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Abstract: Using integrated in-silico computational techniques, including homology 

modeling, structure-based and pharmacophore-based virtual screening, molecular dynamic 

simulations, per-residue energy decomposition analysis and atom-based 3D-QSAR 

analysis, we proposed ten novel compounds as potential CCR5-dependent HIV-1 entry 

inhibitors. Via validated docking calculations, binding free energies revealed that novel 

leads demonstrated better binding affinities with CCR5 compared to maraviroc, an  

FDA-approved HIV-1 entry inhibitor and in clinical use. Per-residue interaction energy 

decomposition analysis on the averaged MD structure showed that hydrophobic active 

residues Trp86, Tyr89 and Tyr108 contributed the most to inhibitor binding. The validated 

3D-QSAR model showed a high cross-validated rcv
2 value of 0.84 using three principal 

components and non-cross-validated r2 value of 0.941. It was also revealed that almost all 

compounds in the test set and training set yielded a good predicted value. Information 

gained from this study could shed light on the activity of a new series of lead compounds 

as potential HIV entry inhibitors and serve as a powerful tool in the drug design and 

development machinery. 

Keywords: CCR5 antagonists; HIV-1 entry inhibitors; homology modeling; virtual screening; 
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1. Introduction 

The Human Immunodeficiency Virus type 1 (HIV-1) infection, the causative agent of Acquired 

Immunodeficiency Syndrome (AIDS) [1], still remains a fatal human health-threatening disease [2]. An 

estimated 34 million people live with HIV/AIDS worldwide [3,4]. The overall global estimate is that 

approximately 22.9 million of these individuals live in sub-Saharan Africa [3,4]. 

In AIDS therapy, the fundamental strategy is to inhibit viral replication and hence, to slow down the 

destruction of the immune system and prolong the lives of infected individuals. Currently, a number of 

viral targets are being used to develop anti-HIV drugs; which are essential for viral replication and survival, 

and these include, protease enzyme (PR) [5], reverse transcriptase (RT) [6] and integrase (IN) [7].  

Several drugs which are currently in clinical use have been developed to inhibit these potential viral 

targets, and such as integrase inhibitors, reverse transcriptase inhibitors and protease inhibitors [8].  

Numerous concerns regarding the long-term side effects of antiretroviral drugs and the increasing 

transmission of resistant variants accentuates the requirement to identify new classes of drugs, which 

are able to efficiently suppress HIV-1 replication [2]. Therefore, there is an on-going need for novel 

therapeutics, which can prevent the entry of HIV-1 into its target cells [9,10].  

The entry of the HIV virus into its target cell is mediated by the specific interactions of the  

target cell itself, such as the interaction between gp120 viral envelope glycoprotein and the plasmatic 

membrane receptors [11]. In turn, these specific interactions produce conformational alterations in 

both the glycoprotein and in the membrane receptors that facilitates fusion of the HIV virus and the 

target cell. Numerous studies have evaluated the role of CD4 and its interaction with gp120 and 

concluded that the CD4-gp120 interaction is a crucial component, but is not adequate for the disease to 

become established [12,13]. 

Besides CD4, recently certain chemokine receptors (CCRs) belonging to the G-protein  

coupled receptor superfamily (GPCRs) have been identified as co-targets crucial for viral entry into 

target cells [9,14]. Different CCRs and counterpart chemokine ligands (RANTES, MIP-1alpha and 

MCP2) are responsible for signaling regulation within immune cells and therefore are potential target 

systems for preventing virus-cell fusion. Several studies have reported on the identification and 

characterization of diverse CCRs [15]. Besides a single CCR that is viral strain-dependent, the 

majority of CCR strains are R5 isolates, which are transmitted during sexual intercourse and act on 

CCR5 throughout the disease [15].  

CCR5 has proven to be an important pharmaceutical target in the contexts of HIV-1 and  

other inflammatory diseases. This chemokine receptor functions as an integral protein in HIV-1 entry 

into host cells by acting as a crucial co-receptor for the gp120 viral envelope glycoprotein [1].  

