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Abstract: Artichoke (Cynara scolymus L.) is one of the world’s oldest medicinal plants 

with multiple health benefits. We have previously shown that artichoke leaf extracts and 

artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide 

synthase (eNOS) in human endothelial cells. Whereas NO produced by the eNOS is a 

vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory 

role in the vasculature. The present study was aimed to investigate the effects of  

artichoke on iNOS expression in human coronary artery smooth muscle cells (HCASMC). 

Incubation of HCASMC with a cytokine mixture led to an induction of iNOS mRNA 

expression. This iNOS induction was concentration- and time-dependently inhibited by an 

artichoke leaf extract (1–100 µg/mL, 6 h or 24 h). Consistently, the artichoke leaf  

extract also reduced cytokine-induced iNOS promoter activation and iNOS protein 

expression. In addition, treatment of HCASMC with four well-known artichoke 

compounds (cynarin > cyanidin > luteolin ≈ cynaroside) led to a downregulation iNOS 

mRNA and protein expression, with cynarin being the most potent one. In conclusion, 

artichoke contains both eNOS-upregulating and iNOS-downregulating compounds. Such 

compounds may contribute to the beneficial effects of artichoke and may per se have 

therapeutic potentials.  
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1. Introduction 

In blood vessels, nitric oxide (NO) can be produced by the endothelial-type NO synthase (eNOS) or 

the inducible NO synthase (iNOS). Under physiological conditions, iNOS is absent in the vasculature 

and vascular NO is mainly produced by eNOS. This enzyme is constitutively expressed in the 

endothelium and is activated by shear stress of the flowing blood or by agonists such as bradykinin and 

acetylcholine. NO produced in endothelial cells can diffuse into the underlying smooth muscle cells 

and induce vasodilation by stimulating NO-sensitive guanylyl cyclase. Endothelial NO can also diffuse 

into the blood and inhibit platelet aggregation and adhesion. In addition to these antihypertensive and 

antithrombotic actions, eNOS-derived NO also possesses multiple anti-atherosclerotic properties, 

including prevention of leukocyte adhesion to vascular endothelium and leukocyte migration into the 

vascular wall, inhibition of low-density lipoprotein oxidation, and inhibition of vascular smooth 

muscle cell proliferation [1,2]. Genetic depletion of eNOS leads to exacerbation of diet-induced 

atherosclerosis in the apolipoprotein E-knockout mouse model. The blood pressure of eNOS knockout 

mice is about 30% higher than that of wild-type animals [3]. 

Under conditions of inflammation, sepsis, or oxidative stress, iNOS expression can be induced in 

blood vessels. In contrast to the regulated production of NO by eNOS, iNOS may generate large 

amounts of NO over long periods of time, if substrate and cofactors are not limited. This excessive NO 

from iNOS leads to vascular dysfunction evident as impairment of both vasoconstriction and 

endothelium-dependent vasorelaxation. Several mechanisms have been proposed by which iNOS 

impairs contractile responses, including continuous activation of the soluble guanylyl cyclase [4]; 

abnormal vascular calcium regulation [5]; and oxidative modification of catecholamines [6]. In 

parallel, the endothelium-dependent, NO-mediated vasodilation response (e.g., to acetylcholine or 

bradykinin) is also impaired by iNOS. This may result from reduced NO production by eNOS [4,7] or 

enhanced inactivation of eNOS-derivied NO by superoxide [8]. Tetrahydrobiopterin is an essential 

cofactor for NO production by NOS enzymes. iNOS expressed in the endothelium competes with eNOS 

for tetrahydrobiopterin and reduces NO production from eNOS by limiting availability of 

tetrahydrobiopterin for eNOS [4]. The continuous generation of NO by iNOS induced in the media can 

impair the signal transduction cascade that links activation of endothelial receptors to the calcium-

calmodulin-dependent activation of eNOS [7]. Moreover, the reduction of endothelium-dependent 

relaxation may be mediated in part by reduced reactivity of smooth muscle cells to NO [9].  

