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Abstract: New 1,2,4-triazole colorants were obtained, in high yields, by coupling  

3-ethylthio-5-cyanomethyl-4-phenyl-1,2,4-triazole (1) with diazotized aniline derivatives 

2, 4 and 6. The azo dyes prepared in this work may exist in three tautomeric forms. We 

found that the tautomerism is influenced mainly by the nature of substituent at the para 

position of the aniline coupling component. This tautomerisation was observed in the NMR 

spectra of the dyes. The dyes were characterized by IR, 1H-NMR, 13C-NMR and MS 

spectroscopic techniques. 
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1. Introduction 

Azo-functionalized dyes bearing aromatic heterocyclic components [1] have attracted ever 

increasing attention in recent years due to their wide range of color, brightness, simplicity and ease of 

manufacturing and good dyeing performance [2–5]. They are used in high tech applications such as 

lasers and non-linear optical systems [6], thermal transfer printing and fuel cells [7], dye sensitized solar 

cells [8], photodynamic therapy [9], and metallochromic indicators [10]. They are also used in dyeing 

textiles, leather, paper, food and cosmetic products [11]. Furthermore, azo dye compounds are known 

for their medicinal importance [12–15] and are also known to be involved in a number of biological 
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reactions such as inhibition of DNA, RNA and protein synthesis, carcinogenesis and nitrogen fixation [16]. 

In a broader sense, the azo dyes constitute the largest diverse group of all the synthetic colorants [17]. 

In addition, hydrazones are the well known class of biologically and pharmacologically active 

compounds in the field of synthetic chemistry [18–20]. Some hydrazones have been introduced as potent 

drugs such as gyromitrin [21] used as a toxin and dihydralazine [22] used as a hypertensive drug. 

Moreover, hydrazones are an important class of chemical intermediates, which can act as electrophiles 

and as nucleophiles in chemical reactions [23–27]. 1,2,4-Triazoles and their derivatives play an 

important role in modern drug discovery and have attracted attention from both industrial and 

academic groups. These systems are important pharmaceuticals due to their interesting biological 

activities [28–31]. Several compounds containing 1,2,4-triazole rings are well known as drugs. For 

example, vorozole, letrozole, and anastrozole are non-steroidal drugs used for the treatment of  

cancer [32], while loreclezole is used as anticonvulsant [33] and fluconazole is used as an 

antimicrobial drug [34]. In the light of the above report and in continuation to our previous work on 

the synthesis of heterocyclic systems containing 1,2,4-triazole moiety [35–37], the present work 

focuses on the synthesis, spectroscopic properties of some novel azo dyes derived from 3-ethylthio-5-

cyanomethyl-4-phenyl-1,2,4-triazole [35]. Furthermore, we also examined the effect of substituent at 

the para position of the aniline coupling component on the nature of the resulting products. 

In solution, the azo dyes theoretically may be involved in azo-hydrazone tautomerism. Since the 

tautomeric ratio is important for the industrial application of azo dyes, determination of azo-hydrazone 

tautomerism (AHT) in the solid state and in solution is of interest both from a theoretical and practical 

aspects because the two tautomers have different technical properties and dyeing performance [38]. 

Therefore, it was considered worthwhile to determine the tautomeric structure of the products prior to 

exploring their applications. 

2. Results and discussions 

As a starting point for our investigation, we first examined the coupling reaction of compound 1 

with benzenediazonium chloride (2). Thus, coupling of diazonium salt 2 with compound 1 in aqueous 

ethanol in the presence of a buffered sodium acetate solution gave 5-ethylthio-N',4-diphenyl-4H-1,2,4-

triazole-3-carbohydrazonoyl cyanide (3B), as the only isolable product, in excellent yield (Scheme 1). 

Scheme 1. Coupling reaction of 1 with benzene diazonium chloride. 

 

The prepared dye may exist in three possible tautomeric forms, namely the azo form A, the 

hydrazone form B and the azo-enamine form C, as depicted in Figure 1. The IR spectrum (in KBr) 
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revealed the presence of absorption bands at v 3236 and 2213 cm−1 due to the NH and cyano groups, 

respectively. On the other hand, the other vmax value at 1231 cm−1 was assigned to the N-N stretching 

mode [39]. 