Furthermore, experimental data revealed the importance of CCR5 in HIV-1 transmission. It was 

reported that individuals that are homozygous for the 32-base pair deletion for the CCR5 allele 

produce a defective CCR5 co-receptor and are resistant to R5-tropic HIV-1 infection, however are 

otherwise generally healthy [16]. This fact has been an instigating factor in the past decade for 

identifying anti-HIV agents that specifically targets CCR5-mediated entry mechanism. Furthermore, 

this implies that functional inhibition of CCR5 may help protect against infection without provoking 

damage to patients. Thus, blocking viral entry using small-molecule antagonists selective for CCR5 

might provide a new and more effective type of anti-HIV drug. 
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Although, the concept of designing small molecule CCR5 antagonists has been investigated  

before [1,10,17]; to date, no structural information about the precise binding site of CCR5 with any 

FDA-approved inhibitor is available. Several studies have reported CCR5 modeling of “potential” hit 

leads using computational approaches, including virtual screening, molecular docking, molecular 

dynamic stimulations and pharmacophore modeling. Perez-Nueno et al., reported a detailed 

comparative report of ligand-based and receptor-based virtual screening methods to unveil potential 

HIV entry inhibitors for CXCR4 and CCR5 receptors [18]. It has been documented that  

structure-based virtual screening methods yield better results as compared to ligand-based  

approaches. Afantitis et al. and Aher et al. identified CCR5 antagonists derived from  

1-(3,3-diphenylpropyl)-piperidinyl amides using virtual screening and quantitative structure-activity 

relationships (QSAR) studies [19,20]. In a previous report by Kellenberger et al. structure-based 

techniques were used to model the physics of protein-ligand interactions in conjugation with combined 

2D and 3D structure-based techniques [21]. Researchers have developed new approaches of combining 

computational molecular modeling methodologies, for example, molecular docking, 3D-QSAR, 

comparative receptor modeling and virtual screening to discover potential CCR5 HIV-1 entry inhibitor 

drugs [1]. Xu et al. studied the detailed interactive relationship between CCR5 and its inhibitors using 

a docking-based/ 3D-QSAR strategy along with protein modeling and MD stimulation [2]. However, 

in other mechanistic studies of protein-ligand entry inhibitor interactions, investigators have used 

homology modeling, molecular docking and molecular dynamic stimulation techniques [1].  

To this end, in this report, via hybrid structure-based and ligand-based virtual screening, we aim to 

identify novel CCR5 antagonists as potential HIV-1 entry inhibitors. A human CCR5 homology model 

template and maraviroc, a known FDA-approved CCR5 antagonist (Figure 1), were used as 

prototypes. Virtual screening of ligand-based compound libraries were generated via two distinct yet 

complimentary approaches: (a) structural similarity-based compound generated library—this library 

generated compounds that bear a 2D structural similarity to the reference drug maraviroc, whereas the 

(b) Pharmacophore-based generated library—this library generated compounds that contained the 

pharmacophoric features of the reference drug structure. Merging these independent compound 

libraries allowed us to ensure that our generated hit lead library encompassed structural units with 

diversity, yet with mutual pharmacophoric and structural features. Furthermore, docking calculations 

were computed using the generated ligand-based compound libraries against the CCR5 enzyme. 

Figure 1. 2D Structure of the known FDA-approved CCR5 antagonist maraviroc. 
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To validate our docking calculations, the same docking approach adopted for the ligand-based 

libraries was then performed on a set of compounds with known experimental data obtained from 

inhibition assays against HIV-1 CCR5 and these results were compared against experimental data. 

Since molecular docking may not be a true reflection of the stability of an ligand-enzyme complex, 

therefore, in order to gain more insight into the stability of the resulted docked systems, the nature of 

the overall interaction themes between the generated ligands and the target protein, and the specific 

amino acids involved in ligand binding, we performed 1 ns MD simulations followed by extensive 

post-dynamic analysis.  

We took our study a step further by obtaining a set of 35 novel oxamino-piperidino-piperidine 

amide analogs with available IC50 (mM) data taken from literature for the development of our atom-based 

3D-QSAR model [1]. 

It is worth mentioning that the three dimensional (3D) CCR5 structure is not yet available. 

However, homology-modeling of CCR5 has been performed before [9]. Therefore, in this study, the 

actual human CCR5 homology model was developed using the crystal structure of CXCR4 as a 

structural template. Information gained from this study could shed light on the activity of a new series 

of lead compounds as potential HIV entry inhibitors. This study should serve as a powerful tool in the 

drug design and development machinery. 

2. Computational Methods  

2.1. Homology Modeling of CCR5  

In order for our molecular docking study to be executed, the crystal structure of human CCR5 was 

homology modeled using the human CCR5 protein sequence retrieved from the UniProt database [22] 

(Uniprot ID: P51681). The actual homology model of CCR5 was developed using the crystal structure 

of CXCR4 (PDB ID: 3ODU) as a structural template and using the Modeler software [23] add-on in 

Chimera [24]. Hydrogen atoms were included in our enzyme model, whilst all other important active 

site residues were identified using Chimera Multi-align Viewer [24].  

