Supplementary Materials

Detailed Procedures for the Determination of Association Constants

In the $1: 2{ }^{1} \mathrm{H}$-NMR titration experiment between \mathbf{S} and $\mathbf{V} \mathbf{1}$ there are 4 unknowns: $K_{S V}, K_{V S V}, \delta_{S V}$, $\delta_{V S V}$. In which $\delta_{S V}$ is the chemical shift of a proton resonance in the 1:1 complex between \mathbf{S} and $\mathbf{V 1}$ and $\delta_{V S V}$ is the chemical shift of a proton resonance in the 1:2 complex between \mathbf{S} and V1. We found no computer program powerful enough to fit a cubic equation describing $1: 2$ binding to the data and extract the 4 unknowns with accuracy from the single binding isotherm obtained from the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ titration. For this reason we followed an indirect and rather elaborate procedure to obtain the most accurate values for $K_{S V}$ and $K_{V S V}$.

The 1:2 binding equation was programmed in Mathematica ${ }^{\circledR}$. Random values of $K_{S V}$ and $K_{V S V}$ were entered and the evolution of $[\mathbf{S}]$ and complexes $[\mathbf{S V}]$ and [VSV] at the experimental concentrations of the ${ }^{1} \mathrm{H}$-NMR experiment were calculated.

Using the known values of $[\mathbf{S}]_{0},[\mathbf{V}]_{0}$ and δ_{S} and the by Mathematica ${ }^{\circledR}$ calculated values of $[\mathbf{S}],[\mathbf{V}]$, and [VSV] at the programmed association constant, the experimentally obtained binding curve from the ${ }^{1} \mathrm{H}$-NMR titration ($\delta_{o b s}$) could be simply fitted to the following equation

$$
\begin{equation*}
\partial_{o b s}=\frac{\partial_{S} \cdot[\boldsymbol{S}]+\partial_{V S} \cdot[\boldsymbol{S} \boldsymbol{V}]+\partial_{V S V} \cdot[\boldsymbol{V} \boldsymbol{S} \boldsymbol{V}]}{[\boldsymbol{S}]_{0}} \tag{1}
\end{equation*}
$$

This provided the complex chemical shifts $\delta_{V S}$ and $\delta_{V S V}$ as well as a reduced Chi squared value revealing the accuracy of the fit.

By repeating this procedure while changing the into Mathematica imported values of $K_{S V}$ and $K_{V S V}$ a plot of reduced Chi squared values versus $K_{S V}$ and $K_{V S V}$ was obtained. From this landscape (Figure S1), the absolute minimum in reduced Chi squared value, and hence the best fit to the binding model could be found: $K_{S V}=12842 \mathrm{M}^{-1}, K_{V S V}=604 \mathrm{M}^{-1}$.

Figure S1. Plot of reduced Chi squared values versus K_{SV} and K_{VSv}.

Ksv

Kvsv

$\mathbf{S}+\mathbf{V 1}\left(K_{\mathrm{SV}}\right.$ and $\left.K_{\mathrm{VSV}}\right)$:

Figure S2. NMR titration at $298 \mathrm{~K} .{ }^{1} \mathrm{H}$-NMR Spectra of \mathbf{S} in the presence of from bottom to top increasing quantities of $\mathbf{V 1}$.

Figure S3. Binding curve of the titration between \mathbf{S} and $\mathbf{V} 1$ and the fits to $1: 1$ and $2: 1$ binding models.

Figure S4. Fluorescence Titrations. Left: Drop in Fluorescence upon addition of V1 to S. Right: normalized fluorescence emission of \mathbf{S} upon addition of equivalents of $\mathbf{V} 1$ with fits at different temperatures. ($K_{\text {SV }}$ could be determined because at micromolar concentrations the 1:2 binding (K_{VSV}) is too low to significantly affect the experimental binding isotherm).

Table S1. Data Fluorescence Titrations.

$\boldsymbol{T}(\boldsymbol{K})$	$\boldsymbol{K}_{\boldsymbol{S V}}$	$\boldsymbol{1} / \boldsymbol{T}$	$\boldsymbol{L n}\left(\boldsymbol{K}_{\boldsymbol{S V}}\right)$
293	1.7×10^{4}	0.003413	9.740969
298	1.4×10^{4}	0.003356	9.546813
303	1.1×10^{4}	0.003300	9.341369
313	7.5×10^{3}	0.003195	8.922658

Figure S5. C + V1 $\left(K_{\mathrm{a}}\right)$: ${ }^{1} \mathrm{H}$-NMR titration. ${ }^{1} \mathrm{H}$-NMR Spectra of \mathbf{C} in the presence of from bottom to top increasing quantities of $\mathbf{V 1}$.