Figure 1. Three tautomeric structures of diazonium coupling product of 1. 

 

Kostyuchenko et al. reported that the molecular ion of tautomeric monoazo dyes cleaves 

preferentially at the N-N bond in the hydrazone and at one of the C-N bonds in the azo tautomer, 

yielding high abundance fragments with corresponding metastable ions [40]. In the mass spectrum of 3B, 

the respective molecular ion peak (M+) and the (M+ + 1) peak were observed. In addition, the spectrum 

showed characteristic peaks at m/z values corresponding to C6H5NH (resulting from cleavage at the  

N-N bond), C8H5N3 and C10H10N3S ion fragments. The latter two fragments correspond to 4-phenyl-

1,2,4-triazole and 3-ethylthio-4-phenyl-1,2,4-triazole residues, respectively. Moreover, the base peak 

that appeared at m/z 77 with relative intensity of 100% is due to cleavage of the phenylium cation 

(Ph+) from M+. Taken together the data is in good agreement with the proposed hydrazone structure. 

The 1H-NMR spectral data shows that two tautomeric forms 3B (hydrazone form) and 3C  

(azo-enamine form) are present in CDCl3 solution with relative intensities of 1:3 (Scheme 1, Table 1). 

Table 1. Tautomer ratios in the solid state and in CDCl3 solution. 

Product In Solid State In CDCl3 Solution 

Azo  Hydrazone Hydrazone:Azo-enamine 

3 ___             100 3B:3C (25:75) 

5 100            ___ 5B:5C (20:80) 

7 100             ___ 7B:7C (60:40) 

8 ___             100 8B:8C (17:83) 

In the 1H-NMR spectrum a singlet at δ = 8.83 ppm [41] is due to N-H proton of hydrazone form 3B 

(25%) and the other downfield singlet at δ = 13.71 ppm [42] was assigned to the triazole N-H in  

the azo-enamine form 3C (75%). Tautomeric ratios were calculated from their 1H-NMR integrals by 

comparison of the NH signal of the hydrazone form 3B and NH signal of the azo-enamine form 3C. 

Therefore, 1H-NMR chemical shift data can readily be employed to study the tautomeric equilibria 

quantitatively. Also, the 13C-NMR spectrum of this product in CDCl3 displayed signals in agreement 

with the mixture of two tautomers, hydrazone form 3B and azo-enamine form 3C. The spectrum 

showed besides the signals due to aromatic, ethyl, cyano and triazole carbones, two characteristic 

signals at δ = 99.05 and 140.75 ppm attributable to the carbon atom at position 6 in both tautomeric 

forms 3C and 3B, respectively (see Experimental). Due to the novelty of this product, the 13C-NMR 

chemical shifts values were assigned for these carbon atoms by comparing the experimental data in the 
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13C-NMR spectrum of the product with the 13C-NMR chemical shifts of theoretical results for 

molecular modeling using ChemBio3D Ultra 12.0 [43]. 

Next, we examined the effect of substitution at the para-position of the diazonium salt benzene ring 

on the equilibrium between the three forms A–C (Figure 1). Recently, Pavlović and his co-workers [44] 

have been reported that the electron-releasing substituents at the para position of the diazonium salt 

benzene ring increase the azo form content, while electron-withdrawing groups increase the content of 

the hydrazone form. In accordance with these results, it was found that the coupling reaction of 1 with 

diazotized 4-methylaniline (4), under similar reaction conditions as above, afforded 5-ethyl-thio-3-(1-

(4-methylphenylazo)-4-phenyl-acetonitrile)-4H-1,2,4-triazole (5A), in 82% yield (Scheme 2). 

Scheme 2. Coupling reaction of 1 with diazotized 4-methylaniline. 

