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Abstract: One new coumarin, dryofracoumarin A (1), and eight known compounds 2–9 

were isolated from Dryopteris fragrans (L.) Schott. Their structures were established on 

the basis of extensive spectroscopic data analyses and comparison with reported 

spectroscopic data. The new compound 1 was determined to be 8-hydroxyl-4-isopropyl-7-

methyl-6-methyl-2H-benzopyran-2-one. Two dimers, trans- and cis-3-(3,4-dimethoxyphen-

yl)-4-[(E)-3,4-dimethoxystyryl]cyclohex-1-ene (compounds 8 and 9), were isolated from 

the Dryopteris genus for the first time. The other six were esculetin (2), isoscopoletin (3), 

methylphlorbutyrophenone (4), aspidinol (5), albicanol (6) and (E)-4-(3,4-dimethoxyphen-

yl)but-3-en-1-ol (7). All compounds were evaluated for their cytotoxic effects by the MTT 

assay. Compounds 2, 3, 8 and 9 showed significantly cytotoxic effects against three cell 

lines (A549, MCF7 and HepG2), 1 and 5 against two cell lines (A549 and MCF7), and 6 

against one cell line (MCF7). Their IC50 values ranged between 2.73 ± 0.86 μM and  

24.14 ± 3.12 μM. These active compounds might be promising lead compounds for the 

treatment of cancer. 
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1. Introduction 

Traditional Chinese Medicines (TCMs), are commonly used as representative alternative and 

complementary medicines for the treatment of cancer in Asian countries [1]. The current treatment 

modality for patients with lung, breast or other cancer is chemotherapy based on taxane, a famous and 

efficient drug isolated from the bark of the Pacific yew tree [2–4]. However, its efficacy is frequently 

attenuated due to drug resistance and side effects [5], so it is urgent to identify new targets to treat 

cancer from TCMs. 

Dryopteris fragrans (L.) Schott (Chinese name: Xiang-Lin-Mao-Jue) is a deciduous perennial herb 

of the Dryopteris genus, which grows mainly in small communities on the talc slopes of the alpine 

region and the lava cracks of volcanoes (Figure 1). It is distributed in many countries, especially in 

Wu-Da-Lian-Chi, Heilongjiang Province, Northeast China [6]. D. fragrans was used for the treatment 

of skin diseases, especially on treatment of psoriasis, arthritis, rash, dermatitis and barbiers [7,8]. 

Previous investigations also showed that its extracts have antimicrobial properties and anticancer 

activity [9,10].  

Figure 1. D. fragrans in the lava cracks of the Wu-Da-Lian-Chi volcanoes. 

 

Many constituents from D. fragrans have been isolated, including sesquiterpenes, phloroglucins, 

phenolic glycosides, itosterols and essential oils. Among them, more than 10 compounds from have 

anticancer activities [11–15]. For example, aspidin BB and albicanol suppressed in vivo two-stage 

carcinogenesis on mouse skin [10]. However, there are no reports available on the cytotoxic activity of 

compounds from the ethanolic extract of D. fragrans. In this study, compounds with significant 

cytotoxic activity on A549, MCF7 and HepG2 cells (in vitro lung, breast and liver cancer models) 

were reported. 

2. Results and Discussion 

2.1. Compounds from D. fragrans 

One new coumarin compound 1 was isolated from the 95% ethanol extract of D. fragrans, together 

with eight known compounds. They are 8-hydroxyl-4-iso-propyl-7-methyl-6-methyl-2H-benzopyran-



Molecules 2014, 19 3347 

 

2-one (1, named as dryofracoumarin A), 6,7-hihydroxycoumarin (2, esculetin), 6-hydroxy-7-methoxy-

2H-1-benzopyran-2-one (3, isoscopoletin), methylphlorbutyrophenone (4), 1-(2,4,6-trihydroxy-3-

methylphenyl)-1-butanone (5, aspidinol), 2,4-dihydroxy-6-methoxyl-3,5-dimethylacetophenone (6, 

albicanol), (E)-4-(3,4-dimethoxyphenyl)but-3-en-1-ol (7), trans-3-(3,4-dimethoxyphenyl)-4-[(E)-3,4-

dimethoxystyryl]cyclohex-1-ene (8) and cis-3-(3,4-dimethoxyphenyl)-4-[(E)-3,4-dimethoxystyryl] 

cyclohex-1-ene (9). Their structures are as shown in Figure 2. 

