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Abstract: A 3D-QSAR (CoMFA) study was performed in an extensive series of 

aminoalkylindoles derivatives with affinity for the cannabinoid receptors CB1 and CB2. 

The aim of the present work was to obtain structure-activity relationships of the 

aminoalkylindole family in order to explain the affinity and selectivity of the molecules for 

these receptors. Major differences in both, steric and electrostatic fields were found in the 

CB1 and CB2 CoMFA models. The steric field accounts for the principal contribution to 

biological activity. These results provide a foundation for the future development of new 

heterocyclic compounds with high affinity and selectivity for the cannabinoid receptors 

with applications in several pathological conditions such as pain treatment, cancer, obesity 

and immune disorders, among others. 

Keywords: cannabinoid; CB1/CB2; aminoalkylindole; molecular modelling; 3D-QSAR; 

Comparative Molecular Field Analysis (CoMFA); simulated annealing, structure-activity 

relationships 
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1. Introduction 

The cannabinoid receptors are seven transmembrane domains proteins with two known subtypes: 

CB1 and CB2 [1]. They belong to the G protein-coupled receptors (GPCRs) and since the discovery of  

∆9-THC [2], the main psychoactive component of Cannabis sativa, they have been the focus of several 

studies due to their implication in a variety of pathophysiological conditions [3,4]. There is a notable 

difference in the distribution of the cannabinoid receptors, as well as in the physiological functions 

they control [5]. However, there are some regions that can express both subtypes of receptors [6]. The 

CB1 receptors are expressed fundamentally in the central nervous system (CNS) and they are the most 

abundant GPCRs in the brain, with levels 10-fold higher than those of other GPCRs [7], indicating a 

highly significant functional role in a wide variety of circuits and neuronal systems [8]. The greater 

abundance of CB1 receptors in the CNS occurs in areas related to the control of motor activity, such as 

cortex, basal ganglia and cerebellum [9–11]. At a peripheral level the CB1 receptors are located in 

organs such as testes, vas deferens, bladder, ileum, eyes, liver, skeletal muscle, heart, pancreas and 

adipose tissue [12]. It is postulated that both central and peripheral distribution of CB1 receptors are 

integrated in the regulation of metabolic homeostasis [13], so compounds that target these receptors 

can be useful in the treatment of obesity, type 2 diabetes and other metabolic disorders. On the other 

hand, the distribution of the CB2 receptors is more bounded, as they are found almost exclusively in 

cells of the immune system, with particularly high levels in B lymphocytes and natural killer  

cells [14,15]. Other sites where CB2 receptors are found include thymus, tonsils, bone marrow, spleen, 

pancreas, peripheral nerve terminals, microglial cells, tumor cells (melanoma and glioma) and  

astrocytes [16–19]. Little is known about the physiological and pathophysiological role of CB2 

receptors. When activated, they can modulate the migration of immune system cells, suppress the 

release of proinflammatory cytokines and increase the release of inflammatory cytokines [20,21]. 

Although the physiological role of CB2 receptors is still not completely understood, several preclinical 

studies support the utility of using CB2 ligands for the treatment of chronic pain, maintenance of bone 

density, halting the progression of atherosclerotic lesions, asthma, autoimmune and inflammatory 

diseases, and multiple sclerosis [22]. 

Among the diverse variety of compounds synthesized against the CB receptors, the aminoalkylindole 

family represents a versatile group of compounds that includes CB1 and CB2 ligands such as 

WIN55212, AM1235, AM630 and JWH-015 (Figure 1). However, despite their chemical similarity, 

there is no obvious chemical rationality to the distinct affinity they exhibit for cannabinoid receptors, 

so in order to obtain useful information about the three-dimensional requirements for their receptor 

selectivity, we have performed a CoMFA study on a wide range of selective CB2 aminoalkylindoles 

reported in recent literature [23–25]. Moreover, the information obtained in this study will provide a 

means for predicting the activity of related compounds, and help guide further structural modifications 

and synthesis of new potent and selective cannabinoid ligands. 

