Supplementary File

1. ¹H and ¹³C-NMR Spectra of the New Compounds 2–10—General Methods

NMR spectra were recorded on a Bruker Avance III 400 MHz spectrometer (400.00 MHz for ¹H, 100.58 MHz for ¹³C at 30 °C in CD₃OD – compounds **2–10**) and a Bruker Avance III 700 MHz spectrometer (700.13 MHz for ¹H, 176.07 MHz for ¹³C at 30 °C). Residual signals of solvent were used as internal standards (δ_H 3.330 ppm, δ_C 49.30 ppm for CD₃OD; δ_H 4.508 ppm for D₂O). Carbon chemical shifts in D₂O were referenced to acetone (δ_C 30.50 ppm). NMR experiments ¹H-NMR, ¹³C-NMR, gCOSY, gHSQC, and gHMBC were performed using the manufacturer's software. ¹H-NMR and ¹³C-NMR spectra were zero filled to fourfold data points and multiplied by window function before Fourier transformation. Two-parameter double-exponential Lorentz-Gauss function was applied for ¹H to improve resolution and line broadening (1 Hz) was applied to get better ¹³C signal-to-noise ratio. Chemical shifts are given in δ -scale with digital resolution justifying the reported values to three (δ_H) or two (δ_C) decimal places.

Proton spin systems of thiazoline and triazole-linker moieties were assigned by COSY and by HSQC transferred to carbons; HMBC experiment enabled to join above mentioned partial structures together. Thiazoline structure was proved by the presence of methyl doublet (J = 2.0 or 2.1 Hz) correlated in HMBC to carbons C-1 and C-2. Dimer formation (compounds 9 and 10) was unambiguously confirmed by the auto-correlation cross peak of the central carbon of the linker (C-3' for 10 and C-5' for 9).

2. Mass Spectrometry

The exact masses were measured using LTQ Orbitrap XL hybrid mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) equipped with an electrospray ion source. The mobile phase consisted of methanol/water (4:1), flow rate 30 μ L/min, and the samples were injected using a 2- μ L loop. The mass spectra of positively charged ions were internally calibrated using protonated phthalic anhydride as lock mass. Data were acquired and processed using Xcalibur software (Thermo Fisher Scientific).

6-Azido-1,2-dideoxy-2'-methyl-α-D-glucopyrano-[2,1-d]- Δ 2'-thiazoline (2). HRMS: C₈H₁₂O₃N₄NaS calcd. 267.05223; *m*/z [M+Na]⁺ found 267.05227 (Figure S1).

Figure S1. Structure, NMR and HRMS spectra of compound 2.

Figure S1. Cont.

6-(4-Butyltriazolyl)-1,2-dideoxy-2'-methyl-α-D-glucopyrano-[2,1-d]-Δ2'-thiazoline (3). HRMS: $C_{14}H_{23}O_3N_4S$ calcd. 327.14854; m/z [M+H]⁺ found 327.14848 (Figure S2). (3).

Ņ≓^Ņ HO HO 4.5 3.5 8.0 7.5 7.0 5.0 4.0 3.0 2.5 6.0 5.5 2.0 1.5 6.5 1.0 ppm ¹H-NMR 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm ¹³C-NMR

Figure S2. Structure, NMR and HRMS spectra of compound 3.

1,2-Dideoxy-2'-methyl-6-(4-phenyltriazolyl)- α *-D-glucopyrano-[2,1-d]-* Δ *2'-thiazoline* (4). HRMS: C₁₆H₁₉O₃N₄S calcd. 347.11724; *m/z* [M+H]⁺ found 347.11704 (Figure S3).

Figure S3. Structure, NMR and HRMS spectra of compound 4.

 $1,2-Dideoxy-6-(4-hydroxymethyltriazolyl)-2'-methyl-\alpha-D-glucopyrano-[2,1-d]-\Delta 2'-thiazoline$ HRMS: C₁₁H₁₇O₄N₄S calcd. 301.09650; *m/z* [M+H]⁺ found 301.09650 (Figure S4). (5).

Figure S4. Structure, NMR and HRMS spectra of compound 5.

Figure S4. Cont.

1,2-Dideoxy-2'-methyl-6-(4-trimethylsilyltriazolyl)-\alpha-D-glucopyrano-[2,1-d]-\Delta2'-thiazoline (6). HRMS: C₁₃H₂₃O₃N₄SSi calcd. 343.12546; <i>m/z [M+H]⁺ found 343.12537 (Figure S5).

Figure S5. Structure, NMR and HRMS spectra of compound 6.

Figure S5. Cont.

1,2-Dideoxy-6-[4-(hex-5-ynyl)triazolyl]-2'-methyl- α -D-glucopyrano-[2,1-d]- Δ 2'-thiazoline (7). HRMS: C₁₆H₂₂O₃N₄NaS calcd. 373.13048; *m*/*z* [M+Na]⁺ found 373.13033 (Figure S6).

