 

indicated that main mechanism of their action is the inhibition of cell wall synthesis, being Alr and Ddl 

probable protein targets. Nevertheless, mushroom compounds might interact with other targets 

involving different mechanisms of action. Furthermore, docking studies were performed for only  

34 selected compounds toward protein targets from specific microorganisms. However, some relevant 

affinities of compounds were observed in the docking study, which could indicate possible mechanisms. 
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