From the work of Cramer et al. [26], CoMFA represent a useful methodology in understanding the 

pharmacological properties of a studied series of compounds. The steric and electrostatic maps 

obtained may help to: (a) understand the nature of the ligand-receptor interactions; (b) predict the 

biological affinity and (c) rationally design new promising compounds. Some Three-dimensional 

Quantitative Structure-Activity Relationships (3D-QSAR) studies have been made on the cannabinoid 
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ligands for the CB1 or CB2 receptors [27–31] in the last years. As a continuation of our efforts aimed 

at exploring and understanding the cannabinoid system [32–34], and due the need to obtain useful 

SAR in the aminoalkylindole family, we present two CoMFA models carried out on a wide number of 

compounds of the recent literature [23–25] with a marked pKi ratio (CB1/CB2). The molecules have 

broad structural variability and the contour plots are vivid and clear, and offer valuable information 

about the structural requirements for cannabinoid affinity and selectivity. 

Figure 1. Representative aminoalkylindole ligands. 

 

2. Results and Discussion 

2.1. Cannabinoid CB1 and CB2 CoMFA Models 

3D-QSAR models were obtained from CoMFA analysis and its statistical parameters are listed in 

Table 1. For a reliable predictive model the square q2 of the cross-validation coefficient should be 

greater than 0.5 [35]. The models have high r2, r2
pred and q2 suggesting that they are reliable and 

predictive. The steric and electrostatic contributions were found to be 71% and 29% respectively, in 

both cases, which is in agreement with the hydrophobic character of the cannabinoid ligands and the 

active site of the receptors.  
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Table 1. Statistical parameters of the CoMFA models a. 

CoMFA CB1 %Contribution 

N q2 r2 SEE F PRESS SD r2
pred Steric Electrostatic 

2 0.722 0.845 0.197 100 5.46 15.22 0.641 71.4 28.6 

CoMFA CB2   

10 0.643 0.999 0.021 4376 2.56 10.16 0.748 71.2 28.8 
a N is the optimum number of components, q2 is the square of the LOO cross-validation (CV) coefficient, r2 is 

the square of the non CV coefficient, r2
pred is the predictive r2 based only on the test set molecules, SEE is the 

standard error of estimation of non CV analysis, SD is the sum of the squared deviation between the 

biological activity of molecules in the test set and the mean activity of the training set molecules, PRESS is 

the sum of the squared deviations between predicted and actual biological activity values for every molecule 

in the test set, and F is the F-test value. 

The affinity values of molecules predicted by CoMFA models are listed in Table 2. In the CB1 

model, the compounds have a residual range of ‒0.48 to 0.95 (including training and test set). While in 

the CB2 model, the compounds have a residual of ‒0.63 to 0.65 (including training and test set). The 

major deviations from activity were in compounds 38 and 39 in CB1 and 84 and 88 in CB2. 

Table 2. Experimental and predicted activity for training and test set in the CB1 and CB2 models a. 

    CoMFA CB1     

Molecule 
Ki CB1 Actual pKi Predicted pKi

Residual 
(nM) (M) (M) 

Training Set 

1 1660 5.78 5.664 0.12 

2 488 6.312 6.223 0.09 

3 698 6.156 6.325 −0.17 

4 530 6.276 6.352 −0.08 

5 3617 5.442 5.462 −0.02 

6 2791 5.554 5.526 0.03 

7 3621 5.441 5.531 −0.09 

8 1258.9 5.9 5.918 −0.02 

9 389 6.41 6.353 0.06 

10 245.5 6.61 7.022 −0.41 

11 1096.5 5.96 5.958 0.00 

12 281.8 6.55 6.216 0.33 

13 2818.4 5.55 5.665 −0.12 

14 776.2 6.11 5.978 0.13 

15 851.1 6.07 6.065 0.01 

16 1288.2 5.89 5.911 −0.02 

17 1698.2 5.77 5.775 −0.01 

18 1862.1 5.73 5.808 −0.08 

19 229.1 6.64 6.417 0.22 

20 363.1 6.44 6.551 −0.11 

21 616.6 6.21 6.07 0.14 
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Table 2. Cont. 