The consequence of this dysregulation (impaired vasomotor reactivity to both vasoconstrictor and 

vasodilator agonists) can be seen, for example, in septic shock. Septic shock is characterized by 

massive arteriolar vasodilatation, hypotension, and microvascular damage. Inappropriate vasodilation, 

abnormal regulation of blood flow to organs, myocardial suppression, and interference with cellular 

respiration all contribute to hypotension and mortality in septic shock [3,10]. Bacterial endotoxins 

usually initiate the symptoms and the fall in blood pressure is predominantly due to excess NO 

production by iNOS induced in the vascular wall. Endotoxin administration in experimental animals leads 

to high expression of iNOS in vascular smooth muscle cells and impairs contractile responses [11]. 

Inhibitors of iNOS largely restore the contractile responses to agonists in animal models of sepsis [12] and 

reverse the hypotension of patients in septic shock [13]. iNOS mutant mice have a blunted hypotensive 
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response to sepsis [14]. Recently, a non-synonymous SNP in the iNOS gene has been shown to be 

associated with increased susceptibility to septic shock in Chinese populations [15].  

The induction of iNOS in the vasculature is also associated with enhanced formation of 

peroxynitrite [8,16,17], a key pathogenic mechanism in conditions such as septic shock, stroke, 

myocardial infarction, chronic heart failure, diabetes, and atherosclerosis [18,19]. iNOS is present in 

human atherosclerosis plaque. Genetic deficiency of iNOS reduces atherosclerosis in apolipoprotein 

E-knockout mice [20]. iNOS also contributes to tissue damage after cerebral ischemia. Inhibition of 

iNOS by selective pharmacologic inhibitors [21], or gene deletion of iNOS [22] reduces brain damage. 

Collectively, eNOS and iNOS have opposite roles in the vasculature with eNOS being protective 

and iNOS mostly detrimental. Compounds that upregulate eNOS or downregulate iNOS are of 

therapeutic interest. In a previous study, we have demonstrated that artichoke leaf extracts and 

artichoke flavonoids enhance eNOS expression and NO production in human endothelial cells [23]. 

The present study shows that artichoke inhibits iNOS expression in vascular smooth muscle cells. 

2. Results and Discussion 

In the present study, we demonstrate for the first time that artichoke leaf extract and artichoke 

compounds downregulate iNOS expression human coronary artery smooth muscle cells when 

administered concurrently with an inflammatory stimulus.  

2.1. Artichoke Leaf Extracts Downregulate iNOS Expression  

Incubation of HCASMC with the cytokine mixture (CM) led to an induction of iNOS mRNA 

expression. The induction of iNOS mRNA expression was more pronounced at 6 h than at 24 h 

(Figure 1). At both time points, the artichoke leaf extract (ALE) decreased the CM-induced iNOS 

expression at concentrations of 10 and 100 µg/mL. The kinetics of iNOS induction in HCASMC is 

likely to be similar as that in human intestinal epithelial DLD-1 cells in which the maximum of the 

CM-induced iNOS mRNA expression is reached at 6–12 h whereas iNOS protein expression and NO 

production are induced with a delay of several h [24]. Therefore, in the following experiments,  

iNOS mRNA expression and iNOS promoter activity were analyzed at 6 h whereas iNOS protein 

expression and NO production were studied at 24 h after CM treatment. At the protein level, ALE 

also concentration-dependently decreased the CM-induced iNOS expression (Figure 2).  

2.2. Artichoke Leaf Extracts Reduce Cytokine-Induced NO Production  

Among the three NOS isoforms, iNOS is a calcium-independent enzyme. NO production by iNOS 

correlates well with the expression level of the enzyme. Therefore, the inhibition of iNOS expression 

by ALE should result in a reduction of NO production.  

To measure NO production from HCASMC, we applied the RFL-6 reporter cell assay. These 

cells express relatively high level of guanylyl cyclase and produce cGMP when stimulated with 

NO [25]. Incubation of RFL-6 cells with conditioned media from CM-treated HCASMC led to an 

increase of cGMP content, a surrogate marker for NO. The increase in cGMP content was 

significantly reduced by ALE (Figure 3). 
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Figure 1. Artichoke leaf extracts downregulate iNOS mRNA expression. Human coronary 

artery smooth muscle cells were treated with the cytokine mixture (CM) or CM in combination 

with the artichoke leaf extract (ALE, µg/mL) for 6 h (a) or 24 h (b). Human iNOS mRNA 

expression was analyzed with real-time RT-PCR. * p < 0.05, compared with CM.  