2.2. Maraviroc Structure Acquisition and Preparation 

Maraviroc, the known FDA-approved CCR5 antagonist, was obtained in a mol2 file format from 

the DrugBank [25–27]. This CCR5 antagonist had its geometry optimized and energy minimized using 

the MMFF94 force field found in Avogardros software [28]. Thereafter, for subsequent analyses, 

maraviroc was kept in the mol2 format. 

2.3. Ligand Library Generation 

2.3.1. Structural Similarity-Based Compound Library Generation 

Maraviroc was used as the template for generating the 2D shape similarity-based compounds library 

from the Zinc Database. The maraviroc structure was drawn using the MarvinSketch software [29]. 

This reference template was used uploaded and queried the Zinc Database for all structures that had 

greater than 60% shape similarity to maraviroc. The query search generated a total of 1,002 compound 
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hits. As explained in our earlier report, certain physiochemical filters were implemented to enhance the 

structural query process [3]. In this study, the default physiochemical filter was set at drug-like 

qualities. Only compounds with molecular weight between 150 and 500 kDa were selected—this 

resulted in 480 hits. Other criteria were imposed to ensure the inclusion of the maximum number of 

compounds, such as the compounds had to have an xlog P between −4 and 5, a net charge between −5 

and 5, rotatable bonds between 0 and 8, a polar surface area of between 0 and 150, have hydrogen 

bond donors/acceptors between 0 and 10, and polar desolvation between 0 and 1 kcal/mol whereas 

compounds must have an apolar desolvation between −100 and 40 kcal/mol. Thereafter, these 

compounds were downloaded as a single mol2 file format and were individually separated into mol2 

files using the Molegro Molecular Viewer (MMV) software suite [29]. These files were then converted 

into a pdbqt format using the built-in Autodock Vina feature in the Raccoon software [30]. 

2.3.2. Pharmacophore-Based Library Generation 

The pharmacophore-based compound libraries were generated using the chosen pharmacophoric 

regions as illustrated in Figure 2 and the ZincPharmer Database [31]. Also, keeping in mind that the 

desired compounds would be selected based on their probability of forming good interactions with the 

receptor. Furthermore, the Lipinski Rule of Five was imposed as the set criterion for screening compounds 

not only for confining conformational variations of the same ligand, but also for reducing any duplication 

The query search generated a total of 602 compound hits. All these compounds were downloaded as a 

single sdf file format and then separated and processed as explained above in Section 2.3.1.  

Figure 2. Maraviroc structure used as a template for pharmacophore-based and structural 

similarity-based compound library generation. Pharmacophore selection criteria—green 

depicts hydrophobicity, purple depicts aromatic and white depicts hydrogen donor. Arrows 

indicate that constraints have been imposed. 

 

2.4. Virtual Screening and Validation of Docking Protocol 

In our study, the known CCR5 antagonist (maraviroc) and the two respective ligand-based compound 

libraries were subjected to virtual screening against the CCR5 enzyme. The Autodock Vina [32] screening 
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software was used to conduct docking calculations. Although the Screening procedure was run using 

the software default settings; the exhaustiveness of the screening was fixed to the value of 8. The grid 

box used to define the screening site was verified by using the built-in functionality property found in 

Autodock Vina [24]. The grid box was defined around the following key amino acid residues, namely 

Phe85, Trp86, Trp 89, Leu104, Tyr108, Ile 198, Try251 and Glu283,and these resembled the active 

site residues found in the crystal structure of CXCR4 enzyme following the sequence alignment 

performed in Chimera. The X, Y and Z centres were defined as 11.01, −2.08 and 45.68, whereas the  

X, Y and Z size dimensions were defined as 58, 82 and 74, respectively. Autodock Vina screening 

results were produced in the pdbqt format. From each of the two compound libraries, the top ten 

compounds were selected on the basis of best binding affinities and visualized using the Viewdock 

feature in Chimera.  

2.5. Molecular Dynamics Simulations and Post-Dynamic Analysis 

The best-docked ligand-enzyme complexes that resulted from the structure-based and 

pharmacophore-based compounds library were then exposed to MD stimulations using the Amber 

software [33], following the procedure explained in our previous report [34] were performed using the 

We examined the post-dynamic nature of how ligands interacted with the CCR5 target protein within a 

range of 5 Å as illustrated by hydrogen bond and hydrophobic interactions using the Molecular 

Viewing Operator (MOE) program [35]. Likewise, residue contribution towards ligand binding was 

computed using the Moldock scoring functions [29]. 