Figure S6. C + V1 $\left(K_{\mathrm{a}}\right)$: Fit of the NMR titration: Curve too steep to determine very accurately. (Association constant too high to determine accurately at milimolar concentrations. $\left.K_{\mathrm{CV} 1}>1 \times 10^{5} \mathrm{M}^{-1}\right)$.

Figure S7. C + V1 (Ka): Fluorescence Titrations. Left: Drop in Fluorescence upon addition of V1 to C. Right: normalized fluorescence emission of C upon addition of equivalents of V1 with fits at different temperatures.

Table S2. Data Fluorescence titrations.

$\boldsymbol{T}(\boldsymbol{K})$	$\boldsymbol{K}_{\boldsymbol{C V}}$	$\boldsymbol{1} / \boldsymbol{T}$	$\boldsymbol{L n}\left(\boldsymbol{K}_{\boldsymbol{C V}}\right)$
293	3.4×10^{5}	0.003413	12.737
298	3.0×10^{5}	0.003356	12.612
303	2.7×10^{5}	0.003300	12.506
313	1.6×10^{5}	0.003195	11.951

Figure S8. C + V2 ($K_{\mathrm{CV} 2}$): ${ }^{1} \mathrm{H}$-NMR titration.

Figure S9. Curve fitting of 1H-NMR titration data of binding between C and V2 (left $\mathrm{H}-8$, right β pyrrole).

Mathematica: Example of 2:1 binding model as written into Mathematica which provides the values of the free host, free guest, the 1:1 and 1:2 complex at different values of K1, K2, total host and total guest.

ClearAll["Global*"]

Clear[anul,bnul,cnul,k1,k2,k3,k4,a,b,c,anul,bnul,cnul,ac,ab,abc,abb]
$\mathrm{k} 1=2^{*} \wedge 4$;
$\mathrm{k} 2=1^{* \wedge} 3$;
anul $=1^{* \wedge-4 ; ~}$
$(*$ cnul $=2 / 10000 ; *)(*$ wordt nu niet gebruikt als constante, maar als variabele $*)$
cstart $=0.001 *$ anul; (*kun je veranderen voor andere punten*)
cstop $=50 *$ anul; (*kun je veranderen voor andere punten*)
caantalpunt $=200$; (*kun je veranderen voor meer punten*)

```
cinterval = (cstop-cstart)/caantalpunt; (*afblijven*)
cresultaat = Table[0,{caantalpunt },{4}];
cnultable = Table[0,{caantalpunt },{1}];
goedeoplossing = {0,0,0,0};
cpunt = 1;
While[cpunt< = caantalpunt,{goedeoplossing = {0,0,0,0},Clear[cnul,a,b,ab,abb],cnul =
cstart+cinterval*(cpunt-1),
    Alex = NSolve[{k1\squareab/(a*b), k2 abb/(ab*b), anul }\square\textrm{a}+\textrm{ab}+\textrm{abb},\textrm{cnul}\square\textrm{b}+\textrm{ab}+\textrm{abb}},{\textrm{a},\textrm{b},\textrm{ab},\textrm{abb}}]
    teller = 1;While [teller<Length[Alex]+1,{
        If[Positive[a] /.Alex[[teller]],
        If[Positive[b]/.Alex[[teller]],
            If[Positive[ab]/.Alex[[teller]],
                If[Positive[abb]/.Alex[[teller]],
                    {goedeoplossing[[1]] = a/.Alex[[teller]] , goedeoplossing[[2]] =
b/.Alex[[teller]];goedeoplossing[[3]] = ab/.Alex[[teller]];goedeoplossing[[4]] = abb/.Alex[[teller]]}]
                ]
                ]
            ]
        ,teller = teller+1}],
        cresultaat[[cpunt]] = goedeoplossing,
        cnultable[[cpunt]] = cnul,
        cpunt = cpunt+1}
]
cresultaat
cnultable
cplottable = Table[0,{caantalpunt },{2}]
plotteller = 1;
resulttable = Table[0,{caantalpunt},{5}]
resulttable = Transpose[Prepend[Transpose[cresultaat], cnultable]]
NumberForm[resulttable,NumberFormat->(#1"E"#3&)];
```

(*resultaat wordt geexporteerd als: cnul, $\mathrm{a}, \mathrm{b}, \mathrm{ab}, \mathrm{abb}{ }^{*}$)
SetDirectory["C:\Documents and Settings\AlexanderlMy Documents\Promotie\Theoretical models\2to1"]; (*hier wordt alles neergezet*)
filename = "two to one.csv";
Computer en dan hier naam invullen*)
Export[filename,resulttable]; (* Shift Enter om te runnen*)