Figure 2. Isolated compounds (1–9) from D. fragrans. 

 

2.2. Chemical Structure Identification and Spectroscopic Data 

Compound 1 was obtained as colorless crystals. ESIMS analysis produced a pseudomolecular ion at 

m/z 249 [M+H]+, and positive HR-ESI-MS gave a molecular formula of C14H16O4 from the ion at m/z 

249.1133 [M+H]+ (calcd. for C14H17O4, 249.1126), with seven degrees of unsaturation. The IR 

spectrum showed the presence of hydroxyl group (3,357 cm−1) and lactone carbonyl (1,699 cm−1) 

functions. The general appearance of its 1H- and 13C-NMR spectra (Table 1), in addition to the 

information obtained from its mass spectrum, suggested a coumarin skeleton for compound 1 [16]. 

By analysis of the 1H-NMR spectroscopic data of compound 1 four methyls, two belonging to an 

isopropyl group δH 1.25 (d, J = 6.9 Hz, 3H, H-12); δH 1.25 (d, J = 6.9Hz, 3H, H-13); one aromatic 
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methyl δH 2.26 (s, 3H, H-14); one methoxyl group δH 3.89 (s, 3H, H-15); and three methines δH 6.15 (s, 

1H, H-3) (an olefinic proton), 6.95 (s, 1H, H-5) (aromatic proton), and another methine belonging to 

an isopropyl group δH 3.24 (m, 1H, H-11) were figured out. The 13C-NMR and DEPT experiment 

revealed the presence of fifteen carbon resonances, comprising four methyls, one methoxyl, three 

methines (including one olefinic) and seven quaternary carbons (including one carbonyl). 

Table 1. 1H- and 13C-NMR data of compound 1. 

No. δC a δH b (J in Hz) No. δC a δH b (J in Hz) 

1   9 116.1 (C)  
2 163.7 (C)  10 143.5 (C)  
3 109.6 (CH) 6.15 (1H, s) 11 29.8 (CH) 3.24 (1H, m) 
4 165.4 (C)  12 22.3 (CH3) 1.25 (3H, d, 6.8) 
5 116.3 (CH) 6.95 (1H, s) 13 22.3 (CH3) 1.25 (3H, d, 6.8) 
6 129.0 (C)  14 16.3 (CH3) 2.26 (3H, s) 
7 150.4 (C)  15 60.7 (OCH3) 3.89 (3H, s) 
8 139.1 (C)     

a & b Recorded at 400 MHz; J in Hz within parentheses. 

In the HMBC and COSY correlation spectra of compound 1 (Figure 3), long-range correlations 

from H-12, 13 (δH 1.25, 1.25) to C-4 (δC 165.4), and the long-range correlations H-11 (δH 3.24) to C-3, 

C-4, C-9 (δC 109.6, 165.4, 116.1), suggested that the isopropyl was fused to C-4. Long-range 

correlations from H-14 (δH 2.26) to C-5, C-6, C-7 (δC 116.3, 129.0, 150.4) confirmed that the isolated 

methyl was located at C-6. Another long-range correlation from H-15 (δH 3.89) to C-7 (δC 150.4) 

indicated that the methoxyl group was linked to C-7. Based on the spectroscopic data analyses, the 

structure of 1 was determined to be 8-hydroxy-4-isopropyl-7-methoxy-6-methyl-2H-chromen-2-one 

and this new compounds was named dryofracoumarin A. 

Figure 3. Key HMBC and COSY correlations of compound 1. 

 

2.3. Effects of Compounds on Cytotoxic Activity  

Lung cancer in males or breast cancer in females are the most frequently diagnosed cancers and the 

leading cause of cancer death in both developed and developing countries [17,18]. All compounds 

were investigated for their anticancer activity in vitro against A549 (human lung cancer), MCF7 
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(human breast cancer), along with HepG2 [19] (human liver cancer) cancer cell lines using pseudolaric 

acid B as standard [20]. Pseudolaric acid B was isolated from the ethanolic extract of the root bark of 

Pseudolarix kaempferi with the purity of 99.3% by Dr. Qinshi Zhao (Kunming Institute of Botany, 

Chinese Academy of Sciences). IC50 values, the concentration of the test compounds inhibiting 50% of 

the cell growth at 48 h, was calculated by Reed and Muench’s method [21]. Among all the compounds, 

2, 3, 8 and 9 showed promising activity against three cancer cell lines at below 30 μM concentration, 

with 1 and 5 against two lines (A549 and MCF7) and 6 against one line (MCF7) (Table 2). 