2.6. Three-Dimensional (3D) QSAR Analysis  

A set of 35 novel oxamino-piperidino-piperidine amide analogs (Figure 3) with available IC50 (mM) 

data was taken from literature for the development of the atom-based 3D-QSAR model (Table 1) [1]. 

This 3D-QSAR study was performed in Discovery studio 3.5 [36]. The 1/logIC50 value of CCR5 was 

used in this study. Of the 35 compounds reported, 26 compounds were used as a training set and the 

remaining nine compounds were used as a test set, based on a random selection. The compounds in the 

test set have a range of biological activity values similar to that of the training set. The ligands were 

pre-aligned using a molecular overlay method and placed in a 3D grid space (Figure 4). The grid 

spacing was 1 Å. The energy potentials on every grid point were then calculated using a CHARMm 

force field which used the electrostatic potential and the Van der Waals potential and treated as 

separate terms. A +1e point charge is used as the electrostatic potential probe and distance-dependent 

dielectric constant is used to mimic the solvation effect. For the Van der Waals potential a carbon atom 

with a 1.73 Å radius is used as a probe. The energy grid potentials can be used as independent 

variables to create partial least-squares (PLS). Furthermore, the best 3D-QSAR model was validated 

by predicting activities of the 9 test set compounds. The 3D-QSAR was evaluated by cross-validated 

R2, Q2. The predicted 1/logIC50 at 6th PLS factor are tabulated in Table 1. 
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Figure 3. The 2D structures for the oxamino-piperidino-piperidine amide analogs used in 

the 3D QSAR of this work. 

 

Table 1. Dataset analyzed for 3D QSAR with experimental 1/logIC50, predicted 1/logIC50 

and residual value.  

# Core X R1 R2 R3 R4 
Expt. 1/logIC50 

(mM) 
Prdt. 1/logIC50 

(mM) 
Residual 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 t 
29 t 
30 t 
31 t 
32 t 
33 t 
34 t 
35 t 

A 
A 

A(E) 
A(E) 

B 
B 
C 
C 
A 
A 
A 
A 
A 
A 
A 

B(Z) 
B(Z) 

B 
B 
C 
C 
C 
C 
C 
C 
C 
A 
B 
C 
C 
A 
A 

B(Z) 
C 
C 

CH2 
NH2 

=N–OCH3 
=N–OCH3 

- 
- 

N+–O 
N 

CH2 
CH2 
CH2 
CH2 
CH2 
CH2 

C=CH2 
- 
- 
N 
N 

N+–O 
N+–O 
N+–O 
N+–O 
N+–O 
C=O 

- 
N 

N+–O 
CH2 

CH–OH 
- 
- 

N+ = O 

Br 
Br 
Br 
Br 
Br 
Br 

CH3 
Cl 
Cl 
I 

CF3 
CH3 

OCH3 
SO2CH3 

Br 
Br 
Br 
Br 
Br 
Br 
Br 
Br 

CF3 
OCF3 
OCF3 

Cl 
Br 
Br 
Br 
Br 
- 

Br 
Br 

CH3 
CF3 

- 
- 
- 
- 

CH3 
CH3 

CH3 

C2H5 
- 
- 
- 
- 
- 
- 
- 
H 

C4H9 
CH2-CO-NHCH3 

C2H5 
C2H5 
C2H5 
C2H5 
CH3 
CH3 
C2H5 
C2H5 

- 
CH3 
CH3 
C2H5 

- 
- 

C3H7 
CH3 
C2H5 

- 
- 
- 
- 

Cl 
CH3 
CH3 
CH3 

- 
- 

- 
- 

- 

- 

- 

CH3 
CH3 

CH3 
F 
H 

CH3 
H 

CH3 
CH3 
CH3 

CH3 
- 

CH3 

CH3 
CH3 

- 

- 
CH3 

- 
CH3 

- 
- 
- 
- 

NH2 
OH 
CH3 
CH3 

- 
- 

- 
- 

- 

- 

- 
CH3 
CH3 

CH3 
CF3 
CH3 
CH3 
CH3 
CH3 
CH3 
CH3 
CH3 

- 
NH2 
CH3 
CH3 

- 
- 

CH3 
- 

CH3 

0.250 
0.267 
0.290 
0.252 
0.360 
0.278 
0.267 
0.435 
0.229 
0.253 
0.333 
0.218 
0.227 
0.260 
0.333 
0.250 
0.266 
0.274 
0.301 
0.318 
0.338 
0.310 
0.329 
0.270 
0.307 
0.324 
0.243 
0.371 
0.371 
0.301 
0.270 
0.205 
0.310 
0.263 
0.321 