 

 

The structure of this azo dye was verified by elemental analyses and spectroscopic methods (IR, 

MS, 1H- and 13C-NMR). Structure 5A seemed to be logical according to the IR spectrum (in KBr) 

which disclosed no amino group (NH) absorption band and the presence of intense cyano and azo 

(-N=N-) [45] bands at 2217 and 1547 cm−1, respectively. The mass spectral data of azo dye 5A showed 

a molecular ion peak (M+) at m/z 362 (40%) which was in concordance with the molecular mass (362) 

of the product (C19H18N6S). In addition, cleavage at one of the C-N bonds in the azo tautomer 5A led 

to the appearance of the base peak at m/z 91 (CH3-C6H4) with relative intensity of 100%. Moreover, 

the spectrum showed characteristic peaks at m/z 119 (14%), 143 (6%), 156 (11%) and 243 (4%) 

corresponding to CH3-C6H4-N=N (resulting from cleavage at the CN bond), C8H5N3 (4-phenyl- 

1,2,4-triazole), C8H5N3-CH (4-phenyl-1,2,4-triazole with CH group at C-3), and C10H10N3S-CH-CN  

(3-ethylthio-4-phenyl-1,2,4-triazole with CH-CN group at C-5) residues, respectively. This would 

suggest that compound 5A exist almost exclusively in the azo form. Interestingly, the 1H-NMR 

spectral data shows that the hydrazone form 5B and azo-enamine tautomeric form 5C are present in 

CDCl3 solution with relative intensities of 1:4 (Scheme 2, Table 1). The 1H-NMR spectrum revealed    

a similar pattern as observed for 3B and 3C (see Experimental). Also, the spectrum do not show any 

more signals around 4.5 ppm which is usually reported for the methine proton of azo form 5A of the 

annulated similar compounds [46]. In addition, the 13C-NMR spectrum of this product in CDCl3 

showed signals in accordance with the mixture of two tautomers, hydrazone form 5B and azo-enamine 

form 5C. The spectrum showed besides the signals due to aromatic, ethyl, methyl, cyano and triazole 

carbones, two characteristic signals at δ = 98.34 and 139.57 ppm attributable to carbon atom at 

position 6 in both tautomeric forms 5C and 5B, respectively (see Experimental). 
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Attention was next turned to investigate the coupling reaction of the diazonium salts having 

electron withdrawing substituents at para position of benzene ring with compound 1. Surprisingly, when 

compound 1 was coupled with diazotized 4-chloroaniline (6), under the same reaction conditions as 

above, it afforded two tautomers, 7A (major product) and 8B (minor product) (Scheme 3), which 

readily separated by preparative TLC (PLC) using silica gel. 

Scheme 3. Coupling reaction of 1 with diazotized 4-chloroaniline. 

 

To the best of our knowledge, this is the first reported isolation of two isomers in solid state in such 

reactions. The identity of major product 7A was supported by spectroscopic data. For example, its mass 

spectrum showed a molecular formula C18H15ClN6S (M+ 382) and peaks at 139 (Cl-C6H4-N=N-, 17%) 

and 111 (Cl-C6H4, base peak, 100%) confirming its presumed structure (see Experimental). The IR 

spectrum showed no amino group (NH) absorption, but absorption bands for CN and -N=N- groups 

were observed at v = 2217 and 1547 cm−1, respectively. Interestingly, the 1H-NMR spectral data shows 

that the azo-enamine tautomeric form 7C and hydrazone form 7B are present in CDCl3 solution with 

relative intensities of 1:1.5 (Scheme 3, Table 1). The 1H-NMR spectrum disclosed, besides the 

characteristic signals for the ethyl and aromatic protons, only two singlet signals at δ = 8.91 and 13.74 ppm 

attributable to N-H proton of the hydrazone form 7B and triazole N-H in the azo-enamine form 7C, 

respectively. Also, the 13C-NMR spectrum of this product in CDCl3 displayed signals in agreement 

with the mixture of two tautomers, the hydrazone form 7B and azo-enamine form 7C  

(see Experimental). The structure of the minor product 8B was fully confirmed with the help of 

analytical and spectroscopic data. Particularly, the IR spectrum showed an amino group (NH) 

absorption band. Moreover, its structure is supported by its mass spectrum which showed the 

molecular ion peak at m/z 382 (29%), which is consistent with its structural formula. Other prominent 

peaks that observed at m/z 126 (Cl-C6H4-NH, 12%) and 111 (Cl-C6H4, base peak, 100%) confirming 