 

Figure 2. Artichoke leaf extracts downregulate iNOS protein expression. Human coronary 

artery smooth muscle cells were treated with the cytokine mixture (CM) or CM in 

combination with an artichoke leaf extract (ALE, µg/mL) for 24 h. Western blot analyses 

were performed with a monoclonal anti-iNOS-antibody (top) or a monoclonal antibody to 

β-tubulin (bottom, for normalization). The blots shown are representative of three 

independent experiments with similar results. 
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Figure 3. Artichoke leaf extracts prevent CM-induced cGMP production. Human coronary 

artery smooth muscle cells (HCASMC) were treated with the cytokine mixture (CM) or 

CM in combination with the artichoke leaf extract (ALE, 10 µg/mL) for 24 h. Then, 

conditioned media from HCASMC was transferred to RFL-6 reporter cells. The cGMP 

content in the RFL-6 cells was measured by radioimmunoassay. RFL-6 cells without 

conditioned media from HCASMC (basal) and RFL-6 cells treated for 3 min with the NO 

donor linsidomine (SIN-1, 1 µM) served as negative and positive controls, respectively.  

* p < 0.05, compared with CM. 

 

2.3. Artichoke Leaf Extracts Inhibit iNOS Promoter Activity  
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Figure 4. Artichoke leaf extracts reduce iNOS promoter activity. Human alveolar 

epithelium-like A549/8 cells were stably transfected with a construct containing a 16 kb 

fragment of the human iNOS promoter cloned in front of a luciferase reporter gene. The 

cells were treated with the cytokine mixture (CM) or CM in combination with an artichoke 

leaf extract (ALE, 10 µg/mL) for 6 h. Then, the cells were lysed, and luciferase activity 

was determined. The luciferase activity (normalized to protein content) was taken as a 

measure of iNOS promoter activity. * p < 0.05, compared with CM. 
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Figure 5. Artichoke compounds downregulate iNOS expression. Human coronary artery 

smooth muscle cells were treated with the cytokine mixture (CM) or CM in combination 

with an artichoke leaf extract (ALE, 10 µg/mL) or the artichoke compounds (10 µM each) 

for 6 h (a) or 24 h (b). Human iNOS mRNA expression was analyzed with real-time  

RT-PCR (a). * p < 0.05, compared with CM. Protein expression of iNOS was studied with 

Western blot analyses (b). The blots shown are representative of three independent 

experiments with similar results. 
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plasma malondialdehyde and urinary 8-hydroxydeoxyguanosine levels, and increased erythrocyte 

glutathione levels [41]. 

Although it is still a matter of debate [43], there is some evidence that artichoke leaf extract may 

lower cholesterol levels. In randomized, double-blind, placebo-controlled clinical trials, artichoke leaf 

extract reduced the total cholesterol levels in hypercholesterolemic adults [44,45]. 

A previous study from our laboratory shows that artichoke leaf extracts upregulate eNOS 

expression in human endothelial cells [23]. Increased NO production by artichoke extracts has also 

been shown in porcine aortic endothelial cells [46]. In a randomized, placebo-controlled trial, 

concentrated artichoke leaf juice significantly lowered blood pressure (by ≈ 3 mmHg after 12 weeks) 

in patients with mild hypertension [47].  

The present study demonstrates that ALE, cynarin and cyanidin inhibit iNOS expression in vascular 

smooth muscle cells when administered concurrently with an inflammatory stimulus. We did not 

analyze whether the compounds in ALE have any effect on iNOS expression without an inflammatory 

stimulus. The cynarin concentration in the ALE we used is not known; but it could be in similar ranges 

as that in methanolic extracts of artichoke (≈1.5%) [28]. Based on this assumption, the cynarin 

concentration of 100 µg/mL ALE would be ≈3 µM, a concentration that is relevant to the effect of 

cynarin on iNOS expression. We are aware that we have only studied a few candidate compounds in 

the present study, and we may have missed a number of active compounds. It should also be reminded 

that the effects of artichoke extracts cannot be attributed to one or two single compounds. Rather, the 

in vivo effect of a plant extract is more likely to result from multiple active compounds that act 

additively or synergistically. It is also possible that some compounds contained in ALE may have 

antagonistic effects, or complex and unpredictable effects worthy of future study.  