0.259 
0.265 
0.270 
0.271 
0.359 
0.276 
0.286 
0.392 
−0.248 
0.230 
0.269 
0.233 
0.233 
0.273 
0.313 
0.245 
0.275 
0.292 
0.305 
0.289 
0.382 
0.307 
0.324 
0.298 
0.314 
0.324 
0.261 
0.385 
0.329 
0.302 
0.277 
0.254 
0.271 
0.254 
0.306 

0.009 
0.002 
0.020 
−0.019 
0.001 
0.001 
−0.018 
0.043 
−0.018 
0.023 
0.064 
−0.015 
−0.006 
−0.013 
0.020 
0.005 
−0.009 
−0.016 
−0.004 
0.290 
−0.044 
0.003 
0.005 
−0.028 
−0.007 
−0.006 
−0.018 
0.086 
0.076 
0.001 
−0.007 
−0.54 
0.38 
−0.091 
0.015 

t = test set. The conformation of compound denoted in brackets ( ) [1].	  
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Figure 4. Molecular alignments used in the present study.  

 

Figure 5. (A) Superimposed structures of 3ODU [16] and modeled CCR5 enzyme (blue) 

with CCR5 antagonist, maraviroc [24]; (B) The 2D sequence alignment of 3ODU and the 

homology model generated for our study. Yellow highlighting represents α-helices and 

green highlighting represents β-sheets. Sequences outlined in red lack 3D crystal structure. 
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3. Results and Discussion 

3.1. Homology Modeling of CCR5 

The actual homology model of human CCR5 was modeled using the 3ODU crystal structure as a 

structural modeling template. As outlined in Figure 5, both these proteins demonstrated good structural 

similarity in and around the active site residues, with most of the residues having relatively identical 

locations to each other. The Multi-align Viewer tool located in Chimera recorded a 42.11% shared 

similarity between the two proteins’ sequences; after modeling, the enzyme model had a zDOPE score 

of 0.91 with an RMSD of 1.1771 Å. Four differences were observed between the active site sequences 

of our modeled CCR5 and the 3ODU model template, which included Leu204 (3ODU) corresponding 

to Leu104 (CCR5), Trp85 corresponding to Trp86, and two residue gaps namely corresponding to 

Leu213 and Phe113 from 3ODU (Table 2), respectively. We assume that these noted differences have 

had very minimal effects in the docking study as result of the shared structural similarity between the 

Leu and Trp residues, respectively. Further investigation is required to verify this assumption.  

All non-modeled regions were removed from the active site in order to allow for emphasis on all 

crucial residues and their importance in the active site of CCR5.  

Table 2. Comparison of the active site residues between the modeling template (3ODU) 

and modeled structure. 

Active site residues (3ODU) Corresponding modeled active site residues 

Glu283 
Ile198 

Leu204 
Leu213 
Phe85 

Phe109 
Phe113 
Thr195 
Trp85 
Trp94 

Trp248 
Tyr89 

Tyr108 
Tyr251 

Glu283 
Ile198 

Leu104 # 
* 

Phe85 
Phe109 

* 
Thr195 
Trp86 # 
Trp94 

Trp248 
Tyr89 

Tyr108 
Tyr251 

# —Differing Residue; * —Residue Gap. 

3.2. Virtual Screening 

Results obtained from virtual screening for the pharmacophore-based and structure-based compound 

libraries are shown in Table 3. Our query of the Zinc Database for compounds bearing 2D shape 

similarity-based identity to the reference drug template generated 220 compound hits. However,  

our query of the ZincPharmer Database for pharmacologically related compounds generated  

120 compound hits. All compounds in the two generated compounds libraries (see Methods sections 

for details) were then docked into the active site of the CCR5 enzyme using Autodock Vina and 

thereafter, from each library, we selected the top 10 compound hit leads. As shown in Table 3 and 
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Figure 6, all top 10 ranked compounds from each library exhibited remarkably higher binding energies 

compared to Maraviroc (−10.2 kcal/mol), with binding energies ranging from −12.2 to −11.6 kcal/mol 

for the 2D shape similarity-based identity library, whereas the pharmacophore-based library had binding 

energies ranging from −12.0 to −11.4 kcal/mol. 