its presumed structure (see Experimental). However, the 1H-NMR spectrum revealed two singlet 
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signals for the N-H proton of the hydrazone form 8B and the triazole N-H in the azo-enamine form 8C 

with relative intensities of 1:5 (Table 1). This may be interpreted by assuming that the product 8B 

exists in CDCl3 as a mixture of the two tautomeric forms 8B and 8C (cf. Scheme 3). Also, the  
13C-NMR spectrum of this product in CDCl3 displayed signals in agreement with the mixture of two 

tautomers, the hydrazone form 8B and the azo-enamine form 8C (see Experimental). Unfortunately, 

we did not succeed in growing the single crystal of compounds 3, 5, 7 and 8 suitable for X-ray 

crystallographic analysis. 

3. Experimental  

3.1. General 

Melting points were measured on a Gallenkamp apparatus and are not corrected. IR spectra (KBr) 

were recorded with a Nicolet Magna 520FT IR spectrophotometer. Peaks are reported in cm−1. 1H and 
13C-NMR spectra were recorded on a Bruker DPX (600 MHz for 1H-NMR and 150 MHz for  

13C-NMR) spectrometer in CDCl3 using TMS as an internal standard; the chemical shifts are given in  

δ units (ppm). Mass spectra were performed on a Shimadzu GCMS-QP 1000 EX mass spectrometer  

at 70 eV. Analytical thin-layer chromatography (TLC) was performed on aluminum sheets  

precoated with silica gel (Merck, Kieselgel 60 PF254). Visualization was accomplished by UV light. 

Microanalytical data were obtained from the Microanalytical Data Unit at Cairo University, Egypt. 

3.2. General Procedure for the Synthesis of Arylhydrazone (or Arylazo) Compounds 3, 5, 7 and 8 

A cold solution of aryldiazonium salt (4 mmol) was prepared by adding a sodium nitrite solution 

(0.4 g, 6 mmol, dissolved in 2 mL water) to a pre-cooled solution of arylamine hydrochloride (4 mmol 

of either of the appropriate aniline derivatives 2 and 4 in 2 mL of 6 M hydrochloric acid) with 

continuous stirring. The resulting solution of the aryl diazonium salt was then added carefully to a cold 

solution of 1,2,4-triazole derivative 1 (4 mmol) in ethanol (40 mL) containing sodium acetate (0.66 g 

in 2 mL H2O). The reaction mixture was stirred at room temperature for 24 h and the resulting solid 

product was collected by filtration, washed well with H2O and dried to afford compounds 3B and 5A, 

respectively, which were purified by preparative TLC using silica gel plates (toluene/acetone, 10:2), 

followed by recrystallization from EtOH. In the case of the reaction of 1 with 6, the resulting solid 

product was chromatographed on a preparative TLC plate using 10:3 toluene/acetone as eluent to give 

two zones. Extraction with acetone followed by recrystallization from EtOH gave compounds 7A and 

8B, respectively. 

2-(5-Ethylthio-4-phenyl-4H-[1,2,4]triazol-3-yl)-2-(phenylhydrazono)acetonitrile (3B). Yellow crystals. 

Yield (1.28 g, 90%); m.p.: 172–174 °C. IR (KBr): v = 3236 (NH), 2937 (aliph. CH), 2213 (CN), 1594 

(C=N), 1231 (N-N) cm−1; 1H-NMR: δ = 1.44 (t, 3H, J = 7.2 Hz, CH3), 1.48 (t, 3H, J = 7.2 Hz, CH3), 

3.28–3.34 (m, 4H, 2 CH2), 6.38 (d, 2H, J = 8.4 Hz, ArH), 6.99 (t, 1H, J = 8.4 Hz, ArH), 7.12–7.15 (m, 

5H, ArH), 7.31–7.32 (m, 2H, ArH), 7.35–7.42 (m, 6H, ArH), 7.59–7.63 (m, 3H, ArH), 7.65–7.68 (m, 

1H, ArH), 8.83 (s, 0.25H, hydrazone NH), 13.71 (s, 0.75H, triazole NH); 13C-NMR: δ = 14.65 (CH3), 