 \gg HO HO 8.0 5.0 4.5 4.0 3.5 2.5 2.0 1.5 7.5 7.0 6.5 6.0 5.5 3.0 1.0 ppm ¹H-NMR T 170 160 130 120 110 100 80 70 60 50 40 30 150 140 90 ppm ¹³C-NMR

Figure S6. Structure, NMR and HRMS spectra of compound 7.

1,2-Dideoxy-2'-methyl-6-[4-(propargyloxymethyl)-triazolyl]- α -D-glucopyrano-[2,1-d]- Δ 2'-thiazoline (8). HRMS: C₁₄H₁₉O₄N₄S calcd. 339.11215; *m*/*z* [M+H]⁺ found 339.11203 (Figure S7).

338.4

338.6

338.8

339.2 m/z

HRMS

339.4

339.6

339.8

340.0

339.0

S11

 $1,4-Bis[(1,2-dideoxy-2'-methyl-\alpha-D-glucopyrano-[2,1-d]-\Delta 2'-thiazolin-6-yl)-triazol-4-yl]-butane$ (9). HRMS: C₂₄H₃₅O₆N₈S₂ calcd. 595.21155; *m/z* [M+H]⁺ found 595.21133 (Figure S8).

Figure S8. Structure, NMR and HRMS spectra of compound 9.

 $Bis\{[(1,2-dideoxy-2'-methyl-\alpha-D-glucopyrano-[2,1-d]-\Delta 2'-thiazoline-6-yl)-triazol-4-yl]-methyl\} ether (10). HRMS: C_{22}H_{31}O_7N_8S_2 calcd. 583.17516; m/z [M+H]^+ found 583.17503 (Figure S9).$

Figure S9. Structure, NMR and HRMS spectra of compound 10.

S14

3. Mass Spectrum of the Mixture after NAG-Thiazoline Decomposition

Analysis by MS revealed the presence of masses corresponding to $C_8H_{15}NO_5S$ (**11a** and **b**) calcd. 237.07, m/z [M-H]⁻ found 236.0; and to $C_{16}H_{28}N_2O_{10}S_2$ (tentative structure GlcNAc-S-(1 \leftrightarrow 1)-S-GlcNAc; **12**) calcd. for $C_{16}H_{28}N_2O_{10}S_2$ 472.120, m/z [M-H]⁻ found 471.0 (Figure S10).

4. HPLC Chromatogram of the Mixture after NAG-Thiazoline Decomposition

Chromatography was carried out on the Shimadzu Prominence UFLC system (Kyoto, JP) consisting of DGU-20A mobile phase degasser, two LC-20AD solvent delivery units, SIL-20ACHT cooling autosampler, CTO-10AS column oven and SPD-M20A diode array detector. The HILIC column TSKgel Amide-80 ($250 \times 4.6 \text{ mm}$ i.d., Tosoh Bioscience, Stuttgart, DE) was used as a stationary phase. The PDA data were acquired in the 190–320 nm range and the 200 nm signal was extracted. Gradient elution: mobile phase A (CH₃CN); mobile phase B (H₂O); gradient, 0–2 min, 20% B; 2–15 min, 20%–60% B; 15–16 min, 60% B, 16–18 min, 60%–20% B, 18–21 min, 20% B (column equilibration). Flow rate was 1 mL/min at 25 °C. The experiment was monitored for 24 h. Retention

times were found as follows: NAG-thiazoline 1, 6.1 min; α -GlcNAc-SH 11a, 6.8 min; β -GlcNAc-SH 11b, 7.1 min; oxidation products, 9–13 min (Figure S11).

Figure S11. HPLC Chromatogram of the mixture after NAG-thiazoline decomposition.

- 1: NAG-thiazoline
- 2: alpha-GlcNAc-SH
- 3: beta-GlcNAc-SH
- 4: oxidation products

5. HPLC Chromatogram after Reduction of the Mixture of 11a, 11b and 12 by Dithiothreitol

In situ reduction of the products of spontaneous oxidation was performed by adding dithiothreitol (1 M) to the reaction mixture in the final concentration of 100 mM and monitored by HPLC and NMR (Figure S12).

Figure S12. HPLC Chromatogram after reduction of the mixture of 11a, 11b and 12 by dithiothreitol.

- 1: alpha-GlcNAc-SH
- 2: beta-GlcNAc-SH
- 3: trace oxidation products

 β -N-Acetylhexosaminidase inhibition by NAG-thiazoline and C-6-azido-NAG-thiazoline. Lineweaver-Burk plots for the individual experiments (Figures S13–S16) are presented.

Figure S15. *O*-GlcNAcase from *Bacteroides thetaiotaomicron* (**A**) NAG-thiazoline, (**B**) C-6-azido-NAG-thiazoline.

◆ c = 0 mM ■ c = 0.01 mM ▲ c = 0.05 mM × c = 0.1 mM × c = 0.005 ● c = 0.25 mM + c = 0.2 mM

Figure S16. Human O-GlcNAcase (A) NAG-thiazoline, (B) C-6-azido-NAG-thiazoline.