Table 2. In vitro cytotoxicity of compounds against three cancer cell lines. 

Compound No. IC50 
a ± SE (μM)  

 A549  MCF7  HepG2  

1 6.56 ± 1.59 10.14 ± 1.85 – b  
2 3.82 ± 0.23 2.73 ± 0.86 10.15 ± 1.77  
3 5.25 ± 1.62 8.58 ± 1.34 4.76 ± 1.01  
4 – – –  
5 12.59 ± 2.74 10.58 ± 1.56 –  
6 – 24.14 ± 3.12 –  
7 – – –  
8 14.13 ± 3.72 17.81 ± 4.11 17.90 ± 5.21  
9 17.25 ± 3.79 16.45 ± 5.80 23.75 ± 4.57  

Pseudolaric acid B c 2.81 ± 0.45 2.44 ± 0.33 1.50 ± 0.28  
a IC50 values represent the mean ± SE of three individual observations; b “–” indicated that 

the compound was not active below 30 μM concentration; c Pseudolaric acid B was as 

positive control [20]. 

3. Experimental  

3.1. General  

Melting points were obtained on an XRC-1 micro melting point apparatus. Optical rotations were 

measured on a JASCO DIP-370 digital polarimeter. IR spectra were obtained on a Bruker Tensor 27 

spectrometer with KBr pellets. UV spectra were recorded using a Shimadzu UV-210A spectrophoto-

meter. ESIMS (including HRESIMS) were carried out on API QSTAR Pulsar I (Applied Biosystems, 

MDS Sciex, Framingham, MA, USA) and VG Autospec-3000 mass spectrometers (AB SCIEX mass 

spectrometers). 1D and 2D NMR spectra were performed on AM-400 spectrometers (Bruker 

Corporation, Fällanden, Switzerland) with TMS as an internal standard. Column chromatography was 

performed on silica gel (SiO2: 200–300 and 100–200 mesh, Qingdao Marine Chemical Ltd., Qingdao, 

China), MCI gel (75–150 μm; Mitsubishi Chemical Corporation, Tokyo, Japan), Sephadex LH-20 

(Amersham Pharmacia Biotech, Stockholm, Sweden). Semi-preparative HPLC was performed on an 

Agilent 1100 liquid chromatograph equipped with a Zorbax SB-C18 (9.4 mm × 25 cm) column. 

Fractions were monitored using TLC, and spots were visualized by heating silica gel plates (G254, 

Qingdao Marine Chemical Ltd) immersed with 10% H2SO4 in ethanol. All solvents were distilled 

before use. 
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3.2. Plant Material  

Dryopteris fragrans (L.) Schott was collected in Wu-Da-Lian-Chi, Heilongjiang Province, China, in 

August 2009 (Figure 1), and identified by Prof. Zhen-Yue Wang (Z.-Y.W., Heilongjiang University of 

Chinese Medicine). The voucher specimen (Registration number: XLMJ-20110812) of this plant was 

deposited in the Herbarium of Heilongjiang University of Chinese Medicine, Harbin, China. 

3.3. Extraction and Isolation 

Air-dried, powdered whole plants of Dryopteris fragrans (L.) Schott (3 kg) were extracted three 

times with 95% ethanol at room temperature. After removal of the solvent by evaporation, the residue 

(240 g) was suspended in H2O and partitioned with EtOAc. The EtOAc fraction (135 g) was subjected 

to silica gel column chromatography with a gradient elution system of petroleum ether–acetone 

(90:10–0:100, v/v) to obtain five fractions (Fr I–Fr V). Fr I was separated into four subfractions  

(Fr I 1–4) by MCI (MeOH/H2O, 30:70–100:0, v/v) and gave the crude crystals of compound 2  

(>99% HPLC). Fr I 2 was further subjected to silica gel chromatography with gradient mixture of 

CHCl3 and MeOH to obtain three sub-fractions (Fr I 2-1, Fr I 2-2 and Fr I 2-3). Sub-fraction Fr I 2-2 

was purified by HPLC (MeOH/H2O, 55:45, v/v) to yield compound 4 (>97% HPLC) and compound 1 