CoMFA CB1 

Molecule 
Ki CB1 Actual pKi Predicted pKi Residual 
(nM) (M) (M) 

Training Set 

22 131.8 6.88 6.907 −0.03 
23 61.7 7.21 7.036 0.17 
24 72.4 7.14 6.948 0.19 
25 537 6.27 6.176 0.09 
26 562.3 6.25 6.13 0.12 
27 91.2 7.04 6.859 0.18 
28 213.8 6.67 6.695 −0.03 
29 281.8 6.55 6.921 −0.37 
30 144.5 6.84 6.605 0.24 
31 676.1 6.17 6.083 0.09 
32 660.7 6.18 6.222 −0.04 
33 380.2 6.42 6.723 −0.30 
34 213.8 6.67 6.635 0.04 
35 691.8 6.16 6.487 −0.33 
36 1258.9 5.9 6.12 −0.22 

Test Set 

37 1828.1 5.738 6.141 −0.4 
38 12.3 7.91 6.999 0.91 
39 13.2 7.88 6.93 0.95 
40 44.7 7.35 6.886 0.46 
41 33.1 7.48 6.73 0.75 
42 28.2 7.55 6.762 0.79 
43 1000 6 6.462 −0.46 
44 31.6 7.5 6.773 0.73 
45 25.1 7.6 6.825 0.77 
46 1621.8 5.79 6.218 −0.43 
47 354.8 6.45 6.927 −0.48 
48 47.9 7.32 6.883 0.44 
49 2238.7 5.65 6.124 −0.47 

Training Set 

1 110 6.959 6.974 −0.02 
2 98 7.009 7.028 −0.02 
3 67 7.174 7.169 0.01 
4 50 7.301 7.33 −0.03 
5 10.3 7.987 7.964 0.02 
7 6.4 8.196 8.174 0.02 
10 3.2 8.495 8.536 −0.04 
11 3.3 8.481 8.478 0.00 
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Table 2. Cont. 

CoMFA CB2 

Molecule 
Ki CB2 Actual pKi Predicted pKi Residual 
(nM) (M) (M) 

Training Set 

12 4.6 8.337 8.348 −0.01 
15 4.4 8.357 8.385 −0.03 
17 26 7.585 7.522 0.06 
20 11 7.959 7.972 −0.01 
21 16 7.796 7.811 −0.02 
23 2.6 8.585 8.579 0.01 
24 2.1 8.678 8.647 0.03 
25 5.9 8.229 8.234 −0.01 

27 2.8 8.553 8.545 0.01 

28 3.3 8.481 8.5 −0.02 

30 1.8 8.745 8.73 0.02 

34 8.2 8.086 8.079 0.01 

35 2.8 8.553 8.542 0.01 

37 17.8 7.75 7.743 0.01 

41 0.9 9.056 9.06 0.00 

43 2.9 8.538 8.521 0.02 

45 1.4 8.854 8.847 0.01 

49 31 7.509 7.489 0.02 

50 50 7.301 7.299 0.00 

51 189 6.724 6.719 0.01 

52 12.7 7.896 7.907 −0.01 

53 25.4 7.595 7.567 0.03 

54 11.2 7.951 7.98 -0.03 

55 22.2 7.654 7.651 0.00 

56 11.6 7.936 7.964 −0.03 

57 2.5 8.606 8.608 0.00 

58 2 8.693 8.691 0.00 

59 70.8 7.15 7.134 0.02 

60 5 8.301 8.299 0.00 

61 1.6 8.796 8.806 −0.01 

62 3 8.523 8.498 0.03 

63 2.5 8.602 8.635 −0.03 

64 3.5 8.456 8.452 0.00 

65 8.5 8.071 8.082 −0.01 

66 0.5 9.292 9.273 0.02 

67 9.3 8.032 8.028 0.00 

68 3.1 8.509 8.504 0.01 

69 9.3 8.032 8.039 −0.01 

70 27 7.569 7.556 0.01 

71 32 7.495 7.502 −0.01 
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Table 2. Cont. 