The therapeutic potential of cynarin needs to be further investigated. Several issues should be 

considered in future studies including the bioavailability of the compound and the specificity of its 

action. After ingestion of artichoke extracts, cynarin and other caffeoylquinic acids are not found in 

human plasma. However, caffeoylquinic acid metabolites (such as caffeic acid, ferulic acid, isoferulic 

acid, dihydrocaffeic acid, and dihydroferulic acid) are detected in considerable concentrations [48,49]. 

It is still unknown whether the metabolites of cynarin are effective in inhibiting iNOS expression. 

In addition to its effect on iNOS, cynarin has antioxidative activities [39] and immuno-suppressive 

effects [50]. Recent studies indicate that cynarin may have the potential to serve as a chemosensitizing 

agent by reversing P-glycoprotein-mediated multidrug resistance [31]; but it may also induce drug-

drug interactions by inhibiting organic anion transporters [51]. Therefore, animal studies are required 

to test the therapeutic potential and possible side effects of cynarin in vivo. 

Anthocyanidins (e.g., cyanidin) and their glycosides (i.e., anthocyanins) are responsible for the 

brilliant color of fruits and flowers and are widely ingested by humans [52]. Cyanidin and its glycosides 

show antioxidant, anti-inflammatory, and antimutagenic effects [52]. Cyanidin 3-O-β-D-glucoside  

reduces cytokine-induced iNOS and cyclooxygenase-2 (COX-2) expression in intestinal cells [53]  

and macrophages [54]. Moreover, cyanidin 3-O-β-D-glucoside has been shown to reduce  

ochratoxin-induced iNOS expression in vivo [55]. Orally administered cyanidin 3-O-β-D-glucoside is 

metabolized to cyanidin and protocatechuic acid by intestinal microflora [7] and these metabolites are 

detectable in blood and urine [56]. Cyanidin itself has also been shown to suppresses phorbol  

ester-induced COX-2 and iNOS expression in human colon adenocarcinoma cell line HT-29 cells [57] 
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and in RAW 264.7 macrophages [56]. In an air pouch model of inflammation in mouse skin, both 

cyanidin 3-O-β-D-glucoside and cyanidin inhibit carrageenan-induced iNOS and COX2 expression, as 

well as the production of inflammatory cytokines after oral application [56]. These results are compatible 

with the present study and support the concept that cyanidin may have therapeutic potentials.  

3. Experimental  

3.1. Cell Culture 

Primary human coronary artery smooth muscle cells (HCASMC) were purchased from PromoCell 

(Heidelberg, Germany) and cultured in Smooth Muscle Cell Growth Medium 2 (PromoCell). For 

iNOS induction, HCASMC were incubated with a triple cytokine mixture (CM) containing IFN-γ  

(100 U/mL), IL-1β (50 U/mL) and TNF-α (10 ng/mL) [58]. To study the effects of artichoke, the cells 

were treated with CM in combination with LI-220 or artichoke compounds. LI-220 was an aqueous 

artichoke leaf extract (ALE) provided by Lichtwer Pharma AG (Berlin, Germany). Cynarin 

(1,5-dicaffeoylquinic acid; CAS number 30964-13-7) and cynaroside (luteolin-7-O-glucoside; CAS 

number 68321-11-9) were obtained from AppliChem (Darmstadt, Germany). Luteolin (CAS number 

491-70-3) was from Calbiochem/Merck Millipore (Darmstadt, Germany) and cyanidin chloride (CAS 

number 528-58-5) was from Carl Roth (Karlsruhe, Germany).  

3.2. Real-Time RT-PCR for iNOS mRNA Analyses 

Human iNOS mRNA expression was analyzed with quantitative real-time RT-PCR using an iCycler 

iQ System (Bio-Rad, Munich, Germany). Total RNA was isolated from HCASMC by guanidinium 

thiocyanatephenol-chloroform extraction. Total RNA (0.5 µg) was used for real-time RT-PCR analysis 

with the QuantiTect Probe RT-PCR kit (QIAGEN, Hilden, Germany). For real-time PCR, the 

following oligonucleotides served as sense and antisense primers and Taqman hybridization probes: 

iNOS, sense 5'- TGC AGA CAC GTG CGT TAC TCC-3', antisense 5'- GGT AGC CAG CAT AGC 

GGA TG-3', probe 5'-TGG CAA GCA CGA CTT CCG GGT G-3'; Pol2a (the large subunit of RNA 

polymerase II), sense 5'- GCA CCA CGT CCA ATG ACA T-3', antisense 5'-GTG CGG CTG CTT 

CCA TAA-3', probe 5'-TAC CAC GTC ATC TCC TTT GAT GGC TCC TAT-3' [58]. Pol2a was 

detected for normalization.  