As outlined in Figure 6, an unexpected observation revealed that compounds that were structurally 

similar had higher binding affinities on average compared to those compounds that were 

pharmacophorically-based. Although, not a huge variance amongst both libraries existed, however, this 

was an indicator about the particular importance of each specific pharmacophoric area required for CCR5 

antagonistic behavior. This observation might be attributed to the selected pharmacophore-based 

groups. A further investigation is required for the imperative role played by these pharmacophoric 

groups in terms of site-specific interactions and in return, how do these interactions affect inhibitor 

binding affinities and functioning. It was also worth mentioning that compounds 3, 5, 7 and 8 from 

both the structure-based and pharmacophore-based generated libraries demonstrated exact binding 

energies (Figure 6). Another interesting observation, not a large difference existed amongst the top  

10 binding energies compounds from both the structure-based and pharmacophore-based generated 

libraries with a difference of −0.60 kcal/mol between the highest and lowest ranked compounds 

(Figure 6). This observation might be attributed to the conservancy of the crucial pharmacophoric and 

architecturally shared properties “amongst these compounds allowing for “alleged stability”, and hence 

for well-maintained binding affinities. 

With the intention of finding the best compounds of this study, we integrated both the generated 

compound libraries and revealed the top 10 best-docked compounds (Figure 7 and Table 3). It was 

instantly observed that these compounds were remarkably larger in size as compared to maraviroc 

(Figure 7). Furthermore, majority of the compounds occupied the spaces between Tyr89, Trp94, 

Glu283, Leu104, Thr195, Tyr251, Phe109, Ile198 and Trp248 respectively, something which 

maraviroc did not achieve as a result of its smaller size (Figure 7). In this study, integration of these 

factors might be the contributing factors for the higher binding affinities as the total number of 

interactions with the active site was remarkably higher compared to those felt by maraviroc.  

From our docking calculations, it appeared that the virtual screening compound hits demonstrated  

good activity as CCR5 antagonists. Several factors might have contributed to these findings, however 

one of such importance to us was that the docking protocol implemented might have not been accurate 

enough to provide precise estimates of the different binding energies. In an effort to eradicate this 

factor, we opted to validate the docking method applied in this study. “Cross validation” was not 

employed to validate our docking results. This is an approach, where other docking programs are used 

to validate the data attained from the original docking software. Due to previous experience of using 

different docking software with various scoring functions would generate results that could be 

different and be misleading, we opted to disregard this docking validation approach. We strongly 

believe that the utmost rational mannerism for validation of docking calculations, or even any other 

computational tool, is to perform the calculations on a set of compounds with available experimental 

data and these results are then compare against known experimental data for validation.  
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Table 3. List of the top 10 screened compounds based on their docked binding energy. Compounds are ranked in order of highest to lowest 

binding affinity. 

Library Rank ZINC ID Structure 
Binding Energy 

(kcal/mol) 
xlogP H-bond Donors H-bond Acceptors Molecular Weight (g/mol) 

Ref R ZINC03817234 −10.2 −3.50 2 6 514.69 

S * 1 ZINC71849549 −12.2 2.27 2 6 318.89 

P ** 2 ZINC00825224 −12.0 4.11 3 5 397.488 

P 3 ZINC00634884 −12.0 5.96 1 6 481.60 
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Table 3. Cont. 

Library Rank ZINC ID Structure 
Binding Energy 

(kcal/mol) 
xlogP H-bond Donors H-bond Acceptors Molecular Weight (g/mol) 

S 4 ZINC32760563 −11.9 3.47 0 5 388.51 

S 5 ZINC32760533 −11.8 3.44 0 5 388.52 

S 6 ZINC25010434 −11.8 2.16 1 7 431.54 

P 7 ZINC00851466 −11.8 5.52 3 10 536.38 
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Table 3. Cont. 

Library Rank ZINC ID Structure 
Binding energy 

(kcal/mol) 
xlogP H-bond Donors H-bond Acceptors Molecular weight (g/mol) 

S 8 ZINC71818945 −11.7 3.35 0 6 434.58 

P 9 ZINC00895646 −11.7 3.99 2 7 451.55 

P 10 ZINC00895634 −11.7 3.54 2 7 438.53 

* Similarity-based library, ** Pharmacophore-based library, Ref-Maraviroc. 
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Figure 6. The top 10 ranked ZINC compounds from both the 2D similarity-based and 

pharmacophore-based libraries.  