(>99% HPLC). Fr I 2-1 and Fr I 2-3 were purified using Sephadex LH-20 (CHCl3/MeOH, 1:1, v/v) to 

obtain compound 7 (>97% HPLC). Fr II was decolorized with MCI (MeOH/H2O, 10:90–100:0, v/v) to 

yield three sub-fractions (Fr II 1, Fr II 2 and Fr II 3). Fr II 1 was further separated by silica gel column 

chromatography with gradient mixture of petroleum ether and Me2CO (80:20; 70:30; 60:40, v/v) to 

give Fr II 1-1, Fr II 1-2 and Fr II 1-3. Fr II 1-1 was further purified by subjected to Sephadex LH-20 

column chromatography (MeOH) to yield compound 6 (>97% HPLC). Fr II 1-2 was purified by  

semi-preparative HPLC (MeOH/H2O, 55:45, eluting for 20 min with a flow rate of 30 mL/min) to 

afford compound 8 (>97% HPLC) and compound 9 (>98% HPLC). Fr II 1-3 was further purified by 

subjected to Sephadex LH-20 column chromatography (MeOH) to give compound 5 (>98% HPLC) 

and compound 3 (>99% HPLC). 

3.4. Characterization of Isolated Compounds 

Dryofracoumarin A (1). Colorless crystals, Mp: 69.5 °C, C14H16O4, positive ESIMS: m/z 271 [M+Na]+; 

positive HRESIMS [M+Na]+ m/z 271.1133 (calcd. for C14H16O4 Na,248.1133), UV (CD3OD) λmax (log 

ε): 303 nm; IR (KBr) νmax 3357, 2965, 1611, 1570, 1442, 1699 cm−1, 1H and 13C data, see Table 1. 

Esculetin (2). Yellow needles, Mp: 268–269 °C (lit [22] Mp: 268–270 °C), C9H6O4, ESI-MS m/z: 179 

[M+H] +, 1H-NMR (MeOD): 6.17 (1H, d, J = 9.0 Hz, H-3), 7.78 (1H, d, J = 9.0 Hz, H-4), 6.92 (1H, s, 

H-5), 6.74 (1H, brs, H-8). 13C-NMR (MeOD): 164.2 (C-2), 112.7 (C-3), 146.0 (C-4), 113.0 (C-5), 

144.7 (C-6), 150.6 (C-7), 103.6 (C-8), 152.1 (C-9), 112.5 (C-10).  

Isoscopoletin (3). Light yellow needles, Mp: 138–140 °C (lit [23] Mp: 138–140 °C), C10H8O4 ESI-MS 

m/z: 193 [M+H]+, 1H-NMR (CDCl3): 6.29 (1H, d, J = 9.6 Hz, H-3), 7.62 (1H, d, J = 9.6 Hz, H-4), 6.87 

(1H, brs, H-5), 6.94 (1H, brs, H-8), 6.22 (1H, brs, -OH), 3.97 (3H, s, -OCH3). 
13C-NMR (CDCl3): 
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161.5 (C-2), 111.5 (C-3), 143.3 (C-4), 107.4 (C-5), 149.7 (C-6), 144.0 (C-7), 103.1 (C-8), 150.2 (C-9), 

113.4 (C-10), 56.4 (OCH3). 

Methyl-phlor-butyrophen-on (4). Yellow needles, Mp: 166 °C (lit [24] Mp: 166–167 °C), C11H14O4, 

ESI-MS m/z 233 [M+Na]+, 1H-NMR (CD3OD): 0.96 (3H, m, H-4), 1.67 (2H, m, H-3), 1.90 (3H, s,  

H-5), 3.01 (2H, m, H-2), 4.61 (1H, s, H-3'), 5.86 (1H, s, -OH); 13C-NMR (CD3OD): 7.3 (C-5), 14.4  

(C-4), 19.6 (C-3), 46.9 (C-2), 94.7 (C-3'), 103.5 (C-1'), 105.1(C-5'), 161.3 (C-2'), 163.8 (C-4'), 163.8 

(C-6'), 207.4 (C-1).  

Aspidinol (5). Yellow needles, Mp: 144–145°C (lit [25] Mp: 144–145 °C), C12H16O4, ESI-MS m/z 

247 [M+Na]+, 1H-NMR (CD3OD): 0.85 (3H, t, J = 7 Hz, H-4), 1.56 (2H, m, H-3), 1.83 (3H, s, H-5), 

2.94 (2H, t, J = 7 Hz, H-2), 3.68 (3H, s, OMe), 4.02 (1H, s, H-4'); 13C-NMR (CD3OD): 6.7 (C-5), 13. 7 

(C-4), 18.1 (C-3), 45.9 (C-2), 55.0 (OMe), 90.0 (C-5'), 103.6 (C-1'), 104.6 (C-3'), 160.4 (C-6'), 161.9 

(C-2'), 163.4 (C-4'), 206. 9 (C-1).  