3.3. Western Blot for iNOS Protein Analyses 

Western blot analyses were performed with total protein samples (30 µg each) from HCASMC. 

Protein samples were separated on a Bis-Tris gel and transferred to a nitrocellulose membrane. Blots were 

blocked in 5% milk powder in TBST (10 mM Tris-HCl, pH 7.4, 150 mM NaCl with 0.1% Tween 20) for 

one h at room temperature. The primary antibody (a monoclonal anti-iNOS-antibody, R&D Systems, 

Wiesbaden, Germany) was diluted in the same solution used for blocking at 4 °C overnight. Blots were 

then washed in TBST and incubated with a horseradish peroxidase-conjugated secondary antibody 

diluted in 5% milk in TBST for one h. After washing in TBST and then in TBS, the immunocomplexes 

were developed using an enhanced horseradish peroxidase/luminol chemiluminescence reagent 
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(PerkinElmer Life and Analytical Sciences, Boston, MA, USA) according to the manufacturer’s 

instructions [59].  

3.4. Reporter Cell Assay for Determination of NO Production 

NO production by HCASMC was bioassayed with RFL-6 rat lung fibroblasts as reporter cells [25,60]. 

HCASMC were treated with CM (with or without ALE) for 24 h. For determination of NO production, 

HCASMC and RFL-6 cells were washed twice with Locke’s solution (154.0 mM NaCl, 5.6 mM KCl,  

2.0 mM CaCl2, 1 mM MgCl2, 3.6 mM NaHCO3, 5.6 mM glucose, 10.0 mM HEPES, pH 7.4). Then, 

HCASMC were incubated with Locke’s solution containing 200 U/mL SOD and 100 mM L-arginine, 

and RFL-6 cells with Locke’s solution containing 0.6 mM of the phosphodiesterase inhibitor IBMX 

for 20 min. After the preincubation, HCASMC were incubated for 2 min at 37 °C in 1 mL of Locke’s 

solution containing 200 U/mL SOD, 0.3 mM IBMX and 100 mM L-arginine. Then, the conditioned 

media containing the NO released from HCASMC were transferred to the RFL-6 cells, and another 

incubation of 2 min at 37 °C was performed. The reaction was stopped by aspiration of the solution, 

adding 1 mL of ice-cold 50 mM sodium acetate, pH 4.0, and rapidly freezing the cells with liquid 

nitrogen. The cGMP content of the RFL-6 samples was determined by radioimmunoassay as 

described [25,60]. 

3.5. Reporter Gene Assay for Determination of iNOS Promoter Activity 

The human alveolar epithelium-like A549/8 cells were stably transfected with a construct containing a 

16 kb fragment of the human iNOS promoter cloned in front of a luciferase reporter gene [27]. This cell 

line was used as a tool for analyzing iNOS promoter activity. The cells were treated with CM in the 

presence or absence of ALE. Then, cells were lysed in 1 × Passive Lysis Buffer (Promega). Firefly 

luciferase activity was determined using the Dual Luciferase Assay Kit (Promega). Protein 

concentrations of the extracts were determined by Bradford reagent using BSA as standard. 

Luciferase activity normalized to protein content of the extracts was used as a determinant of 

iNOS promoter activity [27]. 

3.6. Statistics 

Data are presented as means with the standard deviation (SD). Statistical analyses were 

performed by one-way ANOVA with Bonferroni post-test. Differences were considered as 

significant when p < 0.05. 

4. Conclusions  

Artichoke is a medicinal plant with multiple health benefits. In the present study, we have found a 

new effect of artichoke leaf extracts and artichoke compounds (cynarin and cyanidin): inhibition of 

iNOS expression in vascular smooth muscle cells. The therapeutic potential of cynarin and cyanidin, 

however, needs to be verified in future studies in vivo. 
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