14.67 (CH3), 26.61 (CH2), 26.75 (CH2), 99.05 (=C-CN in azo-enamine form), 114.27 (CN), 114.30 (CN), 
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115.53 (3 Ar-C), 123.97 (1 Ar-C), 124.80 (2 Ar-C), 127.35 (1 Ar-C), 128.20 (3 Ar-C), 129.27 (1 Ar-C), 

129.53 (3 Ar-C), 129.82 (1 Ar-C), 130.09 (3 Ar-C), 131.54 (2 Ar-C), 131.59 (1 Ar-C), 134.54 (1 Ar-C), 

140.75 (CN-C=N-NH in hydrazone form), 141.81 (2 Ar-C), 148.47 (triazole C-3), 148.60 (triazole C-3), 

154.14 (triazole C-5), 154.97 (triazole C-5); MS m/z (rel. int. %) 349 (M+ + 1, 10), 348 (M+, 38), 347 

(22), 320 (9), 319 (7), 290 (4), 244 (3), 243 (4), 242 (6), 215 (9), 204 (2), 155 (6), 149 (6), 143 (3), 129 

(6), 128 (5), 105 (19), 92 (6), 91 (8), 77 (100), 76 (67), 65 (20), 64 (14), 63 (7), 61 (6), 52 (5), 51 (26), 

50 (14); Anal. Calcd. for C18H16N6S (348.42): C, 62.05; H, 4.63; N, 24.16; S, 9.20. Found: C, 61.91; 

H, 4.78; N, 24.35; S, 9.06. 

2-(5-Ethylthio-4-phenyl-4H-1,2,4-triazol-3-yl)-2-(4-methylphenyldiazenyl)acetonitrile (5A). Yellow 

crystals. Yield (1.22 g, 82%); m.p.: 169–170 °C. IR (KBr): v = 2980, 2920 (aliph. CH), 2217 (CN), 

1594 (C=N), 1547 (-N=N-) cm−1; 1H-NMR: δ = 1.43 (t, 3H, J = 7.2 Hz, CH3), 1.47 (t, 3H, J = 7.2 Hz, 

CH3), 2.26 (s, 3H, CH3), 2.34 (s, 3H, CH3), 3.28-3.34 (m, 4H, 2 CH2), 6.27 (d, 2H, J = 8.4 Hz, ArH), 

6.94 (d, 2H, J = 8.4 Hz, ArH), 7.18 (d, 2H, J = 8.4 Hz, ArH), 7.30-32 (m, 5H, ArH), 7.35–7.37 (m, 3H, 

ArH), 7.59–7.63 (m, 3H, ArH), 7.65–7.67 (m, 1H, ArH), 8.78 (s, 0.20H, hydrazone NH); 13.70 (s, 

0.80H, triazole NH); 13C-NMR: δ = 14.66 (CH3), 14.68 (CH3), 20.70 (CH3), 20.92 (CH3), 26.60 (CH2), 

26.76 (CH2), 98.34 (=C-CN in azo-enamine form), 114.21 (CN), 114.50 (CN), 115.48 (4 Ar-C), 

127.37 (1 Ar-C), 128.22 (3 Ar-C), 129.78 (2 Ar-C), 130.04 (2 Ar-C), 130.07 (4 Ar-C), 131.50 (2 Ar-C), 

131.64 (1 Ar-C), 133.75 (1 Ar-C), 134.58 (1 Ar-C), 134.64 (2 Ar-C), 138.48 (1 Ar-C), 139.57  

(CN-C=N-NH in hydrazone form), 148.55 (triazole C-3), 148.73 (triazole C-3), 153.97 (triazole C-5), 

154.75 (triazole C-5); MS m/z (rel. int. %) 363 (M+ + 1, 11), 362 (M+, 40), 361 (21), 348 (5), 347 (6), 

346 (8), 345 (6), 335 (6), 334 (16), 333 (10), 306 (9), 305 (11), 274 (4), 273 (5), 257 (5), 243 (4), 242 (6), 

231 (4), 230 (5), 215 (14), 188 (4), 157 (8), 156 (11), 149 (11), 148 (7), 144 (6), 143 (6), 128 (8), 119 (14), 

118 (13), 117 (9), 106 (8), 105 (22), 104 (13), 103 (11), 97 (6), 92 (14), 91 (100), 90 (26), 77 (49), 76 (17), 

66 (6), 65 (27), 64 (21), 63 (12), 61 (6), 60 (9), 59 (13), 56 (9), 51 (26); Anal. Calcd. for C19H18N6S 

(362.45): C, 62.96; H, 5.01; N, 23.19; S, 8.85. Found: C, 63.14; H, 4.87; N, 23.30; S, 9.01. 