 

Rank Structure-Based Pharmacophore-Based 
1 ZINC71849459 ZINC00634884 
2 ZINC32760563 ZINC00825224 
3 ZINC25010434 ZINC00851466 
4 ZINC32760533 ZINC00877991 
5 ZINC71818945 ZINC00895634 
6 ZINC11546940 ZINC00895646 
7 ZINC19698213 ZINC00895774 
8 ZINC25010439 ZINC01038388 
9 ZINC71849397 ZINC01080881 

Figure 7. Docking conformations of the known CCR5 antagonist (maraviroc) and the top 

10 ranked docked compounds from both the pharmacophore-based and structure-based 

libraries determined in this study, all-complexed with the CCR5 enzyme. 
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To this end, in order to validate our docking approach implemented in this study, we performed 

docking analyses on a set of compounds assayed using our docking method. The structures and 

experimental IC50 values were obtained from Binding database [37]. The binding energy of each 

compound was then plotted against its corresponding experimental IC50 value (Figure 8). As evident 

from the docking results (Figure 8), the docked energies are in great accordance with the experimental 

IC50. We observed that as the binding affinity increased (lower binding energy), the IC50 increased 

(Figure 8). We postulate that the larger the binding affinity, the more concentration is needed for 

complete enzyme inhibition. To us, this proves to be an interesting trend, since the top 10 ranked 

compounds which were obtained from both libraries (Table 3) had higher binding energies compared 

to any of those used in the assay. This implies that the docking approaches used in this work could be 

reliable enough to estimate the binding affinities for the top 10 ranked compounds (from both 

libraries—Table 3). 

Figure 8. The binding energies determined in our study and were compared against IC50 

values for the compounds assayed. The higher the binding affinity, the higher the IC50. 

 

3.3. Molecular Dynamics Simulations 

In order to gain more insight into the stability of the resulted highest ranked virtual screening hit 

complexes, the nature of overall interaction theme between the proposed ligands and the target protein 

and the specific amino acids involved in ligand binding, we performed 1 ns MD stimulations followed 

by extensive post-dynamic analyses on the ligand-enzyme complexes. 

MD stimulations of 1 ns were performed for the highest ranked virtual screening hit complexes 

(Figure 9), to ensure the stability of the ligand within the CCR5 active site. We also performed MD 

simulations on the reference ligand (maraviroc) bound to CCR5 (see Supplementary Material).  

From our previous experience with molecular docking, in many occasions, we experienced that even 

best docked structures may fly away from the enzyme active site within a few picoseconds of  
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MD stimulations. Therefore, we believe that docking calculations that are not validated by relatively a 

long MD run to ensure stability of the system might not be reliable. Interestingly, for all the 

compound-enzyme complexes, the average RMSD values were below 2.5 Å. In addition, the 

variability of the potential energies fell with 1000 kcal/mol and this suggested being a good indicator 

of the system stability.  

Figure 9. The highest ranked virtual screening hit lead complexes with CCR5 subjected to 

MD simulations. Structure-based compound (ZINC71849459) in complex with CCR5 

(Black). Pharmacophore-based compound (ZINC00634884) with CCR5 (Blue). 

 

3.4. Per-Residue Interactions 

In an effort to investigate the contribution of a single amino acid towards ligand (and/or antagonist) 

binding, we computed per-residue interactions using Moldock software [29] (Figure 10). The top 

ranked antagonist with the highest binding energy within each compound library was assessed, which 
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included ZINC71849459 from the structure-based identity library and ZINC00634884 from the 

pharmacophore-based library. We noticed that Lys197, Phe109, Trp86, Tyr89 and Try108 exhibited 

remarkably interactions with both of those docked ligands. However, Trp86, Tyr89, Thr105, and 

Tyr108 demonstrated especially better interactions with ZINC00634884 (pharmacophore-based library), 

whereas Lys197, Leu196 and Glu283 showed good interactions with ZINC71849459 (structure-based 

identity library). As shown in Figure 11, in order to gain a better understanding of the ligand-amino 

acid interactions occurring within CCR5’s active site, we generated a plot of the specific amino acid 

residues-ligand interactions using the MOE software [35].  

Figure 10. Per-residue interactions for the highest ranked compounds with the best binding 

energy from the structure-based and pharmacophore-based libraries. 

 

The MOE plot analysis of ZINC71849459 bound to CCR5 enzyme’s active site revealed that the 

ligand was especially well surrounded electrostatically by several amino acid residues within the active 

site (Figure 11A). However, it could be noted that the ligand ZINC00634884 bound to the active site 

was not well cradled electrostatically by the amino acid residues compared to the former (Figure 11B). 