Albicanol (6). Colorless crystals, Mp: 68–70 °C (lit [10] Mp: 68–69 °C), C15H26O, ESI-MS m/z 247 

[M+Na]+, [α]D
25 = +21.2 (c 0.015, EtOH), 1H-NMR (CD3OD): 0.89 (3H, s, Me-14), 0.83 (3H, s, Me-

13), 0.73 (3H, s, Me-12), 1.17 (1H, dd, J = 12.7, 2.6 Hz H-5), 1.14 (1H, m, H-1), 1.23 (1H, m, H-3), 

1.33 (1H, m, H-6), 1.43 (1H, m, H-3), 1.40 (1H, m, H-2), 1.59 (1H, m, H-2), 1.40 (1H, m, H-1), 1.63 

(1H, brd, J = 14.0 Hz, H-6), 2.40 (1H, m, H-9), 1.87 (1H, brs, H-16), 1.75 (1H, m, H-7), 1.89 (1H, brd, 

J = 12.8 Hz, H-7), 3.69 (1H, dd, J = 10.8, 10.8 Hz, H-11), 3.82 (1H, dd, J = 10.8, 3.6 Hz, H-11), 4.66 

(1H, s, H-15), 4.90 (1H, s, H-15). 13C-NMR (CD3OD): 15.7 (C-14), 29.3 (C-2), 22.3 (C-13), 15.7  

(C-14), 25.3 (C-6), 34.2 (C-4), 34.4 (C-12), 39.0 (C-7), 39.9 (C-10), 40.3 (C-10), 43.2 (C-3), 56.6  

(C-5), 58.9 (C-11), 59.8 (C-9), 107.7 (C-15), 148.4 (C-8). 

(E)-4-(3,4-dimethoxyphenyl)but-3-en-1-ol (7). Light yellow oil, C12H16O3, ESI-MS m/z 231 [M+Na]+, 
1H-NMR (CD3OD):2.39 (2H, q, J = 6.6 Hz, H-2), 3.64 (2H, t, J = 6.6 Hz, H-1), 6.15 (1H, d, J = 15.8 Hz, 

H-3), 3.79 (3H, s, -OMe), 3.82 (3H, s, -OMe), 6.40 (1H, d, J = 15.8 Hz, H-4), 6.84 (1H, d, J = 8.5 Hz, 

H-5'), 6.88 (1H, d, J = 8.5 Hz, H-4'), 6.99 (1H, s, H-1'). 13C-NMR (CD3OD): 37.4(C-2), 56.4(-OMe), 

56.4 (-OMe), 62.9 (C-1), 110.3 (C-2'), 112.9 (C-5'), 120.3 (C-6'), 126.0 (C-3), 132.6 (C-1'), 132.7 (C-4), 

149.8 (C-4'), 150.5 (C-3') [26,27]. 

Trans-3-(3, 4-dimethoxyphenyl)-4-[(E)-3,4-dimethoxystyryl] cyclohex-1-ene (8). Colorless needles, 

Mp: 99.5 °C (lit [28,29] Mp: 99.5–100 °C), C24H28O4, ESI-MS m/z 403 [M+Na]+, 1H-NMR (CD3OD): 

1.66 (1H, m, H-5), 1.85 (1H, m, H-5), 2.18 (1H, m, H-6), 2.37 (1H, m, H-6), 2.86 (1H, m, H-4), 3.20 

(1H, m, H-3), 5.60 (1H, dd, J = 10.0, 3.0 Hz, H-2), 5.63 (1H, dd, J = 10.0, 3.0 Hz, H-1), 6.03 (1H, dd,  

J = 16.0, 7.0 Hz, H-1''), 6.70–6.81 (1H, s, H-2'), 6.09 (1H, d, J = 16.0 Hz, H-2''), 6.70–6.81 (1H, s, H-2'''), 

6.70–6.81 (1H, m, H-5'), 6.70–6.81 (1H, s, H-5'''), 6.70–6.81 (1H, m, H-6'), 6.70–6.81 (1H, s, H-6'''), 

3.72 (3H, s, -OMe), 3.73 (3H, s, -OMe), 3.75 (3H, s, -OMe), 3.77 (3H, s, -OMe); 13C-NMR (CD3OD): 