2-(4-Chlorophenyldiazenyl)-2-(5-ethylthio-4-phenyl-4H-1,2,4-triazol-3-yl)acetonitrile (7A). Yellow 

crystals. Yield (0.785 g, 50%); m.p.: 118–120 °C. IR (KBr): v = 2925 (aliph. CH), 2217 (CN),  

1597 (C=N), 1547 (-N=N-) cm−1; 1H-NMR: δ = 1.43 (t, 3H, J = 7.2 Hz, CH3), 1.48 (t, 3H, J = 7.2 Hz, 

CH3), 3.27–3.35 (m, 4H, 2 CH2), 6.30 (d, 2H, J = 9 Hz, ArH), 7.10 (d, 2H, J = 9 Hz, ArH), 7.30–7.36 

(m, 8H, ArH), 7.57–7.68 (m, 6H, ArH), 8.91 (s, 0.60H, hydrazone NH), 13.74 (s, 0.40H, triazole NH);  
13C-NMR: δ = 14.65 (2 CH3), 26.62 (CH2), 26.76 (CH2), 99.68 (=C-CN in azo-enamine form), 108.93 

(CN), 114.02 (CN), 115.46 (2 Ar-C), 116.65 (2 Ar-C), 127.33 (3 Ar-C), 128.17 (2 Ar-C), 128.99 (1 Ar-C), 

129.28 (4 Ar-C), 129.61 (1 Ar-C), 129.85 (1 Ar-C), 130.12 (4 Ar-C), 131.48 (1 Ar-C), 131.61 (1 Ar-C), 

134.54 (1 Ar-C), 139.48 (1 Ar-C), 140.44 (CN-C=N-NH in hydrazone form), 148.30 (triazole C-3), 

148.49 (triazole C-3), 154.37 (triazole C-5), 155.11 (triazole C-5); MS m/z (rel. int. %) 384 (M+, 27), 

382 (M+, 78), 381 (20), 356 (4), 355 (7), 354 (13), 353 (15), 352 (5), 328 (7), 327 (10), 326 (13), 325 (17), 

324 (7), 293 (7), 244 (4), 243 (9), 242 (15), 241 (7), 232 (3), 231 (3), 215 (15), 214 (10), 213 (7), 192 (3), 

191 (8), 183 (4), 182 (6), 181 (7), 167 (5), 157 (10), 156 (25), 155 (13), 149 (12), 148 (5), 143 (3), 142 (6), 

141 (9), 140 (4), 139 (17), 138 (11), 129 (13), 128 (12), 127 (10), 126 (11), 125 (9), 119 (5), 118 (17), 

113 (32), 112 (17), 111 (100), 110 (78), 105 (23), 104 (15), 103 (12), 102 (13), 100 (6), 99 (16), 92 (8), 
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91 (30), 87 (3), 78 (11), 77 (73), 76 (31), 75 (37), 66 (4), 65 (23), 64 (17), 63 (24), 62 (9), 61 (14), 60 (10), 

52 (9), 51 (42), 50 (26); Anal. Calcd. for C18H15ClN6S (382.87): C, 56.47; H, 3.95; Cl, 9.26; N, 21.95; 

S, 8.37. Found: C, 56.66; H, 3.83; Cl, 9.40; N, 22.04; S, 8.54. 

2-(4-Chlorophenylhydrazono)-2-(5-ethylthio-4-phenyl-4H-[1,2,4]triazol-3-yl)acetonitrile (8B). 