CoMFA CB2 

Molecule 
Ki CB2 Actual pKi Predicted pKi Residual 
(nM) (M) (M) 

Training Set 

72 1.9 8.721 8.743 −0.02 
73 5.8 8.237 8.254 −0.02 
74 9.2 8.036 8.01 0.03 
75 2 8.699 8.671 0.03 
76 2.1 8.678 8.661 0.02 
77 2.2 8.658 8.644 0.01 
78 3.1 8.509 8.532 −0.02 
79 2.9 8.538 8.554 −0.02 
80 20 7.699 7.721 −0.02 
81 8.3 8.081 8.066 0.02 
82 1.3 8.886 8.884 0.00 
83 35 7.456 7.455 0.00 

Test Set 

6 5.7 8.242 8.202 0.04 
8 3 8.523 8.553 −0.03 
9 3.9 8.409 8.651 −0.24 
18 58 7.237 7.164 0.07 
26 2.3 8.638 8.205 0.43 
32 1.3 8.886 8.494 0.39 
33 1 9.004 8.606 0.40 
36 11.5 7.939 8.209 −0.27 
39 0.7 9.187 8.635 0.55 
42 1 9 8.53 0.47 
48 3.7 8.432 8.264 0.17 
84 11.8 7.928 7.283 0.65 
85 20.5 7.688 7.353 0.34 
86 70 7.155 7.346 −0.19 
87 6.6 8.18 8.353 -0.17 
88 190 6.721 7.35 −0.63 
89 3.8 8.42 8.662 −0.24 
90 0.4 9.398 8.863 0.53 
91 1.8 8.745 8.715 0.03 
92 1.8 8.745 8.557 0.19 

a The structures of all the molecules are displayed on Table 3. 

The plot of the predicted pKi values versus the experimental ones for CoMFA analysis is also 

shown in Figure 2, in which most points are well distributed along the line Y = X, suggesting that the 

quality of the 3D-QSAR model is good. 
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Figure 2. Experimental versus predicted activity for A. CB1 CoMFA analysis and B. CB2 

CoMFA analysis. 

 

2.2. CoMFA Contour Maps Analysis 

CoMFA contour maps analysis was performed to visualize the important region in 3D molecules 

where the steric and electrostatic fields may affect the affinity and selectivity of the studied compounds 

in the cannabinoid CB1 and CB2 receptors. The weight of StDev*Coeff was used to calculate the field 

energies for all fields in CoMFA models. The highly active compound 90 was shown as the template 

ligand for all contour maps. CB1 and CB2 contour maps were generated from binding affinity of series 

of indole ligands evaluated at recombinant human CB1 and CB2 receptors. The steric and electrostatic 

contour maps of CoMFA are displayed in Figure 3. In order to systematize the analysis and obtain 

useful information on SAR, we had divided the molecule into three regions: 

Region I. Close examination of the CoMFA maps allows us to see in the steric CB1 model a large 

green polyhedron around this region, which continues along the entire region III. At a greater distance 

from the green polyhedron in region I, we can see a yellow region. This suggests that bulky 

substituents at any position of the benzene will increase biological activity and selectivity for this 

receptor. However, as it was already mentioned, the yellow region restricts the size and length of the 

substitutions to some extent in the position 5 of the indole system. In the steric CB2 model, the big 

restrictive contour map near the positions 4 and 5 of the indole core limits drastically the possibility of 

substitute these positions. In fact, the most active compounds in the CB2 receptor (compounds 33, 39, 

41, 66 and 90) bear a hydrogen atom in positions 4 and 5. On the other hand, in the electrostatic 

contour maps, the CB1 model indicates a red area contiguous to the positions 4 and 5 of the indole 

nucleus. According to this, electronegative substituents can be connected to the benzene or it is 

possible to replace the ring by an isostere with electronegative properties such as a thiophene or 

pyrrole. In the CB2 model the data implicate an inverse situation. In this case would be favorable the 

insertion of electropositive groups or the exchange for rings capable of protonation at physiological 

pH, such as pyridine, pyrimidine, piperidine and aniline, among others. Region I is, therefore, from the 

electronic standpoint a key area for selectivity. 
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Figure 3. A. Molecular Regions analyzed. B. CoMFA steric (left) and electrostatic (right) 

contour maps for CB1 and CB2 receptors around compound 90, the most active of the 

series. Sterically favored (green) and disfavored (yellow); electropositive (blue) and 

electronegative (red).  