25.2 (C-6), 29.8 (C-5), 46.5 (C-4), 48.7 (C-3), 55.9 (-OMe), 56.0 (-OMe), 56.0 (-OMe), 56.0 (-OMe), 

110.2 (C-2'''), 112.5 (C-2'), 112.6 (C-5'), 113.3 (C-5'''), 119.6 (C-6'''), 121.0 (C-6'), 127.8 (C-2''), 129.9 

(C-1), 131.4 (C-2), 131.8 (C-1'''), 132.9 (C-1''), 138.4 (C-1'), 148.7 (C-4'), 149.6 (C-4'''), 150.0 (C-3'), 

150.3 (C-3'''). 
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Cis-3-(3, 4-dimethoxyphenyl)-4-[(E)-3,4-dimethoxystyryl] cyclohex-1-ene (9). Colorless needles, Mp: 

77.5 °C (lit [28,29] Mp: 78 °C), C24H28O4, ESI-MS m/z 403 [M+Na]+, 1H-NMR (CD3OD): 1.67 (1H, 

m, H-5), 2.04 (1H, m, H-5), 2.18 (1H, m, H-6), 2.23 (1H, m, H-6), 2.70 (1H, m, H-4), 3.53 (1H, m, H-3), 

3.67 (3H, s, -OMe), 3.74 (3H, s, -OMe), 3.74 (3H, s, -OMe), 3.75 (3H, s, -OMe), 5.78 (1H, dt,  

J = 10.0, 2.0 Hz, H-2), 5.96 (1H, brd, J = 10.0 Hz, H-1), 5.95 (1H, dd, J = 16.0, 9.0 Hz, H-1''), 6.77 

(1H, m, H-2'), 6.24 (1H, d, J = 16.0 Hz, H-2''), 6.86 (1H, s, H-2'''), 6.83 (1H, m, H-5'), 6.77 (1H, m, H-5'''), 

6.75 (1H, m, H-6'), 6.70 (1H, d, H-6'''); 13C-NMR (CD3OD): 25.1 (C-5), 25.1 (C-6), 43.2 (C-4), 46.3 

(C-3), 55.9(-OMe), 55.9 (-OMe), 56.0 (-OMe), 56.0 (-OMe), 110.1 (C-2'''), 111.9 (C-2'), 112.6 (C-5'), 

115.1 (C-5'''), 119.6 (C-6'''), 122.6 (C-6'), 128.5 (C-1), 129.4 (C-2''), 130.7 (C-2), 132.0 (C-1'''), 132.5 

(C-1''), 134.7 (C-1'), 148.9 (C-4'), 149.5 (C-4'''), 149.6 (C-3'), 150.3 (C-3'''). 

3.5. MTT Assay  

Human A549, MCF7 and HepG2 cell lines were obtained from Cell Library of Committee on Type 

Culture Collection of Chinese Academy of Sciences. Cultures were maintained in 95% air and 5% CO2 

at 37 °C in RPMI 1640 with 10% FBS, 2 mM L-glutamine, 100 U/mL penicillin and 100 U/mL 

streptomycin. Cytotoxic activity was measured by using MTT assay as described previously [30]. 

Absorbance was measured at 570 nm in a plate microreader (TECAN Infinite200, Eastwin Life 

Science, Beijing, China). 

4. Conclusions  

In this study, nine compounds 1–9 were isolated from D. fragrans. Compound 1 is a new coumarin, 

named as dryofracoumarin A. Compounds 8 and 9, trans- and cis-3-(3,4-dimethoxyphenyl)-4-[(E)-3,4-

dimethoxystyryl]cyclohex-1-ene, which have been previously isolated from the fresh rhizomes of 

Zingiber cassumunar [28,29], were isolated from the genus for the first time, but their anticancer 

activities have not been reported yet.  

As great attentions have been paid to the development of novel anticancer molecules from TCMs, 

the anticancer activities of all isolated compounds were tested by the MTT assay. Compounds 2, 3, 8 

and 9 showed significantly cytotoxic effects against three human cancer cell lines including A549, 

MCF7 and HepG2, compounds 1 and 5 against two cancer cell lines (A549 and MCF7), and compound 

6 against one cancer cell line (MCF7). Consistent with previous studies, the cytotoxic effects of 

compounds 2, 3, 5, 6 were demonstrated [30–34] again. Importantly, cytotoxic effects of compounds 1, 

8, 9 were provided for first time. All these active compounds might be promising lead compounds for 

the treatment of cancer.  
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