Reddish crystals. Yield (0.60 g, 38%); m.p.: 219–221 °C. IR (KBr): v = 3240 (NH), 2924 (aliph. CH), 

2220 (CN), 1595 (C=N), 1233 (N-N) cm−1; 1H-NMR: δ = 1.44 (t, 3H, J = 7.2 Hz, CH3), 1.48 (t, 3H,  

J = 7.2 Hz, CH3), 3.28–3.37 (m, 4H, 2 CH2), 6.29 (d, 2H, J = 9 Hz, ArH), 7.10 (d, 2H, J = 9 Hz, ArH), 

7.31–7.38 (m, 8H, ArH), 7.57–7.69 (m, 6H, ArH), 8.79 (s, 0.17H, hydrazone NH), 13.74 (s, 0.83H, 

triazole NH); 13C-NMR: δ = 14.69 (2 CH3), 26.65 (CH2), 26.78 (CH2), 99.71 (=C-CN in azo-enamine 

form), 114.05 (CN), 115.45 (CN), 116.68 (3 Ar-C), 127.36 (1 Ar-C), 128.20 (4 Ar-C), 129.02 (1 Ar-C), 

129.34 (1 Ar-C), 129.65 (4 Ar-C), 129.87 (1 Ar-C), 129.93 (1 Ar-C), 130.16 (4 Ar-C), 131.52 (1 Ar-C), 

131.64 (2 Ar-C), 139.44 (1 Ar-C), 140.47 (CN-C=N-NH in hydrazone form), 148.30 (triazole C-3), 

148.52 (triazole C-3), 154.40 (triazole C-5), 155.05 (triazole C-5); MS m/z (rel. int. %) 384 (M+, 10), 

382 (M+, 29), 381 (11), 362 (3), 356 (3), 355 (3), 354 (5), 353 (4), 352 (2), 348 (3), 328 (3), 327 (4), 

326 (4), 325 (7), 324 (2), 319 (6), 317 (8), 316 (5), 293 (3), 244 (2), 243 (3), 242 (7), 241 (3), 231 (2), 

215 (7), 214 (4), 213 (2), 157 (4), 156 (9), 155 (6), 149 (4), 143 (2), 142 (4), 141 (9), 140 (4), 139 (29), 

129 (5), 128 (8), 127 (5), 126 (12), 125 (7), 119 (2), 118 (6), 113 (31), 112 (20), 111 (100), 110 (27), 

105 (8), 104 (4), 103 (4), 102 (5), 101 (8), 100 (3), 99 (17), 91 (13), 90 (12), 87 (3), 78 (4), 77 (31), 76 

(17), 75 (36), 74 (13), 66 (2), 65 (9), 64 (12), 63 (17), 62 (6), 61 (7), 60 (4), 52 (5), 51 (23), 50 (17); 

Anal. Calcd. for C18H15ClN6S (382.87): C, 56.47; H, 3.95; Cl, 9.26; N, 21.95; S, 8.37. Found: C, 

56.61; H, 4.04; Cl, 9.33; N, 21.87; S, 8.48. 

4. Conclusions 

In conclusion, we have synthesized new azo dyes utilizing 3-ethylthio-5-cyanomethyl-4-phenyl-

1,2,4-triazole as a coupling component. The experimental results show that the substituents at the 

para-position of the diazonium salt benzene ring have some effect on the ratio of the resulting 

tautomers. 5-ethylthio-N',4-diphenyl-4H-1,2,4-triazole-3-carbohydrazonoyl cyanide (3B) (hydrazone 

form) was obtained by coupling 1 with benzenediazonium salt 2, while the azo dye 5A was obtained 

by coupling 1 with diazotized 4-methylaniline (4). Interestingly, coupling of 1 with diazotized  

4-chloroaniline (6) afforded two isomeric products, 7A (azo form) and 8B (hydrazone form). To the 

best of our knowledge, this is the first reported isolation of two isomers in the solid state in such 

reactions. Analysis of the 1H-NMR data shows that the hydrazone and azo-enamine forms are the only 

two tautomers present in CDCl3 solution and the ratio of these tautomers depends on the  

electron-donating and electron-withdrawing properties of the substituent present at the para-position of 

the aryldiazonium salt. 
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