 

Region II. The steric contour maps show that region II is inside a yellow polyhedron in CB1, while 

it is inside a green contour map surrounded by two yellow areas in CB2. This noteworthy difference 

suggests that a controlled increase of the size of the ring substituents or the replacement of this ring for 

bulkier systems like naphthoyl (for example in compounds 82 and 83), will raise the selectivity for the 

CB2 receptor. In fact, the comparative lower CB2 receptor Ki values for compounds 38–42 (Ki < 20 nM), 

are consistent with the existence of bulky rings in region II, and, as expected, they displayed less 

affinity for the CB1 receptor (Ki > 60 nM in all cases). On the other hand, there are not electrostatic 
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surfaces around the region II in the CB1 model. The absence of information in this particular region is 

consequence of the similarity of the rings occupying that area which are electrically neutral: 

cyclopropyl, adamantyl, cyclohexyl, and phenyl. This, however, rather than being a limitation in the 

design, provides the ability to evaluate multiple electronic options. However, the CoMFA for CB2 

shows the region II completely immersed in a red polyhedron. This suggests that when adding 

electronegative atoms or groups such as oxygen, halogens, sulfur, and no protonable nitrogens in this 

region, the CB2 affinity is boosted. As an example, compound 25, bearing an oxaadamantyl moiety in 

this region, and compound 36, with a 2-iodo-5-nitrophenyl, have 90 and 110 times greater affinity for 

the CB2 receptor than CB1, respectively. 

Region III. As can be seen for compound 90, there is a green surface along the N-alkyl chain in the 

CB1 model but only a terminal green polyhedron in the CB2 model. This suggests that a branched 

chain would increase the affinity for the CB1 receptor, and the substitution with bulky groups at the 

end of it would be better for the CB2 affinity. Analogously to region II, in region III there are not any 

electrostatic contour maps in CB1 CoMFA model, while a blue region is observed in the CB2 receptor. 

This suggests that the introduction of protonable or electropositive groups would increase CB2 

affinity. For example compounds 49, 72, 73 and 80 share the same structure but differ in the type of 

nitrogen at the end of the N-alkyl chain. Compounds 49 and 80 have the less basic nitrogen, whereas 

compounds 72 and 73 have strong basic sp3 nitrogen displaying 10 times higher CB2 affinity than 

compounds 49 and 80. This may suggests the presence of a hydrogen bond or ionic interaction in the 

stabilization of the complex ligand-receptor. 

3. Experimental  

3.1. Data Set 

A structurally diverse and homogeneous data set of 92 aminoalkylindole ligands with binding 

affinities (expressed as Ki) spanning about 4 log orders of magnitude (12.3–3,621 nM for CB1 and  

0.4–190 nM for CB2), was selected from literature [23–25] for the construction of the CoMFA models 

(Table 3). The data set was classified into training set (36 compounds in CB1 and 60 compounds in CB2) 

and test set (13 compounds in CB1 and 20 compounds in CB2) in such a way to avoid any redundancy 

in terms of structural features or activity range and to assess the predictive ability of the models. 

Table 3. Molecular structures of the molecules. 
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Table 3. Cont. 

Comp. R1 R2 R3 R4 R5 R6 R7 
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Table 3. Cont. 

Comp. R1 R2 R3 R4 R5 R6 R7 
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Table 3. Cont. 

Comp. R1 R2 R3 R4 R5 R6 R7 
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Table 3. Cont. 

Comp. R1 R2 R3 R4 R5 R6 R7 

57 
 

H H 
 

H H 

58 
 

H H H 
 

H 

59 H H H 
 

H H 

60 
 

H F- F- F- F- 

61 
 

H H F- H H 

62 
 

H H Cl- H H 

63 
 

H H H Cl- H 

64 
 

H H H CF3- H 

65 
 

H H H OH- H 

66 
 

H H H CH3O- H 

67 
 

H H H H 

68 
 

H H H H 

69 
 

H H NH2- H H 

70 
 

CH3- H H H H 

71 
 

H NH2- H H H 

72 
 

H H H H H 

73 
 

H H H H H 

74 CH3(CH2)2- H H H H H 

75 CH3(CH2)3- H H H H H 

76 OH(CH2)3- H H H H H 
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Table 3. Cont. 

Comp. R1 R2 R3 R4 R5 R6 R7 

77 OH(CH2)4- H H H H H 

78 CH3O(CH2)2- H H H H H 

79 
 

H 
 

H H H H 

80 
 

H H H H H 

81 
 

H H H H H 

82 a 

 