An interesting observation was that not a single amino acid formed any hydrogen bonds between the 

protein and ligand for anyone of the two ligands investigated. As shown in Figure 11, on average the 

hydrophobic amino acid residues played crucial roles in protein-ligand interactions than the 

hydrophilic amino acid residues. Another important observation was that the stronger ligand-amino 

acid residue interactions exhibited here in Figure 11 matched to those outlined in Figure 10.  
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Figure 11. Pharmacophore-based compound (ZINC00634884) with CCR5 (A) and 

Structure-based compound (ZINC71849459) in complex with CCR5 (B), respectively, 

showing the hydrogen bonding and electrostatic interactions with the enzyme’s active site 

using MOE. 

 
(A) 

 
(B) 
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3.5. Atom-Based 3D-QSAR 

The atom-based 3D-QSAR model was developed from the training set of 26 inhibitors (Table 1) 

and the test set of 9 inhibitors using molecular overlay alignments (Figure 3). This atom-based  

3D-QSAR model was built after model development and validation based on the internal predictions 

of the training set and the external predictions of the test set. PLS analyses of the CCR5 inhibitor 

training sets showed a high cross-validated rcv
2 value of 0.84 using three principal components and 

non-cross-validated r2 value of 0.941. All of the parameters of these QSAR model showed certain 

reliability and feasible predictability to help us design new and high selectivity CCR5 inhibitors. From 

Figure 12, we can see that almost all compounds in the test set and training set yielded a good 

predicted value. The graphical plot of observed vs. calculated TPH1 inhibitory activity for both the 

training set as well as the test set is shown in Figure 12. 

Figure 12. Correlation graph between the experimental 1/log IC50 and predicted 

1/logIC50. 

 

4. Conclusions 

In the present work, the structure of human CCR5 was homology modeled using the crystal 

structure of CXCR4 as a structural modeling template. The protein appeared to be modeled with a 

remarkably degree of accuracy, specifically at the active site where docking studies were performed. 

Our query of the ZINC database for drug-like compounds that shared 2D shape similarity-based 

identity and query of ZINCPharmer for pharmacologically related drug-like compounds to a known 

FDA-approved CCR5 antagonist called maraviroc. The entire top 10 ranked compounds from each 

library exhibited remarkably higher binding energies compared to the best-docked structure of 

maraviroc. Moreover, an unforeseen observation revealed that compounds that were architecturally 

similar had higher binding energies on average compared to those that were pharmacophorically-based.  

To validate our docking calculations, the same docking approach adopted for the ligand-based libraries 

was performed on a set of compounds with known experimental data attained from inhibition assays 

against HIV-1 CCR5 and the results were compared against experimental data. The docked energies 

are in great accordance with the experimental IC50. It was concluded that compounds with more 
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favorable predicted binding energies than the known drug maraviroc will have “better activity”  

(i.e., smaller IC50 values). To us, this proves to be an interesting trend, since the top 10 ranked 

compounds which were obtained from both libraries had higher binding energies compared to any of 

those used in the biological assay, therefore it stands to reason compound hits elucidated in this study 

exhibit humble activity as CCR5 antagonists. Also, this implies that the docking approaches used in 

this work could be reliable enough to estimate the binding affinities for other compounds to be studied. 

Furthermore, from our previous experience with molecular docking, and in numerous insistences, the 

reliability of a stable protein-ligand complex might not be a true reflection. Therefore, in order to 

obtain more insight on the stability of the resulted docked complexes, the nature of the overall 

interaction themes between the generated ligands and the target protein, and the specific amino  

acids involved in the ligand binding, we performed 5 ns MD simulations followed by extensive  

post-dynamic analyses on the ligand-enzyme complexes resulted from our docking simulations.  

We took our study a step further by obtaining a set of 35 novel oxamino-piperidino-piperidine amide 

analogs with available IC50 (mM) data taken from literature for the development of our atom-based 

3D-QSAR model. All of the parameters of the QSAR model showed certain reliability and feasible 

predictability to help us design new and high selectivity CCR5 inhibitors. Our novel identified leads 

have the propensity to be considered as potential CCR5 antagonists and moreover as potential HIV-1 

entry inhibitors. Information gained from this study could shed light on the activity of a new series of 

lead compounds as potential HIV entry inhibitors and should serve as a powerful tool in the drug 

design and development machinery. 

Supplementary Materials 

Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/19/4/5243/s1. 
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