83 b CH3(CH2)2- CH3- H H H H 

84 CH3(CH2)2- H H 
 

H H 

85 CH3(CH2)3- H H 
 

H H 

86 CH3(CH2)4- H H 
 

H H 

87 
 

H H Br- H H 

88 
 

H 
O

H H H H 

89 
 

H H H H H 

90 
 

H H H H H 

91 
 

H H H H H 

92 
  

H H H H H 

a (R)-(+)-WIN 55,212-2; b JWH-015. 
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3.2. Generation of CoMFA and Partial Least Squares (PLS) Analysis 

CoMFA studies were performed using SYBYL-X 1.2 molecular modeling software (Tripos Inc.,  

St. Louis, MO, USA) running on a PC platform with Intel core i7 CPU. The compounds were 

subjected to a preliminary minimization to remove close atom contacts by 1,000 cycles of minimization 

using standard Tripos force field [36] (with 0.005 kcal/mol energy gradient convergence criterion). 

The structures were next subjected to molecular dynamic simulation to heat the molecule at 700 K for 

1,000 fs followed by annealing the molecule to 200 K for 1,000 fs. Gasteiger-Hückel charges [37] were 

assigned to all the molecules. Finally the minimized structures were superimposed by the atom fit 

method choosing the indole nucleus as the common scaffold for alignment (Figure 4). 

Figure 4. The superimposed structure of all compounds used in the CoMFA models. 

 

PLS analysis was used to construct a linear correlation between the CoMFA descriptors 

(independent variables) and the activity values (dependent variables) [38]. To select the best model, 

the cross-validation analysis was performed using the LOO method (and SAMPLS), which generates 

the square of the cross-validation coefficient (q2) and the optimum number of components N. The 

optimum number of components analysis is shown in Table 4.The non-cross-validation was performed 

with a column filter value of 2.0 to speed up the analysis and reduce the noise. 

Table 4. Optimum number of components analysis a. 

CoMFA CB1 

SEP 0.268 0.263 0.273 0.277 0.284 0.297 0.305 0.311 0.318 0.322 0.329 0.335 0.341 0.348 0.355

q2 0.704 0.722 0.709 0.709 0.703 0.685 0.677 0.674 0.671 0.673 0.672 0.673 0.672 0.672 0.672

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

CoMFA CB2 

SEP 0.432 0.392 0.388 0.374 0.373 0.369 0.366 0.370 0.374 0.375 0.377 0.380 0.383 0.387 0.391

q2 0.440 0.546 0.563 0.600 0.611 0.625 0.638 0.639 0.637 0.643 0.647 0.649 0.650 0.650 0.651

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
a SEP = standard error of prediction; q2 = the square of the LOO cross-validation (CV) coefficient;  

N = the optimum number of components. 
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To assess the predictive ability of the models, the pKi values of the test sets were predicted and then 

was calculated the predictive r2 (r2
pred) [39,40] for both CoMFA models. r2

pred, which measures the 

predictive performance of a PLS model, is defined by equation 1 as follows:  

1
∑
∑ ̅

 (1) 

where yi is the predicted biological activity value of every molecule in the test set, xi is the actual 

biological activity value of every molecule in the test set, and ̅ is the mean activity of the training  

set molecules. 

4. Conclusions 

In summary, a 3D-QSAR study was performed on a wide series of 92 aminoalkylindoles with the 

aim of understanding and rationalizing their affinity and selectivity for the cannabinoid receptors  

CB1 and CB2. We have defined clear differences in the steric and electrostatic requirements for  

each receptor subtype. In Figure 5 we summarize the structure-activity relationships found for 

aminoalkylindoles. This work provides valuable information for the design of new cannabinoid 

ligands, allowing us to save time and resources by directing the synthesis toward obtaining the most 

promising molecules. Further functional studies are required to evaluate agonism/ antagonism activity. 

Figure 5. Structure-affinity/selectivity relationships derived from CoMFA studies 

developed in this work. 
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